Non-Invasive-Monitoring Methodology for the Evaluation of Environmental Impacts on Istrian Stone Surfaces in Venice
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Evaluation of Selected Environmental Indicators
- -
- Average concentrations of NOx were high and cause of concern, and the years from 2000 to 2004 showed exceedances of the maximum daily allowable limit by Italian law [33]. Rio Novo station (available for years 2017–2020) recorded the highest average annual concentrations among the considered stations, but in 2020 the trend is downward.
- -
- The SO2 trend has varied greatly over the years; from high concentrations of great concern before 2009, the trend has stabilized toward concentrations less than 10 µg/m3. SO2 is no longer monitored by Arpav, confirming that sulfur dioxide is no longer a critical pollutant.
- -
- Ozone concentrations tend to increase during the warm and sunny periods of the year, and this explains the inconstancy in the concentrations of some years. In addition, there is an upward trend since in recent years there have been prolonged periods with anti-cyclonic situations and high temperatures that have increased the formation of ozone.
- -
- The PM10 trend refers to the years from 2004 to 2020 as the data previously collected were incomplete. Particulate matter shows strong seasonal variability with higher concentrations in winter months. The limit number of annual daily exceedances for PM10 has been significantly surpassed from 2004 to 2008. Additionally, even if PM10 shows a slightly downward trend, high concentrations are maintained over time.
- -
- Concerning PM2.5, the station of Sacca Fisola and Bissuola did not detect this pollutant before 2011. PM2.5 annual concentrations are very high, above the allowed limit value for human safety [25], and an upwards trend is shown for the year 2020.
- -
- The average temperature over the years has risen, maintaining a rather stable upward trend in recent years, especially in the months of April, May, June, and August.
- -
- The trend of rainfall has diverged a lot over the years; the months that have been found to be rainier are November and September, while January, June–August, and December seem to be less rainy with the passage of time.
- -
- There is evidence of general high-humidity levels in conjunction with static climatic conditions for long periods, leading to low dispersion rates of pollutants. Thus, a consequent increase of pollutant concentration in the historic center is revealed, in particular for NO2 in the Rio Novo station.
3.2. Physico-Chemical and Morphological Evolution of Istrian Stone Surfaces
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rebollo, V.; Latinos, V. Good Practices in Building Cultural Heritage Resilience. 2020. Available online: https://savingculturalheritage.eu/fileadmin/user_upload/Deliverables/ARCH_D7.2_GoodPractices.pdf (accessed on 12 May 2022).
- Council of Europe of the Committee of Ministers to Member States on “Hate Speech”. In Council of Europe; Council of Europe: Strasbourg, France, 1997; pp. 106–108.
- Vidorni, G.; Sardella, A.; de Nuntiis, P.; Volpi, F.; Dinoi, A.; Contini, D.; Comite, V.; Vaccaro, C.; Fermo, P.; Bonazza, A. Air Pollution Impact on Carbonate Building Stones in Italian Urban Sites. Eur. Phys. J. Plus 2019, 134, 439. [Google Scholar] [CrossRef]
- Sardella, A.; Palazzi, E.; von Hardenberg, J.; del Grande, C.; de Nuntiis, P.; Sabbioni, C.; Bonazza, A. Risk Mapping for the Sustainable Protection of Cultural Heritage in Extreme Changing Environments. Atmosphere 2020, 11, 700. [Google Scholar] [CrossRef]
- Barca, D.; Comite, V.; Belfiore, C.M.; Bonazza, A.; la Russa, M.F.; Ruffolo, S.A.; Crisci, G.M.; Pezzino, A.; Sabbioni, C. Impact of Air Pollution in Deterioration of Carbonate Building Materials in Italian Urban Environments. Appl. Geochem. 2014, 48, 122–131. [Google Scholar] [CrossRef]
- Haugen, A.; Bertolin, C.; Leijonhufvud, G.; Olstad, T.; Broström, T. A Methodology for Long-Term Monitoring of Climate Change Impacts on Historic Buildings. Geosciences 2018, 8, 370. [Google Scholar] [CrossRef] [Green Version]
- Price, C.; Amoroso, G.; Fassina, V. Stone Decay and Conservation: Atmospheric Pollution, Cleaning, Consolidation and Protection. Stud. Conserv. 1984, 29, 158. [Google Scholar] [CrossRef]
- Charola, A.E.; Price, C.A. Stone Conservation: An Overview of Current Research; The Getty Conservation Institute: Los Angeles, CA, USA, 1998; Volume 37. [Google Scholar]
- Zendri, E.; Biscontin, G.; Kosmidis, P. Effects of Condensed Water on Limestone Surfaces in a Marine Environment. J. Cult. Herit. 2001, 2, 283–289. [Google Scholar] [CrossRef]
- Morabito, E.; Zendri, E.; Piazza, R.; Ganzerla, R.; Montalbani, S.; Marcoleoni, E.; Bonetto, F.; Scandella, A.; Barbante, C.; Gambaro, A. Deposition in St. Mark’s Basilica of Venice. Environ. Sci. Pollut. Res. 2013, 20, 2579–2592. [Google Scholar] [CrossRef]
- Winkler, E.M. Stone: Properties, Durability in Man’s Environment, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1975. [Google Scholar]
- Török, Á.; Rozgonyi, N. Morphology and Mineralogy of Weathering Crusts on Highly Porous Oolitic Limestones, a Case Study from Budapest. Environ. Geol. 2004, 46, 333–349. [Google Scholar] [CrossRef]
- Urosevic, M.; Yebra-Rodríguez, A.; Sebastián-Pardo, E.; Cardell, C. Black Soiling of an Architectural Limestone during Two-Year Term Exposure to Urban Air in the City of Granada (S Spain). Sci. Total Environ. 2012, 414, 564–575. [Google Scholar] [CrossRef]
- Di Turo, F.; Proietti, C.; Screpanti, A.; Fornasier, M.F.; Cionni, I.; Favero, G.; de Marco, A. Impacts of Air Pollution on Cultural Heritage Corrosion at European Level: What Has Been Achieved and What Are the Future Scenarios. Environ. Pollut. 2016, 218, 586–594. [Google Scholar] [CrossRef]
- Rubinetti, S.; Taricco, C.; Alessio, S.; Rubino, A.; Bizzarri, I.; Zanchettin, D. Robust Decadal Hydroclimate Predictions for Northern Italy Based on a Twofold Statistical Approach. Atmosphere 2020, 11, 671. [Google Scholar] [CrossRef]
- Bertolin, C. Preservation of Cultural Heritage and Resources Threatened by Climate Change. Geosciences 2019, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Vianello, L.; Pistollato, S. Annual Report on Air Qualitiy in Venice 2012–2013 Qualità Dell ’ Aria Provincia Di Venezia Relazione Annuale 2012. 2013. Available online: https://www.arpa.veneto.it/arpav/chi-e-arpav/file-e-allegati/dap-venezia/aria/RQA_2012_Provincia.pdf/view (accessed on 12 May 2022).
- del Fà, R.M.; Riminesi, C.; Tiano, P. Monitoring of the Surface Pattern of Artistic and Architectural Artefacts by Means of Ultra Close Range Photogrammetry. Eur. J. Sci. Theol. 2015, 11, 179–187. [Google Scholar]
- Spagnolo, G.S.; Ambrosini, D.; Paoletti, D.; Accardo, G. Fibre Optic Projected Fringes for Monitoring Marble Surface Status. J. Cult. Herit. 2000, 1, S337–S343. [Google Scholar] [CrossRef]
- Huerto-Cardenas, H.E.; Aste, N.; del Pero, C.; Della Torre, S.; Leonforte, F. Effects of Climate Change on the Future of Heritage Buildings: Case Study and Applied Methodology. Climate 2021, 9, 132. [Google Scholar] [CrossRef]
- Marani, A.; Benvenuto, F.; Cerasuolo, M. Database of the Project “Sistema Lagunare Veneziano”. Nat. Hazards 1999, 20, 311–321. [Google Scholar] [CrossRef]
- Fassina, V. A Survey on Air Pollution and Deterioration of Stonework in Venice. Atmos. Environ. 1978, 12, 2205–2211. [Google Scholar] [CrossRef]
- Contini, D.; Gambaro, A.; Belosi, F.; de Pieri, S.; Cairns, W.R.L.; Donateo, A.; Zanotto, E.; Citron, M. The Direct Influence of Ship Traffic on Atmospheric PM2.5, PM10 and PAH in Venice. J. Environ. Manag. 2011, 92, 2119–2129. [Google Scholar] [CrossRef]
- Isoldi, K.; Cerasuolo, M. Centro Previsioni e Segnalazioni Maree-Municipality of Venice, Open Dataset. Available online: https://www.comune.venezia.it/it/content/la-precipitazione-venezia-a-venezia (accessed on 12 May 2022).
- Air Quality Reports, Open data by Arpav. Available online: www.arpa.veneto.it (accessed on 12 May 2022).
- Emission_Inventory_Venice.xls Content @. Available online: www.Apice-Project.Eu (accessed on 12 May 2022).
- Critto, A.; Agostini, P. Using Multiple Indices to Evaluate Scenarios for the Remediation of Contaminated Land: The Porto Marghera (Venice, Italy) Contaminated Site. Environ. Sci. Pollut. Res. 2009, 16, 649–662. [Google Scholar] [CrossRef]
- Valotto, G.; Zannoni, D.; Rampazzo, G.; Visin, F.; Formenton, G.; Gasparello, A. Characterization and Preliminary Risk Assessment of Road Dust Collected in Venice Airport (Italy). J. Geochem. Explor. 2018, 190, 142–153. [Google Scholar] [CrossRef]
- Merico, E.; Cesari, D.; Gregoris, E.; Gambaro, A.; Cordella, M.; Contini, D. Shipping and Air Quality in Italian Port Cities: State-of-the-Art Analysis of Available Results of Estimated Impacts. Atmosphere 2021, 12, 536. [Google Scholar] [CrossRef]
- Falchi, L.; Orio, E.; Balliana, E.; Izzo, F.C.; Zendri, E. Investigation on the Relationship between the Environment and Istria Stone Surfaces in Venice. Atmos. Environ. 2019, 210, 76–85. [Google Scholar] [CrossRef]
- Naletto, A. Il Restauro Conservativo Delle Facciate Di Ca’ Foscari. In Ca’ Foscari Storia e Restauro del Palazzo dell’Università di Venezia; Pilo, G.M., De Rossi, L., Alessandri, D., Zuanier, F., Eds.; Marsilio Editore: Venice, Italy, 2005; pp. 166–173. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sgobbi, M.; Brimblecombe, P.; Grossi, C.; Biscontin, G.; Zendri, E. Surface Stratigraphy on Limestone of Venetian Palaces. J. Archit. Conserv. 2010, 16, 51–70. [Google Scholar] [CrossRef]
- Berthomieu, C.; Hienerwadel, R. Fourier Transform Infrared (FTIR) Spectroscopy. Photosynth. Res. 2009, 101, 157–170. [Google Scholar] [CrossRef]
- Suzuki, A.; Vettori, S.; Giorgi, S.; Carretti, E.; di Benedetto, F.; Dei, L.; Benvenuti, M.; Moretti, S.; Pecchioni, E.; Costagliola, P. Laboratory Study of the Sulfation of Carbonate Stones through SWIR Hyperspectral Investigation. J. Cult. Herit. 2018, 32, 30–37. [Google Scholar] [CrossRef]
- Available online: https://www.Eea.Europa.Eu/Data-and-Maps/Daviz/Atmospheric-Concentration-of-Carbon-Dioxide-5/#tab-Chart_6 (accessed on 12 May 2022).
- Maravelaki-Kalaitzaki, P.; Biscontin, G. Origin, Characteristics and Morphology of Weathering Crusts on Istria Stone in Venice. Atmos. Environ. 1999, 33, 1699–1709. [Google Scholar] [CrossRef]
Exposed (E) Surfaces | Sheltered (S) Surfaces | ||
---|---|---|---|
Palace | Year | Dino-Lite Photo Scale Bar 2 mm = | Dino-Lite Photo Scale Bar 2 mm = |
Garzoni Palace | 2020 | ||
- | - | - | |
Ca’ Foscari | 2020 | ||
2015 | |||
Ca’ Dolfin | 2020 | ||
2015 |
Palace | Year | Exposition | Lr ± σ mm | Ra | Rmax ± σ mm | R2 |
---|---|---|---|---|---|---|
Garzoni Palace | 2020 2020 | GAR-E-canal GAR-S-canal | 1.22 ± 0.08 1.23 ± 0.07 | 0.24 0.30 | 1.40 ± 0.11 1.56 ± 0.12 | 0.34 0.26 |
- | - | - | - | - | - | |
Ca’ Foscari | 2020 2020 | CAF-E-canal CAF-S-courtyard | 1.19 ± 0.11 1.23 ± 0.05 | 0.20 0.30 | 1.31 ± 0.16 1.65 ± 0.06 | 0.46 0.31 |
2015 2015 | CAF-E-canal CAF-S-courtyard | 1.19 ± 0.24 1.22 ± 0.08 | 0.21 0.30 | 1.29 ± 0.06 1.61 ± 0.11 | 0.50 0.42 | |
Ca’ Dolfin | 2020 2020 | DOL-S-canal DOL-S-courtyard | 1.22 ± 0.13 1.29 ± 0.10 | 0.29 0.35 | 0.14 ± 0.15 0.24 ± 0.09 | 0.11 0.14 |
2015 2015 | DOL-S-canal DOL-S-courtyard | 1.23 ±0.09 1.31 ± 0.08 | 0.28 0.36 | 0.11 ± 0.09 0.22 ± 0.12 | 0.14 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnemmi, M.; Falchi, L.; Zendri, E. Non-Invasive-Monitoring Methodology for the Evaluation of Environmental Impacts on Istrian Stone Surfaces in Venice. Atmosphere 2022, 13, 1036. https://doi.org/10.3390/atmos13071036
Gnemmi M, Falchi L, Zendri E. Non-Invasive-Monitoring Methodology for the Evaluation of Environmental Impacts on Istrian Stone Surfaces in Venice. Atmosphere. 2022; 13(7):1036. https://doi.org/10.3390/atmos13071036
Chicago/Turabian StyleGnemmi, Margherita, Laura Falchi, and Elisabetta Zendri. 2022. "Non-Invasive-Monitoring Methodology for the Evaluation of Environmental Impacts on Istrian Stone Surfaces in Venice" Atmosphere 13, no. 7: 1036. https://doi.org/10.3390/atmos13071036
APA StyleGnemmi, M., Falchi, L., & Zendri, E. (2022). Non-Invasive-Monitoring Methodology for the Evaluation of Environmental Impacts on Istrian Stone Surfaces in Venice. Atmosphere, 13(7), 1036. https://doi.org/10.3390/atmos13071036