PM2.5-Bound Heavy Metals in Southwestern China: Characterization, Sources, and Health Risks
Abstract
:1. Introduction
2. Methods and Materials
2.1. PM2.5 Sampling and Chemistry Analysis
2.2. Health Risk Estimation of PM2.5-Bound Heavy Metals
3. Results and Discussion
3.1. Pollution Characteristics of Heavy Metals in PM2.5
3.2. Sources of Fine Particulate Heavy Metals
3.2.1. Source Apportionment of PM2.5
3.2.2. Source Apportionment of PM2.5-Bound Heavy Metals
3.3. Health Risks of Heavy Metals from Pollution Sources
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bi, X.; Dai, Q.; Wu, J.; Zhang, Q.; Zhang, W.; Luo, R.; Cheng, Y.; Zhang, J.; Wang, L.; Yu, Z.; et al. Characteristics of the main primary source profiles of particulate matter across China from 1987 to 2017. Atmos. Chem. Phys. Discuss. 2019, 19, 3223–3243. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Tan, J.; Zhao, Q.; Du, Z.; He, K.; Ma, Y. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos. Chem. Phys. 2011, 11, 1025–1051. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.S.; Flaxman, A.D.; Danaei, G.; Shibuya, K. A comparative risk assessment of burden of disease andinjury attributable to 67 risk factors and risk factor clustersin 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2007, 287, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Shiraiwa, M.; Ueda, K.; Pozzer, A.; Lammel, G.; Kampf, C.J.; Fushimi, A. Aerosol Health Effects from Molecular to Global Scales. Environ. Sci. Technol. 2017, 51, 13545–13567. [Google Scholar] [CrossRef]
- Li, F.; Yan, J.J.; Wei, Y.C.; Zeng, J.J.; Wang, X.Y.; Chen, X.Y. PM2.5-bound heavy metals from the major cities in China: Spatiotemporal distribution, fuzzy exposure assessment and health risk management. J. Clean. Prod. 2021, 286, 124967. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Xing, J.; Wang, S.X.; Fu, X.; Zheng, H.T. Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China. Environ. Pollut. 2018, 239, 544–553. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Cheng, H.G.; Zhou, T.; Lin, C.Y.; Guo, S. The estimated atmospheric lead emissions in China, 1990–2009. Atmos. Environ. 2012, 60, 1–8. [Google Scholar] [CrossRef]
- Hsieh, C.; Jung, C.; Lin, C.; Hwang, B. Combined exposure to heavy metals in PM2.5 and pediatric asthma. J. Allergy Clin.Immunol. 2021, 147, 2171–2180. [Google Scholar] [CrossRef]
- Xie, J.J.; Yuan, C.G.; Xie, J.; Shen, Y.W.; He, K.Q.; Zhang, K.G. Speciation and bioaccessibility of heavy metals in PM2.5 in Baoding city, China. Environ. Pollut. 2019, 252, 336–343. [Google Scholar] [CrossRef]
- Liu, J.W.; Chen, Y.J.; Chao, S.H.; Cao, H.B.; Zhang, A.C.; Yang, Y. Emission control priority of PM2.5-bound heavy metals in different seasons: A comprehensive analysis from health risk perspective. Sci. Total Environ. 2018, 644, 20–30. [Google Scholar] [CrossRef]
- Han, Y. The status, dilemma and breakthrough of Shanxi Province energy transformation and development. Coal Econ. Res. 2019, 39, 68–74. (In Chinese) [Google Scholar]
- Li, X.; Cui, T. Supportability analysis of sustainable development for coal resources in China. China Coal. 2019, 45, 33–37. (In Chinese) [Google Scholar]
- Peng, H.; Chen, Y.L.; Weng, L.P.; Ma, J.; Ma, Y.L.; Li, Y.T. Comparisons of heavy metal input inventory in agricultural soils in North and South China: A review. Sci. Total Environ. 2019, 660, 776–786. [Google Scholar] [CrossRef]
- Wen, J.; Wang, X.J.; Zhang, Y.J.; Zhu, H.X.; Chen, Q.; Tian, Y.Z. PM2.5 source profiles and relative heavy metal risk of ship emissions: Source samples from diverse ships, engines, and navigation processes. Atmos. Environ. 2018, 191, 55–63. [Google Scholar] [CrossRef]
- Tao, J.; Gao, J.; Zhang, L.; Zhang, R.; Che, H.; Zhang, Z. PM2.5 pollution in a megacity of southwest China: Source apportionment and implication. Atmos. Chem. Phys. 2014, 14, 8679–8699. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Zhang, L.M.; Zhang, R.J.; Wu, Y.F.; Zhang, Z.S.; Zhang, X.L. Uncertainty assessment of source attribution of PM2.5 and its water-soluble organic carbon content using different biomass burning tracers in positive matrix factorization analysis—A case study in Beijing, China. Sci. Total Environ. 2016, 543, 326–335. [Google Scholar] [CrossRef]
- Zhang, N.; Cao, J.; Huang, R.; He, Y.; Wang, Q.; Zhu, C. Seasonal variation, sources and transport of aerosols at lijiang, southeast Tibetan plateau. Aerosol Air Qual. Res. 2016, 16, 1579–1590. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Cao, J.; Tao, J.; Li, N.; Su, X.; Chen, L. Long-Term trends in visibility and at Chengdu, China. PLoS ONE 2013, 8, e68894. [Google Scholar] [CrossRef]
- Kong, L.; Tan, Q.; Feng, M.; Qu, Y.; An, J.L.; Liu, X.G. Investigating the characteristics and source analyses of PM2.5 seasonal variations in Chengdu, Southwest China. Chemosphere 2020, 243, 125267. [Google Scholar] [CrossRef] [PubMed]
- Li, X.J.; Hussain, S.A.; Sobri, S.; Said, M.S.M. Overviewing the air quality models on air pollution in Sichuan Basin, China. Chemosphere 2021, 271, 129502. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Xu, H.; Bi, X.; Lin, F.; Jiao, L.; Zhang, Y.; Feng, Y. The effect of atmospheric particulates on the rainwater chemistry in the Yangtze River Delta, China. J. Air Waste Manag. Assoc. 2019, 69, 1452–1466. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Zhou, J.; Liang, J.; Cui, H.; Xu, L.; Zhu, Z. Atmospheric deposition of heavy metals in farmland area around a copper smelter. J. Agro-Environ. Sci. 2014, 33, 1328–1334. [Google Scholar]
- Weerasundara, L.; Amarasekara, R.W.K.; Magana-Arachchi, D.N.; Ziyath, A.M.; Karunaratne, D.G.G.P.; Goonetilleke, A. Microorganisms and heavy metals associated with atmospheric deposition in a congested urban environment of a developing country: Sri Lanka. Sci. Total Environ. 2017, s584–585, 803–812. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Qin, Y.; Qin, J.; Yang, Y.; Qi, T.; Chen, R. The interaction laws of atmospheric heavy metal ions and water-soluble organic compounds in PM2.5 based on the excitation-emission matrix fluorescence spectroscopy. J. Hazard. Mater. 2020, 402, 123497. [Google Scholar] [CrossRef]
- Wang, H.B.; Qiao, B.Q.; Zhang, L.M.; Yang, F.M.; Xing, J. Characteristics and sources of trace elements in PM2.5 in two megacities in Sichuan Basin of southwest China. Environ. Pollut. 2018, 242, 1577–1586. [Google Scholar] [CrossRef]
- US EPA. Risk Assessment Guidance for Superfund. Volume 1: Human Health Evaluation Manual (Part A). Office of Emergency and Remedial Response. 1989. Available online: http://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part (accessed on 18 July 2021).
- Volckens, J.; Leith, D. Partitioning theory for respiratory deposition of semivolatile aerosols. Ann. Occup. Hyg. 2003, 47, 157–164. [Google Scholar]
- Huang, R.J.; Cheng, R.; Jing, M.; Yang, L.; Li, Y.J.; Chen, Q. Source-Specific Health Risk Analysis on Particulate Trace Elements: Coal Combustion and Traffic Emission As Major Contributors in Wintertime Beijing. Environ. Sci. Technol. 2018, 52, 10967–10974. [Google Scholar] [CrossRef]
- US EPA. Risk Assessment. Regional Screening Levels (RSLs)–Generic Tables. May 2021. Available online: http://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 18 July 2021).
- Chen, Y.; Xie, S.D.; Luo, B.; Zhai, C.Z. Pollution characterization and source apportionment of fine particles in urban Chongqing. Acta. Sci. Circ. 2017, 37, 2420–2430. (In Chinese) [Google Scholar]
- Tao, J.; Zhang, L.; Cao, J.; Hsu, S.C.; Xia, X.; Zhang, Z. Characterization and source apportionment of aerosol light extinction in Chengdu, southwest China. Atmos. Environ. 2014, 95, 552–562. [Google Scholar] [CrossRef]
- Wang, X.B.; Qin, Y.Y.; Qin, J.J.; Long, X.X.; Qi, T.; Chen, R.Z. Spectroscopic insight into the pH-dependent interactions between atmospheric heavy metals (Cu and Zn) and water-soluble organic compounds in PM2.5. Sci. Total Environ. 2021, 767, 145261. [Google Scholar] [CrossRef]
- Amato, F.; Hopke, P.K. Source apportionment of the ambient PM2.5 across St. Louis using constrained positive matrix factorization. Atmos. Environ. 2012, 46, 329–337. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Malm, W.C.; Sisler, J.F. Atmospheric aerosol over Alaska: 2. Elemental composition and sources. J. Geophys. Res. 1998, 103, 19045–19057. [Google Scholar] [CrossRef]
- Hao, Y.; Gao, C.; Deng, S.; Yuan, M.; Song, W.; Lu, Z.; Qiu, Z. Chemical characterisation of PM2.5 emitted from motor vehicles powered by diesel, gasoline, natural gas and methanol fuel. Sci. Total Environ. 2019, 674, 128–139. [Google Scholar] [CrossRef]
- Duan, X.; Yan, Y.; Li, R.; Deng, M.; Hu, D.; Peng, L. Seasonal variations, source apportionment, and health risk assessment of trace metals in PM2.5 in the typical industrial city of changzhi, China. Atmos. Pollut. Res. 2021, 12, 365–374. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, X.; Zhu, T.; Luo, L.; Zheng, Y. Chemical profiles of PM emitted from the iron and steel industry in northern China. Atmos. Environ. 2017, 150, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Dai, L.H.; Wei, Y.; Zhang, Y.J.; Hu, Q.H.; Wu, S.P. Characteristics of inorganic ions and organic components in PM2.5 from biomass burning. Acta. Sci. Circum. 2017, 37, 4483–4491. (In Chinese) [Google Scholar]
- Li, X.H.; Wang, S.X.; Duan, L.; Hao, J.M.; Nie, Y.F. Carbonaceous aerosol emissions from household bioful combustion in China. Environ. Sci. Technol. 2009, 43, 6076–6081. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Luo, B.; Li, J.; Hao, Y.; Yang, W.; Shi, F. Characteristics of six criteria air pollutants before, during, and after a severe air pollution episode caused by biomass burning in the southern Sichuan Basin, China. Atmos. Environ. 2019, 215, 116840. [Google Scholar] [CrossRef]
- Zhou, Z.; Tan, Q.; Deng, Y.; Wu, K.; Yang, X.; Zhou, X. Emission inventory of anthropogenic air pollutant sources and characteristics of VOCs species in Sichuan Province, China. J. Atmos. Chem. 2019, 76, 21–58. [Google Scholar] [CrossRef]
- Song, M.; Tan, Q.; Feng, M.; Qu, Y.; Liu, X.; An, J. Source apportionment and secondary transformation of atmospheric nonmethane hydrocarbons in Chengdu, southwest China. J. Geophys. Res. 2018, 123, 9741–9763. [Google Scholar] [CrossRef]
- Ho, K.F.; Lee, S.C.; Chow, J.C.; Watson, J.G. Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. Atmos. Environ. 2003, 37, 1023–1032. [Google Scholar] [CrossRef]
- Shen, Z.X.; Sun, J.; Cao, J.J.; Zhang, L.M.; Zhang, Q.; Lei, Y.L. Chemical profiles of urban fugitive dust PM2.5 samples in Northern Chinese cities. Sci. Total Environ. 2016, 569–570, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Hu, G.R.; Yu, R.L.; Shen, H.Z.; Yan, Y. Bioaccessibility and source-specific health risk of heavy metals in PM2.5 in a coastal city in China. Environ. Adv. 2021, 4, 100047. [Google Scholar] [CrossRef]
- Kuang, B.Y.; Lin, P.; Huang, X.H.H.; Yu, J.Z. Sources of humic-like substances in the Pearl River Delta, China: Positive matrix factorization analysis of PM2.5 major components and source markers. Atmos. Chem. Phy. 2015, 15, 1995–2008. [Google Scholar] [CrossRef] [Green Version]
- Pacyna, J.M.; Pacyna, E.G. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 2001, 9, 269–298. [Google Scholar] [CrossRef]
- Ledoux, F.; Kfoury, A.; Delmaire, G.; Roussel, G.; El, Z.A.; Courcot, D. Contributions of local and regional anthropogenic sources of metals in PM2.5 at an urban site in northern France. Chemosphere 2017, 181, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, M.; Amini, N.; Sadeghian, B.; Wang, D.S.; Fang, L.P. Heavy metals and their source identification in particulate matter (PM2.5) in Isfahan City, Iran. J. Environ. Sci. 2018, 72, 166–175. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, J.; Wang, X.; Jia, J.; Li, J.; Wang, L. Distribution, bioaccessibility, and health risk assessment of heavy metals in PM2.5 and PM10 during winter heating periods in five types of cities in Northeast China. Ecotox. Environ. Saf. 2021, 214, 112071. [Google Scholar] [CrossRef]
- Dai, Q.; Bi, X.-H.; Wu, J.; Zhang, Y.-F.; Wang, J.; Xu, H.; Yao, L.; Jiao, L.; Feng, Y.-C. Characterization and Source Identification of Heavy Metals in Ambient PM10 and PM2.5 in an Integrated Iron and Steel Industry Zone Compared with a Background Site. Aerosol Air Qual. Res. 2015, 15, 875–887. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Guo, S.; Tan, J.; Wang, S.; Chai, F. Characteristics of atmospheric carbonyls during haze days in Beijing, China. Atmos. Res. 2012, 114–115, 17–27. [Google Scholar] [CrossRef]
Sites | S1 | S2 | S3 | S4 | S5 | All |
---|---|---|---|---|---|---|
PM2.5 (μg/m3) | 106.60 ± 36.11 | 92.92 ± 32.84 | 84.56 ± 28.39 | 101.25 ± 35.49 | 92.10 ± 32.48 | 97.06 ± 33.05 |
HMs (ng/m3) | 201.41 ± 34.03 | 193.95 ± 33.75 | 163.30 ± 26.82 | 329.53 ± 53.28 | 198.54 ± 29.35 | 220.46 ± 72.53 |
Zn (ng/m3) | 100.78 ± 65.46 | 100.17 ± 51.95 | 78.03 ± 33.62 | 104.08 ± 34.73 | 82.51 ± 24.94 | 94.22 ± 32.90 |
Mn (ng/m3) | 34.99 ± 15.94 | 30.69 ± 12.06 | 31.97 ± 14.89 | 142.17 ± 89.41 | 50.28 ± 20.51 | 58.63 ± 24.48 |
Pb (ng/m3) | 39.38 ± 13.50 | 38.32 ± 15.67 | 33.02 ± 11.16 | 40.48 ± 15.00 | 36.10 ± 13.48 | 37.93 ± 13.29 |
Cu (ng/m3) | 13.25 ± 6.38 | 12.44 ± 5.68 | 11.85 ± 5.14 | 25.63 ± 18.02 | 14.76 ± 6.05 | 15.83 ± 7.22 |
As (ng/m3) | 6.52 ± 4.55 | 8.05 ± 3.99 | 4.43 ± 3.86 | 8.15 ± 4.28 | 8.97 ± 5.75 | 7.56 ± 4.38 |
Cr (ng/m3) | 5.04 ± 2.55 | 2.92 ± 1.18 | 2.76 ± 1.46 | 6.21 ± 3.36 | 4.07 ± 2.14 | 4.29 ± 1.76 |
Ni (ng/m3) | 1.14 ± 1.33 | 1.00 ± 0.58 | 0.54 ± 0.68 | 1.82 ± 1.38 | 1.50 ± 0.54 | 1.39 ± 0.42 |
V (ng/m3) | 0.30 ± 0.20 | 0.36 ± 0.25 | 0.70 ± 0.68 | 1.00 ± 0.50 | 0.36 ± 0.28 | 0.60 ± 0.25 |
Source | Pb | V | As | Mn | Ni | Cr (VI) | Issued Year |
---|---|---|---|---|---|---|---|
GB3095-2012 | 500 | 6 | 150 | 0.025 | 2012 | ||
WHO | 500 | 1000 | 6.6 | 150 | 25 | 0.25 | 2000 |
EU | 6 | 20 | 2004 | ||||
U.S. EPA | 150 | 2016 | |||||
India | 6 | 20 | 2009 |
Elements | Ei | C (ng/m3) | RfC (mg/m3) | IUR (μg/m3)−1 |
---|---|---|---|---|
V | 0.48 | 0.41 | 7.00 × 10−6 | 8.30 × 10−3 |
Cr | 0.48 | 0.89 | 1.00 × 10−4 | 8.40 × 10−2 |
Mn | 0.48 | 44.06 | 5.00 × 10−5 | |
Ni | 0.48 | 0.64 | 1.40 × 10−5 | 2.40 × 10−4 |
As | 0.48 | 5.27 | 1.50 × 10−5 | 4.30 × 10−3 |
Pb | 0.48 | 32.62 | 8.00 × 10−5 |
Elements | CR | HQ (Non-CR) | ||
---|---|---|---|---|
Adults | Children | Adults | Children | |
V | 2.72 × 10−7 | 6.81 × 10−8 | 1.37 × 10−2 | 1.37 × 10−2 |
Cr | 6.04 × 10−6 | 1.51 × 10−6 | 2.10 × 10−3 | 2.10 × 10−3 |
Mn | 2.07 × 10−1 | 2.07 × 10−1 | ||
Ni | 1.24 × 10−8 | 3.10 × 10−9 | 1.08 × 10−2 | 1.08 × 10−2 |
As | 1.82 × 10−6 | 4.56 × 10−7 | 8.24 × 10−2 | 8.24 × 10−2 |
Pb | 2.10 × 10−7 | 5.25 × 10−8 | ||
Sum | 8.36 × 10−6 | 2.09 × 10−6 | 3.16 × 10−1 | 3.16 × 10−1 |
Sources | CR | HQ (Non-CR) | ||
---|---|---|---|---|
Adults | Children | Adults | Children | |
Coal combustion | 1.29 × 10−6 | 3.23 × 10−7 | 6.52 × 10−2 | 6.52 × 10−2 |
Biomass burning | 1.67 × 10−6 | 4.18 × 10−7 | 3.33 × 10−2 | 3.33 × 10−2 |
Industrial emission | 2.13 × 10−6 | 5.32 × 10−7 | 1.16 × 10−1 | 1.16 × 10−1 |
Ship emission | 6.67 × 10−7 | 1.67 × 10−7 | 3.48 × 10−2 | 3.48 × 10−2 |
Dust | 1.01 × 10−6 | 2.52 × 10−7 | 4.11 × 10−2 | 4.11 × 10−2 |
Vehicle emission | 1.59 × 10−6 | 3.98 × 10−7 | 2.59 × 10−2 | 2.59 × 10−2 |
Sum | 8.36 × 10−6 | 2.09 × 10−6 | 3.16 × 10−1 | 3.16 × 10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Wang, Z.; Zhou, J.; Che, H.; Tian, M.; Wang, H.; Shi, G.; Yang, F.; Zhang, S.; Chen, Y. PM2.5-Bound Heavy Metals in Southwestern China: Characterization, Sources, and Health Risks. Atmosphere 2021, 12, 929. https://doi.org/10.3390/atmos12070929
Han Y, Wang Z, Zhou J, Che H, Tian M, Wang H, Shi G, Yang F, Zhang S, Chen Y. PM2.5-Bound Heavy Metals in Southwestern China: Characterization, Sources, and Health Risks. Atmosphere. 2021; 12(7):929. https://doi.org/10.3390/atmos12070929
Chicago/Turabian StyleHan, Yan, Zhichao Wang, Jiawei Zhou, Hanxiong Che, Mi Tian, Huanbo Wang, Guangming Shi, Fumo Yang, Shumin Zhang, and Yang Chen. 2021. "PM2.5-Bound Heavy Metals in Southwestern China: Characterization, Sources, and Health Risks" Atmosphere 12, no. 7: 929. https://doi.org/10.3390/atmos12070929
APA StyleHan, Y., Wang, Z., Zhou, J., Che, H., Tian, M., Wang, H., Shi, G., Yang, F., Zhang, S., & Chen, Y. (2021). PM2.5-Bound Heavy Metals in Southwestern China: Characterization, Sources, and Health Risks. Atmosphere, 12(7), 929. https://doi.org/10.3390/atmos12070929