Changes in Ambient Bacterial Community in Northern Taiwan during Long-Range Transport: Asian Dust Storm and Frontal Pollution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. LRT Forecast and Sampling
2.3. Identification of LRT
2.4. Weather and Air Pollution
2.5. Bacterial Community Analyses
2.5.1. Sample Pretreatment and Genomic DNA Extraction
2.5.2. Next-Generation Sequencing (NGS)
2.5.3. Terminal Restriction Fragment Length Polymorphism (T-RFLP)
Nested PCR
Restriction Digestion
Terminal Fragment Length Analysis
2.6. Data Analysis
2.6.1. NGS
2.6.2. T-RFLP
3. Results
3.1. Compositions of Bacterial Community: FP Case
3.1.1. Phylum Taxon
3.1.2. Class Taxon
3.1.3. Genus Taxon
3.2. Compositions of Bacterial Community: ADS
3.2.1. Phylum Taxon
3.2.2. Class Taxon
3.2.3. Genus Taxon
3.3. Impact of FP Cases on Bacterial Community Diversity: T-RFLP
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miao, J.P.; Wang, T. Decadal variations of the East Asian winter monsoon in recent decades. Atmos. Sci. Lett. 2020, 21, e960. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.P.; Lu, M.M. Intraseasonal predictability of Siberian high and East Asian winter monsoon and its interdecadal variability. J. Clim. 2012, 25, 1773–1778. [Google Scholar] [CrossRef]
- Stohl, A. Intercontinental Transport of Air Pollution; Springer: Boston, MA, USA, 2004. [Google Scholar]
- Lin, C.Y.; Liu, S.C.; Chou, C.C.; Liu, T.H.; Lee, C.T.; Yuan, C.S.; Shiu, C.J.; Young, C.Y. Long-range transport of Asian dust and air pollutants to Taiwan. TAO 2004, 15, 759–784. [Google Scholar] [CrossRef] [Green Version]
- Yihui, D. Monsoons over China; Springer Science & Business Media: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Chen, N.T.; Cheong, N.S.; Lin, C.Y.; Tseng, C.C.; Su, H.J. Ambient viral and bacterial distribution during long-range transport in Northern Taiwan. Environ. Pollut. 2021, 270, 116231. [Google Scholar] [CrossRef]
- Burrows, S.; Elbert, W.; Lawrence, M.; Pöschl, U. Bacteria in the global atmosphere–Part 1: Review and synthesis of literature data for different ecosystems. Atmos. Chem. Phys. 2009, 9, 9263–9280. [Google Scholar] [CrossRef] [Green Version]
- Aller, J.Y.; Kuznetsova, M.R.; Jahns, C.J.; Kemp, P.F. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J. Aerosol Sci. 2005, 36, 801–812. [Google Scholar] [CrossRef]
- Federici, E.; Petroselli, C.; Montalbani, E.; Casagrande, C.; Ceci, E.; Moroni, B.; La Porta, G.; Castellini, S.; Selvaggi, R.; Sebastiani, B.; et al. Airborne bacteria and persistent organic pollutants associated with an intense Saharan dust event in the Central Mediterranean. Sci. Total Environ. 2018, 645, 401–410. [Google Scholar] [CrossRef]
- Mazar, Y.; Cytryn, E.; Erel, Y.; Rudich, Y. Effect of dust storms on the atmospheric microbiome in the Eastern Mediterranean. Environ. Sci. Technol. 2016, 50, 4194–4202. [Google Scholar] [CrossRef]
- Laue, M.; Han, H.M.; Dittmann, C.; Setlow, O. Intracellular membranes of bacterial endospores are reservoirs for spore core membrane expansion during spore germination. Sci. Rep. 2018, 8, 11388. [Google Scholar] [CrossRef]
- Hua, N.P.; Kobayashi, F.; Iwasaka, Y.; Shi, G.Y.; Naganuma, T. Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan. Aerobiologia 2007, 23, 291–298. [Google Scholar] [CrossRef]
- Kellogg, C.A.; Griffin, D.W. Aerobiology and the global transport of desert dust. Trends Ecol. Evol. 2006, 21, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Macher, J. Bioaerosols: Assessment and Control; American Conference of Governmental Industrial Hygienists (ACGIH): Washington, DC, USA, 1999. [Google Scholar]
- Maki, T.; Susuki, S.; Kobayashi, F.; Kakikawa, M.; Tobo, Y.; Yamada, M.; Higashi, T.; Matsuki, A.; Hong, C.; Hasegawa, H. Phylogenetic analysis of atmospheric halotolerant bacterial communities at high altitude in an Asian dust (KOSA) arrival region, Suzu City. Sci. Total Environ. 2010, 408, 4556–4562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polymenakou, P.N.; Mandalakis, M.; Stephanou, E.G.; Tselepides, A. Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the eastern Mediterranean. Environ. Health Perspect. 2008, 116, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brochu, P.; Bouchard, M.; Haddad, S. Physiological daily inhalation rates for health risk assessment in overweight/obese children, adults, and elderly. Risk Anal. 2014, 34, 567–582. [Google Scholar] [CrossRef]
- Darquenne, C. Aerosol deposition in the human lung in reduced gravity. J. Aerosol Med. Pulm. Drug Deliv. 2014, 27, 170–177. [Google Scholar] [CrossRef]
- Kanatani, K.T.; Ito, I.; Al-Delaimy, W.K.; Adachi, Y.; Mathews, W.C.; Ramsdell, J.W. Desert dust exposure is associated with increased risk of asthma hospitalization in children. Am. J. Respir. Crit. Care Med. 2010, 182, 1475. [Google Scholar] [CrossRef] [Green Version]
- Chien, L.C.; Yang, C.H.; Yu, H.L. Estimated effects of Asian Dust Storms on spatiotemporal distributions of clinic visits for respiratory diseases in Taipei children (Taiwan). Environ. Health Perspect. 2012, 120, 1215. [Google Scholar] [CrossRef]
- Tam, W.W.; Wong, T.W.; Wong, A.H.; Hui, D.S. Effect of dust storm events on daily emergency admissions for respiratory diseases. Respirology 2012, 17, 143–148. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, K.K. Effects of Asian dust events on daily asthma patients in Seoul, Korea. Meteorol. Appl. 2013, 21, 202–209. [Google Scholar] [CrossRef]
- Hoekema, A.; Hirsch, P.; Hooykaas, P.; Schilperoort, R. A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 1983. 303, 179–180. [CrossRef]
- Lee, R., Jr; Warren, G.J.; Gusta, L.V. Biological Ice Nucleation and Its Applications, 1st ed.; American Phytopathological Society: St. Paul, MN, USA, 1995. [Google Scholar]
- Morris, C.E.; Sands, D.C.; Vinatzer, B.A.; Glaux, C.; Guilbaud, C.; Buffiere, A.; Yan, S.; Dominguez, H.; Thompson, B.M. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J. 2008, 2, 321–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudie, A.S.; Middleton, N.J. Saharan dust storms: Nature and consequences. Earth-Sci. Rev. 2001, 56, 179–204. [Google Scholar] [CrossRef]
- Ganor, E.; Osetinsky, I.; Stupp, A.; Alpert, P. Increasing trend of African dust, over 49 years, in the eastern Mediterranean. J. Geophys. Res. 2010, 115, D07201. [Google Scholar] [CrossRef] [Green Version]
- Aili, A.; Oanh, N.T.K.; Abuduwaili, J. Variation trends of dust storms in relation to meteorological conditions and anthropogenic Impacts in the northeast edge of the Taklimakan desert, China. Open J. Air Pollut. 2016, 5, 127–143. [Google Scholar] [CrossRef] [Green Version]
- Ameri, I.D.S.A.; Briant, R.M.; Engels, S. Drought severity and increased dust storm frequency in the Middle East: A case study from the Tigris–Euphrates alluvial plain, central Iraq. Weather 2019, 74, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.Y.; Liu, S.C.; Chou, C.C.K.; Huang, S.J.; Liu, C.M.; Kuo, C.H.; Young, C.Y. Long-range transport of aerosols and their impact on the air quality of Taiwan. Atmos. Environ. 2005, 39, 6066–6076. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chou, C.C.; Wang, Z.; Lung, S.C.; Lee, C.T.; Yuan, C.S.; Chen, W.N.; Chang, S.Y.; Hsu, S.C.; Chen, W.C. Impact of different transport mechanisms of Asian dust and anthropogenic pollutants to Taiwan. Atmos. Environ. 2012, 60, 403–418. [Google Scholar] [CrossRef]
- Liu, W.T.; Marsh, T.L.; Cheng, H.; Forney, L.J. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 1997, 63, 4516–4522. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Choi, B.; Yi, S.M.; Ko, G. Characterization of microbial community during Asian dust events in Korea. Sci. Total Environ. 2009, 407, 5308–5314. [Google Scholar] [CrossRef]
- Jeon, E.M.; Kim, H.J.; Jung, K.; Kim, J.H.; Kim, M.Y.; Kim, Y.P.; Ka, J.O. Impact of Asian dust events on airborne bacterial community assessed by molecular analyses. Atmos. Environ. 2011, 45, 4313–4321. [Google Scholar] [CrossRef]
- Maki, T.; Kakikawa, M.; Kobayashi, F.; Yamada, M.; Matsuki, A.; Hasegawa, H.; Iwasaka, Y. Assessment of composition and origin of airborne bacteria in the free troposphere over Japan. Atmos. Environ. 2013, 74, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Burke, D.J.; Kretzer, A.M.; Rygiewicz, P.T.; Topa, M.A. Soil bacterial diversity in a loblolly pine plantation: Influence of ectomycorrhizas and fertilization. FEMS Microbiol. Ecol. 2006, 57, 409–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.J.; Timonen, H.J.; Jaffe, D.A.; Griffin, D.W.; Birmele, M.N.; Perry, K.D.; Ward, P.D.; Roberts, M.S. Intercontinental dispersal of bacteria and archaea by transpacific winds. Appl. Environ. Microbiol. 2013, 79, 1134–1139. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.Y.; Wu, J.H.; Chang, J.E. Pyrosequencing analysis reveals high population dynamics of the soil microcosm degrading octachlorodibenzofuran. Microbes Environ. 2014, 29, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Lee, H.J.; Kim, S.J.; Lee, H.M.; Kang, H.; Kim, Y.P. Identification of airborne bacterial and fungal community structures in an urban area by T-RFLP analysis and quantitative real-time PCR. Sci. Total Environ. 2010, 408, 1349–1357. [Google Scholar] [CrossRef]
- Grewling, Ł.; Bogawski, P.; Kryza, M.; Magyar, D.; Šikoparija, B.; Skjøth, C.A.; Udvardy, O.; Werner, M.; Smith, M. Concomitant occurrence of anthropogenic air pollutants, mineral dust and fungal spores during long-distance transport of ragweed pollen. Environ. Pollut. 2019, 254, 112948. [Google Scholar] [CrossRef]
- Celenk, S. Detection of reactive allergens in long-distance transported pollen grains: Evidence from Ambrosia. Atmos. Environ. 2019, 209, 212–219. [Google Scholar] [CrossRef]
- Rousseau, D.D.; Schevin, P.; Ferrier, J.; Jolly, D.; Andreasen, T.; Ascanius, T.; Ascanius, S.E.; Hendriksen, S.E.; Poulsen, U. Long-distance pollen transport from North America to Greenland in spring. J. Geophys. Res. Biogeosci. 2008, 113, G02013. [Google Scholar] [CrossRef]
- Seong, C.N.; Kang, J.W.; Lee, J.H.; Seo, S.Y.; Woo, J.J.; Park, C.; Bae, K.S.; Kim, M.S. Taxonomic hierarchy of the phylum Firmicutes and novel Firmicutes species originated from various environments in Korea. J. Microbiol. 2018, 56, 1–10. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Couteau, C.; Luo, F.; Neveu, J.; DuBow, M.S. Bacterial diversity of surface sand samples from the Gobi and Taklamaken Deserts. Microb. Ecol. 2013, 66, 850–860. [Google Scholar] [CrossRef] [PubMed]
- Belov, A.A.; Cheptsov, V.S.; Vorobyova, E.A. Soil bacterial communities of Sahara and Gibson deserts: Physiological and taxonomical characteristics. Aims Microbiol. 2018, 4, 685–710. [Google Scholar] [CrossRef] [PubMed]
- Bueche, M.; Wunderlin, T.; Roussel-Delif, L.; Junier, T.; Sauvain, L.; Jeanneret, N.; Junier, P. Quantification of Endospore-Forming Firmicutes by Quantitative PCR with the Functional Gene spo0A. Appl. Environ. Microbiol. 2013, 79, 5302–5312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.Y.; Weon, H.Y.; Yoo, S.H.; Kwon, S.W.; Cho, Y.H.; Stackebrandt, E.; Go, S.J. Paracoccus homiensis sp. nov., isolated from a sea-sand sample. Int. J. Syst. Evol. Microbiol. 2006, 56, 2387–2390. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.P.; Adley, C.C. The antibiotic susceptibility of water-based bacteria Ralstonia pickettii and Ralstonia insidiosa. J. Med. Microbiol. 2013, 62, 1025–1031. [Google Scholar] [CrossRef] [Green Version]
- Felske, A.; Wolterink, A.; Van Lis, R.; Akkermans, A.D. Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands). Appl. Environ. Microbiol. 1998, 64, 871–879. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, W.L.; Munakata, N.; Horneck, G.; Melosh, H.J.; Setlow, P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 2000, 64, 548–572. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, N.O.; Brandt, K.K.; Nybroe, O.; Hansen, M. Delftia lacustris sp. nov., a peptidoglycan-degrading bacterium from fresh water, and emended description of Delftia tsuruhatensis as a peptidoglycan-degrading bacterium. Int. J. Syst. Evol. Microbiol. 2009, 59, 2195–2199. [Google Scholar] [CrossRef] [Green Version]
- Shigematsu, T.; Yumihara, K.; Ueda, Y.; Numaguchi, M.; Morimura, S.; Kida, K. Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 2003, 53, 1479–1483. [Google Scholar] [CrossRef]
- Khan, S.; Sistla, S.; Dhodapkar, R.; Parija, S.C. Fatal Delftia acidovorans infection in an immunocompetent patient with empyema. Asian Pac. J. Trop. Biomed. 2012, 2, 923–924. [Google Scholar] [CrossRef] [Green Version]
- Garrity, G.M.; Bell, J.A.; Lilburn, T. Class II. Betaproteobacteria class. nov. In Bergey’s Manual® of Systematic Bacteriology; Brenner, D.J., Krieg, N.R., Staley, J.T., Eds.; Springer: Boston, MA, USA, 2005. [Google Scholar] [CrossRef]
- Knief, C.; Frances, L.; Cantet, F.; Vorholt, J.A. Cultivation-independent characterization of Methylobacterium populations in the plant phyllosphere by automated ribosomal intergenic spacer analysis. Appl. Environ. Microbiol. 2008, 74, 2218–2228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovaleva, J.; Degener, J.E.; van der Mei, H.C. Methylobacterium and its role in health care-associated infection. J. Clin. Microbiol. 2014, 52, 1317–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facklam, R. What happened to the streptococci: Overview of taxonomic and nomenclature changes. Clin. Microbiol. Rev. 2002, 15, 613–630. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, N.; Baba, T.; Ichijo, T.; Himezawa, Y.; Enoki, K.; Saraya, M.; Li, P.F.; Nasu, M. Abundance and community structure of bacteria on Asian dust particles collected in Beijing, China, during the Asian dust season. Biol. Pharm. Bull. 2016, 39, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.P.; Gibson, G.; Maczulak, A.; Schoemaker, P.J.H.; Schoemaker, J.A. Germs, Genes, and Bacteria: How They Influence Modern Life (Collection); Pearson Education: Upper Saddle River, NJ, USA, 2011. [Google Scholar]
LRT | Sampling Period and the Corresponding Date |
---|---|
Asian dust storm (ADS) in October 2013 |
|
FP1 (frontal pollution case 1) in November 2013 |
|
FP2 in November 2014 |
|
FP3 in December 2014 |
|
FP4 in January 2015 |
|
FP5 in February 2015 |
|
FP6 in March 2015 |
|
Frontal Pollution Cases | Sampling Period | Richness 1 | H 2 | Evenness 3 |
---|---|---|---|---|
November 2014 (FP2) | Before (16–17) | 10 | 1.19 | 0.52 |
During (17–18) | 14 | 1.92 | 0.73 | |
During (18–19) | 18 | 2.02 | 0.70 | |
During (19–20) | 9 | 1.47 | 0.67 | |
After (20–21) | 12 | 2.15 | 0.86 | |
December 2014 (FP3) | Before (7–8) | 8 | 1.68 | 0.81 |
During (8–9) | 13 | 2.35 | 0.92 | |
During (9–10) | 7 | 1.78 | 0.91 | |
January 2015 (FP4) | During (11–12) | 13 | 2.00 | 0.82 |
During (12–13) | 9 | 1.82 | 0.83 | |
After (13–14) | 12 | 1.68 | 0.68 | |
February 2015 (FP5) | During (8–9) | 10 | 1.74 | 0.76 |
During (9–10) | 13 | 1.99 | 0.78 | |
After (10–11) | 9 | 1.59 | 0.73 | |
March 2015 (FP6) | Before (8–9) | 13 | 2.16 | 0.84 |
During (9–10) | 19 | 2.73 | 0.93 | |
During (10–11) | 10 | 1.99 | 0.86 | |
After (11–12) | 10 | 1.99 | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, N.-T.; Tam, L.-M.; Wu, J.-H.; Cheong, N.-S.; Lin, C.-Y.; Tseng, C.-C.; Su, H.-J. Changes in Ambient Bacterial Community in Northern Taiwan during Long-Range Transport: Asian Dust Storm and Frontal Pollution. Atmosphere 2022, 13, 841. https://doi.org/10.3390/atmos13050841
Chen N-T, Tam L-M, Wu J-H, Cheong N-S, Lin C-Y, Tseng C-C, Su H-J. Changes in Ambient Bacterial Community in Northern Taiwan during Long-Range Transport: Asian Dust Storm and Frontal Pollution. Atmosphere. 2022; 13(5):841. https://doi.org/10.3390/atmos13050841
Chicago/Turabian StyleChen, Nai-Tzu, Lai-Man Tam, Jer-Horng Wu, Ngok-Song Cheong, Chuan-Yao Lin, Chun-Chieh Tseng, and Huey-Jen Su. 2022. "Changes in Ambient Bacterial Community in Northern Taiwan during Long-Range Transport: Asian Dust Storm and Frontal Pollution" Atmosphere 13, no. 5: 841. https://doi.org/10.3390/atmos13050841
APA StyleChen, N. -T., Tam, L. -M., Wu, J. -H., Cheong, N. -S., Lin, C. -Y., Tseng, C. -C., & Su, H. -J. (2022). Changes in Ambient Bacterial Community in Northern Taiwan during Long-Range Transport: Asian Dust Storm and Frontal Pollution. Atmosphere, 13(5), 841. https://doi.org/10.3390/atmos13050841