The Influence of Urbanization on the Development of a Convective Storm—A Study for the Belém Metropolitan Region, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Case Study and Model Configuration
3. Results and Discussion
3.1. Model Evaluation
3.2. WRF Sensitivity Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Howard, L. The Climate of London; International Association for Urban Climate: London, UK, 2008; p. 285. Available online: http://urban-climate.org/documents/LukeHoward_Climate-of-London-V1.pdf (accessed on 20 April 2022).
- Shepherd, J.M. A Review of Current Investigations of Urban-Induced Rainfall and Recommendations for the Future. Earth Interact. 2005, 9, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.-L. Rapid urbanization and more extreme rainfall events. Sci. Bull. 2020, 65, 516–518. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Yang, X.; Zhu, W. WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmos. Res. 2014, 138, 364–377. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Brazel, A.; Jones, N.; Larsen, L.; Stefanov, W.L. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc. Ecol. 2007, 22, 353–365. [Google Scholar] [CrossRef]
- Pyrgou, A.; Santamouris, M.; Livada, I. Spatiotemporal Analysis of Diurnal Temperature Range: Effect of Urbanization, Cloud Cover, Solar Radiation, and Precipitation. Climate 2019, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Guo, G.; Wu, Z.; Xiao, R.; Chen, Y.; Liu, X.; Zhang, X. Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landsc. Urban Plan. 2015, 135, 1–10. [Google Scholar] [CrossRef]
- Herold, N.; Kala, J.; Alexander, L.V. The influence of soil moisture deficits on Australian heatwaves. Environ. Res. Lett. 2016, 11, 064003. [Google Scholar] [CrossRef] [Green Version]
- Sati, A.P.; Mohan, M. Impact of urban sprawls on thunderstorm episodes: Assessment using WRF model over central-national capital region of India. Urban Clim. 2021, 37, 100869. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Ali, M.; Luo, J.J.; Wang, Y.; Uddin, M.; Shahid, S.; Islam, A.R.M.; Mondal, S.K.; Siddiki, U.R.; Bilal, M.; et al. Effects of convective available potential energy, temperature and humidity on the variability of thunderstorm frequency over Bangladesh. Theor. Appl. Climatol. 2022, 147, 325–346. [Google Scholar] [CrossRef]
- Ihadua, I.M.T.J.; Pereira Filho, A.J. On Thunderstorm Microphysics under Urban Heat Island, Sea Breeze, and Cold Front Effects in the Metropolitan Area of São Paulo, Brazil. Atmos. Clim. Sci. 2021, 11, 614–643. [Google Scholar]
- Georgescu, M.; Broadbent, A.M.; Wang, M.; Krayenhoff, E.S.; Moustaoui, M. Precipitation response to climate change and urban development over the continental United States. Environ. Res. Lett. 2021, 16, 044001. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Y. Mechanisms for the isolated convections triggered by the sea breeze front and the urban heat Island. Meteorol. Atmos. Phys. 2021, 133, 1143–1157. [Google Scholar] [CrossRef]
- Niyogi, D.; Lei, M.; Kishtawal, C.; Schmid, P.; Shepherd, M. Urbanization Impacts on the Summer Heavy Rainfall Climatology over the Eastern United States. Earth Interact. 2017, 21, 1–17. [Google Scholar] [CrossRef]
- Yu, M.; Liu, Y. The possible impact of urbanization on a heavy rainfall event in Beijing. J. Geophys. Res. Atmos. 2015, 120, 8132–8143. [Google Scholar] [CrossRef]
- Dixon, P.G.; Mote, T.L. Patterns and Causes of Atlanta’s Urban Heat Island–Initiated Precipitation. J. Appl. Meteorol. 2003, 42, 1273–1284. [Google Scholar] [CrossRef]
- Bornstein, R.; Lin, Q. Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ. 2000, 34, 507–516. [Google Scholar] [CrossRef]
- Zhang, D.-L.; Jin, M.S.; Shou, Y.; Dong, C. The Influences of Urban Building Complexes on the Ambient Flows over the Washington–Reston Region. J. Appl. Meteorol. Climatol. 2019, 58, 1325–1336. [Google Scholar] [CrossRef]
- Changnon, S.A.; Semonin, R.G.; Auer, A.H.J.; Braham, R.R.J.; Hales, J.M. Metromex: A Review and Summary; Changnon, S.A., Ed.; American Meteorological Society: Boston, MA, USA, 1981; Available online: http://link.springer.com/10.1007/978-1-935704-29-4 (accessed on 20 April 2022).
- Van den Heever, S.C.; Cotton, W.R. Urban aerosol impacts on downwind convective storms. J. Appl. Meteorol. Climatol. 2007, 46, 828–850. [Google Scholar] [CrossRef]
- Dos Santos, T.V. Urban Expansion and Green Urbanism in an Amazonian Metropolis: The Production of Urbanized Nature in the Metropolitan Region of Belem. Curr. Urban Stud. 2020, 8, 623–644. [Google Scholar] [CrossRef]
- Mansur, A.V.; Brondizio, E.S.; Roy, S.; de Miranda Araújo Soares, P.P.; Newton, A. Adapting to urban challenges in the Amazon: Flood risk and infrastructure deficiencies in Belém, Brazil. Reg. Environ. Chang. 2018, 18, 1411–1426. [Google Scholar] [CrossRef]
- Teixeira, E.G.S.; Costa, L.S.; Almeida, A.C. Comparação entre a variação mensal da CAPE e da precipitação em Belém, PA. In Proceedings of the Series of the Brazilian Society of Computational and Applied Mathematics, Campo Grande, Brazil, 13–17 September 2021; Available online: https://proceedings.sbmac.emnuvens.com.br/sbmac/article/viewFile/125089/3554 (accessed on 20 April 2022).
- Azevedo, S.D.; Soares, L.F.A.; Torres, L.M. Temperatura de superfície e uso e cobertura do solo em municípios da região metropolitana de Belém/PA. Rev. Ibero-Am. Ciências Ambient. 2020, 12, 214–222. [Google Scholar] [CrossRef]
- Dos Santos, T.O.; de Andrade Filho, V.S.; dos Santos França, R.; de Brito Gomes, W.; Rocha, V.M. Caracterização e variabilidade climática baseada em séries de temperatura e precipitação nos municípios de Manaus (AM) e Belém (PA). Rev. Entre-Lugar 2021, 12, 321–345. [Google Scholar] [CrossRef]
- De Oliveira, J.V.; Cohen, J.C.P.; Pimentel, M.; Tourinho, H.L.Z.; Lôbo, M.A.; Sodre, G.; Abdala, A. Urban climate and environmental perception about climate change in Belém, Pará, Brazil. Urban Clim. 2020, 31, 100579. [Google Scholar] [CrossRef]
- Silva Junior, C.H.L.; Pessôa, A.C.M.; Carvalho, N.S.; Reis, J.B.C.; Anderson, L.O.; Aragão, L.E.O.C. The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nat. Ecol. Evol. 2021, 5, 144–145. [Google Scholar] [CrossRef]
- Alves de Oliveira, B.F.; Bottino, M.J.; Nobre, P.; Nobre, C.A. Deforestation and climate change are projected to increase heat stress risk in the Brazilian Amazon. Commun. Earth Environ. 2021, 2, 207. [Google Scholar] [CrossRef]
- INMET. INMET Clima. 2020. Available online: http://www.inmet.gov.br/portal/index.php?r=clima/graficosClimaticos (accessed on 12 January 2020).
- Xu, H. Extraction of Urban Built-up Land Features from Landsat Imagery Using a Thematicoriented Index Combination Technique. Photogramm. Eng. Remote Sens. 2007, 73, 1381–1391. Available online: https://www.ingentaconnect.com/content/asprs/pers/2007/00000073/00000012/art00006 (accessed on 20 April 2022). [CrossRef] [Green Version]
- Sekertekin, A.; Abdikan, S.; Marangoz, A.M. The acquisition of impervious surface area from LANDSAT 8 satellite sensor data using urban indices: A comparative analysis. Environ. Monit. Assess. 2018, 190, 381. [Google Scholar] [CrossRef]
- Souza, D.O. Influencia da Ilha de Calor Urbana nas Cidades de Manaus e Belem Sobre o Microclima Local; National Institute for Space Research: State of São Paulo, Brazil, 2012. [Google Scholar]
- Machado, L.A.T.; Dias, M.A.F.; Morales, C.; Fisch, G.; Vila, D.; Albrecht, R.; Goodman, S.J.; Calheiros, A.J.; Biscaro, T.; Kummerow, C.; et al. The CHUVA project: How does convection vary across Brazil? Bull. Am. Meteorol. Soc. 2014, 95, 1365–1380. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Note; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- GFS—Global Forecast System. Available online: https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php (accessed on 20 April 2022).
- MUR—Multi-scale Ultra-high Resolution. Available online: https://podaac.jpl.nasa.gov/MEaSUREs-MUR (accessed on 20 April 2022).
- WRFDA. WRF Data Assimilation System Users Page. Available online: https://www2.mmm.ucar.edu/wrf/users/wrfda/index.html (accessed on 20 April 2022).
- Ferrier, B.S.; Lin, Y.; Black, T.; Rogers, E.; DiMego, G. Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. In Proceedings of the 19th Conference on Weather Analysis and Forecasting/15th Conference on Numerical Weather Prediction Seattle, Philadelphia, PA, USA, 11–16 August 2002; American Meteorological Society: Boston, MA, USA, 2002. Available online: https://ams.confex.com/ams/SLS_WAF_NWP/webprogram/Paper47241.html (accessed on 20 April 2022).
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, 2–9. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Janjić, Z.I. The surface layer in the NCEP Eta model. In Eleventh Conference on Numerical Weather Prediction; American Meteorological Society: Norfolk, VA, USA; Vancouver, BC, Canada, 1996; pp. 354–355. [Google Scholar]
- Janjić, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Mitchell, K.; Schaake, J.; Xue, Y.; Pan, H.L.; Koren, V.; Duan, Q.Y.; Ek, M.; Betts, A. Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. Atmos. 1996, 101, 7251–7268. [Google Scholar] [CrossRef] [Green Version]
- Martilli, A.; Clappier, A.; Rotach, M.W. An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteorol. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Richardson, H.; Basu, S.; Holtslag, A.A.M. Improving Stable Boundary-Layer Height Estimation Using a Stability-Dependent Critical Bulk Richardson Number. Bound.-Layer Meteorol. 2013, 148, 93–109. [Google Scholar] [CrossRef]
- Song, F.; Zhang, G.J.; Ramanathan, V.; Leung, L.R. Trends in surface equivalent potential temperature: A more comprehensive metric for global warming and weather extremes. Proc. Natl. Acad. Sci. USA 2022, 119, e2117832119. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, D.-L.; Luo, Y.; Ma, R. On the Extreme Rainfall Event of 7 May 2017 over the Coastal City of Guangzhou. Part I: Impacts of Urbanization and Orography. Mon. Weather Rev. 2020, 148, 955–979. [Google Scholar] [CrossRef]
- Weisman, M.L.; Klemp, J.B. The dependece of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Weather Rev. 1982, 110, 504–520. [Google Scholar] [CrossRef]
- Garstang, M.; White, S.; Shugart, H.H.; Halverson, J. Convective cloud downdrafts as the cause of large blowdowns in the Amazon rainforest. Meteorol. Atmos. Phys. 1998, 67, 199–212. [Google Scholar] [CrossRef]
- Rogash, J.A.; Racy, J. Some Meteorological Characteristics of Significant Tornado Events Occurring in Proximity to Flash Flooding. Weather Forecast. 2002, 17, 155–159. [Google Scholar] [CrossRef] [Green Version]
- Van Klooster, S.L.; Roebber, P.J. Surface-based convective potential in the contiguous United States in a business-as-usual future climate. J. Clim. 2009, 22, 3317–3330. [Google Scholar] [CrossRef]
- Holley, D.M.; Dorling, S.R.; Steele, C.J.; Earl, N. A climatology of convective available potential energy in Great Britain. Int. J. Climatol. 2014, 34, 3811–3824. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, T.; Yang, G.; Sun, R.; Xie, W.; Vejre, H. Quantifying seasonal and diurnal contributions of urban landscapes to heat energy dynamics. Appl. Energy 2020, 264, 114724. [Google Scholar] [CrossRef]
- Alexandri, E.; Jones, P. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build. Environ. 2008, 43, 480–493. [Google Scholar] [CrossRef]
- Perini, K.; Magliocco, A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban For. Urban Green. 2014, 13, 495–506. [Google Scholar] [CrossRef]
- Richards, D.; Fung, T.; Belcher, R.; Edwards, P. Differential air temperature cooling performance of urban vegetation types in the tropics. Urban For. Urban Green. 2020, 50, 126651. [Google Scholar] [CrossRef]
- Klemp, J.B.; Wilhelmson, R.B.; Ray, P.S. Observed and Numerically Simulated Structure of a Mature Supercell Thunderstorm. J. Atmos. Sci. 1981, 38, 1558–1580. [Google Scholar] [CrossRef] [Green Version]
- Drager, A.J.; van den Heever, S.C. Characterizing convective cold pools. J. Adv. Model. Earth Syst. 2017, 9, 1091–1115. [Google Scholar] [CrossRef]
- Li, Z.; Zuidema, P.; Zhu, P. Simulated Convective Invigoration Processes at Trade Wind Cumulus Cold Pool Boundaries. J. Atmos. Sci. 2014, 71, 2823–2841. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chen, W.C.; Liu, S.C.; Liou, Y.A.; Liu, G.R.; Lin, T.H. Numerical study of the impact of urbanization on the precipitation over Taiwan. Atmos. Environ. 2008, 42, 2934–2947. [Google Scholar] [CrossRef]
- Melo, A.M.Q.; Dias-Junior, C.Q.; Cohen, J.C.P.; Sá, L.D.A.; Cattanio, J.H.; Kuhn, P.A.F. Ozone transport and thermodynamics during the passage of squall line in Central Amazon. Atmos. Environ. 2019, 206, 132–143. [Google Scholar] [CrossRef]
- Tompkins, A.M. Organization of Tropical Convection in Low Vertical Wind Shears: The Role of Cold Pools. J. Atmos. Sci. 2001, 58, 1650–1672. [Google Scholar] [CrossRef]
- Rotunno, R.; Klemp, J.B.; Weisman, M.L. A Theory for Strong, Long-Lived Squall Lines. J. Atmos. Sci. 1988, 45, 463–485. [Google Scholar] [CrossRef] [Green Version]
- Miao, S.; Chen, F.; Li, Q.; Fan, S. Impacts of urban processes and urbanization on summer precipitation: A case study of heavy rainfall in Beijing on 1 August 2006. J. Appl. Meteorol. Climatol. 2011, 50, 806–825. [Google Scholar] [CrossRef]
- Niyogi, D.; Pyle, P.; Lei, M.; Arya, S.P.; Kishtawal, C.M.; Shepherd, M.; Chen, F.; Wolfe, B. Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteorol. Climatol. 2011, 50, 1129–1144. [Google Scholar] [CrossRef]
- Shepherd, J.M. Impacts of urbanization on precipitation and storms: Physical insights and vulnerabilities. In Climate Vulnerability; Elsevier: Amsterdam, The Netherlands, 2013; pp. 109–125. Available online: https://www.srs.fs.usda.gov/pubs/48117 (accessed on 20 April 2022).
- Haberlie, A.M.; Ashley, W.S.; Pingel, T.J. The effect of urbanisation on the climatology of thunderstorm initiation. Q. J. R. Meteorol. Soc. 2015, 141, 663–675. [Google Scholar] [CrossRef]
- Varquez, A.C.G.; Nakayoshi, M.; Kanda, M. The Effects of Highly Detailed Urban Roughness Parameters on a Sea-Breeze Numerical Simulation. Bound. -Layer Meteorol. 2014, 154, 449–469. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, J.V.; Cohen, J.; Barlage, M.; Silva Dias, M.A. The Influence of Urbanization on the Development of a Convective Storm—A Study for the Belém Metropolitan Region, Brazil. Atmosphere 2022, 13, 1026. https://doi.org/10.3390/atmos13071026
de Oliveira JV, Cohen J, Barlage M, Silva Dias MA. The Influence of Urbanization on the Development of a Convective Storm—A Study for the Belém Metropolitan Region, Brazil. Atmosphere. 2022; 13(7):1026. https://doi.org/10.3390/atmos13071026
Chicago/Turabian Stylede Oliveira, Juarez Ventura, Julia Cohen, Michael Barlage, and Maria Assunção Silva Dias. 2022. "The Influence of Urbanization on the Development of a Convective Storm—A Study for the Belém Metropolitan Region, Brazil" Atmosphere 13, no. 7: 1026. https://doi.org/10.3390/atmos13071026
APA Stylede Oliveira, J. V., Cohen, J., Barlage, M., & Silva Dias, M. A. (2022). The Influence of Urbanization on the Development of a Convective Storm—A Study for the Belém Metropolitan Region, Brazil. Atmosphere, 13(7), 1026. https://doi.org/10.3390/atmos13071026