A Study on Possible Solar Influence on the Climate of the Southern Hemisphere
Abstract
:1. Introduction
2. Materials and Methods
- (a)
- Concentration of the cosmogenic 10Be in the South Pole core obtained by Bard et al. [25];
- (b)
- Total solar irradiance reconstructed by means of the cosmogenic isotopes 14C and 10Be [25];
- (c)
- Concentration of the cosmogenic 10Be in the two Antarctic records (South Pole and Dome Fuji stations) obtained by Delaygue and Bard [26];
- (d)
3. Results
- (a)
- (b)
- (c)
- Strong fluctuations on the scale of ca 100 years are presented in a reconstruction of Neucomb et al. [20]. They give a significant (p < 0.05) peak in Fourier spectrum at a period of 91 years. A strong and highly significant ca 250 year cyclicity exists in proxy series [18] during all the millennium. See Figure 3C,F and Figure 4C.
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gray, L.; Beer, J.; Geller, M.; Haigh, J.; Lockwood, M.; Matthes, K.; Cubasch, U.; Fleitmann, D.; Harrison, G.; Hood, L.; et al. Solar influence on climate. Rev. Geophys. 2010, 48, RG4001. [Google Scholar] [CrossRef]
- Lockwood, M. Solar Influence on Global and Regional Climates. Surv. Geophys. 2012, 33, 503–534. [Google Scholar] [CrossRef] [Green Version]
- Karlén, W.; Kuylenstierna, J. On solar forcing of Holocene climate: Evidence from Scandinavia. Holocene 1996, 66, 359–365. [Google Scholar] [CrossRef]
- Ogurtsov, M.; Kocharov, G.; Lindholm, M.; Meriläinen, J.; Eronen, M.; Nagovitsyn, Y. Evidence of solar variation in tree-ring-based climate reconstructions. Sol. Phys. 2002, 205, 403–417. [Google Scholar] [CrossRef]
- Raspopov, O.M.; Dergachev, V.A.; Kolström, N. Hale cyclicity of solar activity and its relation to climate variability. Sol. Phys. 2004, 224, 455–463. [Google Scholar] [CrossRef]
- Helama, S.; Fauria, M.M.; Mielikainen, K.; Timonen, M.; Eronen, M. Sub-Milankovitch solar forcing of past climates: Mid and late Holocene perspectives. GSA Bull. 2010, 122, 1981–1988. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, M.; Harrison, R.; Woollings, T.; Solanki, S. Are cold winters in Europe associated with low solar activity? Environ. Res. Lett. 2010, 5, 024001. [Google Scholar] [CrossRef]
- Yamaguchi, Y.T.; Yokoyama, Y.; Miyahara, H.; Sho, K.; Nakatsuka, T. Synchronized Northern Hemisphere climate change and solar magnetic cycles during the Maunder Minimum. Proc. Natl. Acad. Sci. USA 2010, 107, 20697–20702. [Google Scholar] [CrossRef] [Green Version]
- Brugnara, Y.; Brönnimann, S.; Luterbacher, J.; Rozanov, E. Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data sets. Atmos. Chem. Phys. 2013, 13, 6275–6288. [Google Scholar] [CrossRef] [Green Version]
- Ogurtsov, M.; Lindholm, M.; Jalkanen, R.; Veretenenko, S.V. North Atlantic sea surface temperature, solar activity and the climate of Northern Fennoscandia. Adv. Space Res. 2017, 59, 980–986. [Google Scholar] [CrossRef]
- Owens, M.J.; Lockwood, M.; Hawkins, E.; Usoskin, I.; Jones, G.S.; Barnard, L.; Schurer, A.; Fasullo, J. The Maunder minimum and the Little Ice Age: An update from recent reconstructions and climate simulations. J. Space Weather Space Clim. 2017, 7, A33. [Google Scholar] [CrossRef]
- Connolly, R.; Soon, W.; Connolly, M.; Baliunas, S.; Berglund, J.; Butler, C.J.; Cionco, R.G.; Elias, A.G.; Fedorov, V.M.; Harde, H.; et al. How much has the Sun influenced Northern Hemisphere temperature trends? An ongoing debate. Res. Astron. Astrophys. 2021, 21, 131. [Google Scholar] [CrossRef]
- Cullather, R.; Shindell, D. Solar forcing of Southern Hemisphere climate change during the Maunder Minimum. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2005. [Google Scholar]
- Varma, V.; Prange, M.; Lamy, F.; Merkel, U.; Schulz, M. Solar-forced shifts of the Southern Hemisphere Westerlies during the Holocene. Clim. Past 2011, 7, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Heredia, T.; Elias, A.G. A study on possible solar and geomagnetic effects on the precipitation over northwestern Argentina. Adv. Space Res. 2013, 51, 1883–1892. [Google Scholar] [CrossRef]
- Heredia, T.; Bazzano, F.M.; Cionco, R.; Soon, W.; Medina, F.D.; Elias, A.G. Searching for solar-like interannual to bidecadal effects on temperature and precipitation over a Southern Hemisphere location. J. Atmos. Solar-Terr. Phys. 2019, 193, 105094. [Google Scholar] [CrossRef]
- Ogurtsov, M.; Helama, S.; Jalkanen, R.; Jungner, H.; Lindholm, M.; Veretenenko, S. Solar-type periodicities in the climate variability of Northern Fennoscandia during the last three centuries: Real influence of solar activity or natural instability in the climate system. Holocene 2022, 32, 99–112. [Google Scholar] [CrossRef]
- Jones, P.D.; Briffa, K.; Barnett, T.P.; Tett, S.F.B. High-resolution palaeoclimatic records for the last millennium: Interpretation, integration and comparison with general circulation model control-run temperatures. Holocene 1998, 8, 455–471. [Google Scholar] [CrossRef]
- Mann, M.E.; Jones, P.D. Global surface temperatures over the past two millennia. Geophys. Res. Lett. 2003, 30, 1820. [Google Scholar] [CrossRef] [Green Version]
- Neukom, R.; Gergis, J.; Karoly, D.; Wanner, H.; Curran, M.; Elbert, J.; González-Rouco, J.F.; Linsley, B.K.; Moy, A.; Mundo, I.; et al. Inter-hemispheric temperature variability over the last millennium. Nat. Clim. Chang. 2014, 4, 362–367. [Google Scholar] [CrossRef]
- Ogurtsov, M.; Lindholm, M.; Jalkanen, R.; Veretenenko, S.V. New evidence of solar variation in temperature proxies from Northern Fennoscandia. Adv. Space Res. 2013, 52, 1647–1654. [Google Scholar] [CrossRef]
- Mann, M.; Park, J.; Bradley, R. Global interdecadal and century-scale climate oscillations during the past five centuries. Nature 1995, 378, 266–270. [Google Scholar] [CrossRef]
- Beer, J.; Siegenthaler, U.; Bonani, G.; Finkel, R.C.; Oeschger, H.; Suter, M.; Wölfli, W. Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core. Nature 1988, 331, 675–679. [Google Scholar] [CrossRef]
- Bard, E.; Raisbeck, G.M.; Yiou, F.; Jouzel, J. Solar modulation of cosmogenic nuclide production over the last millennium: Comparison between 14C and 10Be records. Earth Planet. Sci. Lett. 1997, 150, 453–462. [Google Scholar] [CrossRef]
- Bard, E.G.; Raisbeck, F.; Yiou, T.; Jouzel, J. Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B 2000, 52, 985–992. [Google Scholar] [CrossRef]
- Delaygue, G.; Bard, E. An Antarctic view of Beryllium-10 and solar activity for the past millennium. Clim. Dyn. 2011, 36, 2201–2218. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogurtsov, M. A Study on Possible Solar Influence on the Climate of the Southern Hemisphere. Atmosphere 2022, 13, 680. https://doi.org/10.3390/atmos13050680
Ogurtsov M. A Study on Possible Solar Influence on the Climate of the Southern Hemisphere. Atmosphere. 2022; 13(5):680. https://doi.org/10.3390/atmos13050680
Chicago/Turabian StyleOgurtsov, Maxim. 2022. "A Study on Possible Solar Influence on the Climate of the Southern Hemisphere" Atmosphere 13, no. 5: 680. https://doi.org/10.3390/atmos13050680
APA StyleOgurtsov, M. (2022). A Study on Possible Solar Influence on the Climate of the Southern Hemisphere. Atmosphere, 13(5), 680. https://doi.org/10.3390/atmos13050680