The Performance of ECMWF Ensemble Prediction System for European Extreme Fires: Portugal/Monchique in 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monchique Wildfire Characterization
2.1.1. Synoptic Conditions
2.1.2. Fire Radiative Energy
2.2. Meteorological Fire Danger
3. Results
3.1. Synoptic Conditions
3.2. Meteorological Fire Danger
3.2.1. ERA5 Reanalysis
3.2.2. Ensemble Prediction System
3.3. Fire Intensity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flannigan, M.D.; Haar, T.V. Forest fire monitoring using NOAA satellite AVHRR. Can. J. For. Res. 1986, 16, 975–982. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Wotton, B.M. Chapter 10—Climate, Weather, and Area Burned. In Forest Fires; Johnson, E.A., Miyanishi, K., Eds.; Academic Press: Cambridge, MA, USA, 2001; pp. 351–373. ISBN 9780123866608. [Google Scholar] [CrossRef]
- Pereira, M.G.; Malamud, B.D.; Trigo, R.M.; Alves, P.I. The history and characteristics of the 1980–2005 Portuguese rural fire database. Nat. Hazards Earth Syst. Sci. 2011, 11, 3343–3358. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Schulte, E.; Schmuck, G.; Camia, A.; Strobl, P.; Liberta, G.; Giovando, C.; Boca, R.; Sedano, F.; Kempeneers, P.; et al. Comprehensive Monitoring of Wildfires in Europe: The European Forest Fire Information System (EFFIS). In Approaches to Managing Disaster—Assessing Hazards, Emergencies and Disaster Impacts; Tiefenbacher, J., Ed.; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Moreno, J.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Sousa, P.M.; Trigo, R.M.; Pereira, M.G.; Bedia, J.; Gutiérrez, J.M. Different approaches to model future burnt area in the Iberian Peninsula. Agric. For. Meteorol. 2015, 202, 11–25. [Google Scholar] [CrossRef]
- Dacamara, C.C.; Calado, T.J.; Ermida, S.L.; Trigo, I.F.; Amraoui, M.; Turkman, K.F. Calibration of the fire weather index over Mediterranean Europe based on fire activity retrieved from MSG satellite imagery. Int. J. Wildland Fire 2014, 23, 945–958. [Google Scholar] [CrossRef]
- Pinto, M.M.; DaCamara, C.C.; Hurduc, A.; Trigo, R.M.; Trigo, I.F. Enhancing the fire weather index with atmospheric instability information. Environ. Res. Lett. 2020, 15, 0940b7. [Google Scholar] [CrossRef]
- Di Giuseppe, F.; Pappenberger, F.; Wetterhall, F.; Krzeminski, B.; Camia, A.; Libertá, G.; San Miguel, J. The potential predictability of fire danger provided by numerical weather prediction. J. Appl. Meteorol. Climatol. 2016, 55, 2469–2491. [Google Scholar] [CrossRef]
- Di Giuseppe, F.; Vitolo, C.; Krzeminski, B.; Barnard, C.; Maciel, P.; San-Miguel, J. Fire Weather Index: The skill provided by the European Centre for Medium-Range Weather Forecasts ensemble prediction system. Nat. Hazards Earth Syst. Sci. 2020, 20, 2365–2378. [Google Scholar] [CrossRef]
- Stocks, B.J.; Lawson, B.D.; Alexander, M.E.; Van Wagner, C.E.; McAlpine, R.S.; Lynham, T.J.; Dube, D.E. Canadian Forest Fire Danger Rating System: An overview. For. Chron. 1989, 65, 258–265. [Google Scholar] [CrossRef]
- Pinto, M.M.; Dacamara, C.C.; Trigo, I.F.; Trigo, R.M.; Turkman, K.F. Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat. Nat. Hazards Earth Syst. Sci. 2018, 18, 515–529. [Google Scholar] [CrossRef]
- Pinto, M.M.; Hurduc, A.; Trigo, R.M.; Trigo, I.F.; Dacamara, C.C. The extreme weather conditions behind the destructive fires of June and October 2017 in Portugal. In Advances in Forest Fire Research 2018; Imprensa da Universidade de: Coimbra, Portugal, 2018; pp. 138–145. [Google Scholar]
- Durão, R.M.; Pereira, M.J.; Branquinho, C.; Soares, A. Assessing Spatial Uncertainty of the Portuguese Fire Risk through Direct Sequential Simulation. Ecol. Model. 2010, 221, 27–33. [Google Scholar] [CrossRef]
- Di Giuseppe, F.; Rémy, S.; Pappenberger, F.; Wetterhall, F. Using the Fire Weather Index (FWI) to improve the estimation of fire emissions from fire radiative power (FRP) observations. Atmos. Chem. Phys. 2018, 18, 5359–5370. Available online: https://www.atmos-chem-phys.net/18/5359/2018/ (accessed on 1 May 2022). [CrossRef]
- Roads, J.; Fujioka, F.; Chen, S.; Burgan, R. Seasonal fire danger forecasts for the USA. Int. J. Wildland Fire 2005, 14, 1–18. [Google Scholar] [CrossRef]
- Mölders, N. Suitability of the Weather Research and Forecasting (WRF) model to predict the June 2005 fire weather for Interior Alaska. Weather. Forecast. 2008, 23, 953–973. [Google Scholar] [CrossRef]
- Mölders, N. Comparison of Canadian Forest Fire Danger Rating System and National Fire Danger Rating System fire indices derived from Weather Research and Forecasting (WRF) model data for the June 2005 Interior Alaska wildfires. Atmos. Res. 2010, 95, 290–306. [Google Scholar] [CrossRef]
- Bedia, J.; Golding, N.; Casanueva, A.; Iturbide, M.; Buontempo, C.; Gutiérrez, J.M. Seasonal predictions of Fire Weather Index: Paving the way for their operational applicability in Mediterranean Europe. Clim. Serv. 2018, 9, 101–110. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Equations and FORTRAN Program for the Canadian Forest Fire Weather Index System; Canadian Forestry Service: Ottawa, ON, Canada, 1985; Volume 33, Available online: https://d1ied5g1xfgpx8.cloudfront.net/pdfs/19973.pdf (accessed on 29 April 2022).
- Van Wagner, C.E. Development and Structure of the Canadian Forest Fire Weather Index System; Canadian Forestry Service: Ottawa, ON, Canada, 1987; Volume 35, Available online: https://d1ied5g1xfgpx8.cloudfront.net/pdfs/19927.pdf (accessed on 29 April 2022).
- San-Miguel-Ayanz, J.; Barbosa, P.; Schmuck, G.; Liberta, G.; Schulte, E. Towards a Coherent Forest Fire Information System in Europe: The European Forest Fire Information System (EFFIS) In Forest Fire Research and Wildland Fire Safety; Millpress: Rotterdam, The Netherlands, 2002; ISBN 385 90–77 017. [Google Scholar]
- San-Miguel-Ayanz, J.S.M.; Carlon, J.D.; Alexander, M.; Tolhust, K.; Morgan, G.; Sneeuwjagt, R.; Dudley, M. Current Methods to Assess Fire Dander Potential. In Wildland Fire Danger Estimation and Mapping—The Role of Remote Sensing Data; Chuvieco, E., Ed.; Series in Remote Sensing; World Scientific Publishing Cp. Pte. Ltd.: Singapore, 2003; Volume 4, pp. 21–61. [Google Scholar]
- Van Wagner, C.E. Structure of the Canadian Forest Fire Weather Index; Publication 1333; Canadian Forest Service: Ottawa, ON, Canada, 1974; p. 49. [Google Scholar]
- Pettinari, M.L.; Chuvieco, E. Fire Behavior Simulation from Global Fuel and Climatic Information. Forests 2017, 8, 179. [Google Scholar] [CrossRef]
- Ziel, R.H.; Bieniek, P.A.; Bhatt, U.S.; Strader, H.; Rupp, T.S.; York, A. A Comparison of Fire Weather Indices with MODIS Fire Days for the Natural Regions of Alaska. Forests 2020, 11, 516. [Google Scholar] [CrossRef]
- Wang, X.; Wotton, B.M.; Cantin, A.S.; Parisien, M.; Anderson, K.; Moore, B.; Flannigan, M.D. cffdrs: An R package for the Canadian Forest Fire Danger Rating System. Ecol. Processes 2017, 6, 5. [Google Scholar] [CrossRef]
- de Groot, W.J.; Field, R.D.; Brady, M.A.; Roswintiarti, O.; Mohamad, M. Development of the Indonesian and Malaysian fire danger rating systems. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 165–180. [Google Scholar] [CrossRef]
- Molteni, F.; Buizza, R.; Palmer, T.N.; Petroliagis, T. The ECMWF ensemble prediction system: Methodology and validation. Q. J. R. Meteorol. Soc. 1996, 122, 73–119. [Google Scholar] [CrossRef]
- Buizza, R.; Milleer, M.; Palmer, T. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 1999, 125, 2887–2908. [Google Scholar] [CrossRef]
- Pappenberger, F.; Wetterhall, F.; Dutra, E.; Di Giuseppe, F.; Bogner, K.; Alfieri, L.; Cloke, H. Seamless forecasting of extreme events on a global scale. In Climate and Land Surface Changes in Hydrology; IAHS Publ. 359: Gothenburg, Sweden, 2013. [Google Scholar]
- Cloke, H.L.; Pappenberger, F.; Smith, P.J.; Wetterhall, F. How do I know if I’ve improved my continental scale flood early warning system? Environ. Res. Lett. 2017, 12, 044006. [Google Scholar] [CrossRef]
- Richardson, D.S. Skill and relative economic value of the ECMWF ensemble prediction system. Q. J. R. Meteoro Log. Soc. 2000, 126, 649–667. [Google Scholar] [CrossRef]
- Zhu, Y.; Toth, Z.; Wobus, R.; Richardson, D.; Mylne, K. The economic value of ensemble-based weather forecasts. Bull. Am. Meteorol. Soc. 2002, 83, 73–84. [Google Scholar] [CrossRef]
- Viegas, D.X. Wildfires in Portugal; Fire Research, 2(1). Available online: https://www3.epa.gov/region9/CA-Air-SIP/California%20Code%20of%20Regulations/Title%2017,%20Division%203,%20Chapter%201,%20Subchapter%208.6,%20Article%201,%20Sections%2094700%20-%2094701.pdf (accessed on 29 April 2022).
- Rego, F.C.; Fernandes, P.; Silva, J.S.; Azevedo, J.; Moura, J.M.; Oliveira, E.; Cortes, R.; Viegas, D.X.; Caldeira, D.; Santos, F.D. Avaliação do Incêndio de Monchique; Technical Report; Observatório Técnico Independente, Assembleia da República: Lisboa, Portugal, 2019. (In Portuguese) [Google Scholar]
- Dacamara, C.C.; Libonati, R.; Pinto, M.M.; Hurduc, A. Near and middle-infrared monitoring of burned areas from space. In Satellite Information Classification and Interpretation ed R B Rustamov; Intech Open: Rijeka, Croatia, 2019. [Google Scholar]
- Fernandes, P.M.; Barros, A.M.G.; Pinto, A.; Santos, J.A. Characteristics and controls of extremely large wildfires in the western Mediterranean Basin. J. Geophys. Res. Biogeosci. 2016, 121, 2141–2157. [Google Scholar] [CrossRef]
- Evin, G.; Curt, T.; Eckert, N. Has fire policy decreased the return period of the largest wildfire events in France? A Bayesian assessment based on extreme value theory. Nat. Hazards Earth Syst. Sci. 2018, 18, 2641–2651. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Libertà, G.; Branco, A.; de Rigo, D.; Ferrari, D.; Maianti, P.; Vivancos, T.A.; Costa, H.; et al. Forest Fires in Europe. In Middle East and North Africa 2017; EUR 29318 EN; Joint Research Centre: Ispra, Italy, 2018; ISBN 978-92-79-92831-4.6. [Google Scholar]
- Sousa, P.M.; Barriopedro, D.; Ramos, A.M.; García-Herrera, R.; Espírito-Santo, F.; Trigo, R.M. Saharan air intrusions as a relevant mechanism for Iberian heatwaves: The record breaking events of August 2018 and June 2019. Weather. Clim. Extrem. 2019, 26, 100224. [Google Scholar] [CrossRef]
- ICNF. Relatório de Estabilização de Emergência do Incêndio de Monchique de Agosto de 2018; Instituto de Conservação da Natureza e das Florestas, IP: Lisboa, Portugal, 2018; p. 33. Available online: https://www.icnf.pt/api/file/doc/b324f8e41c231899 (accessed on 29 April 2022).
- Heward, H.; Smith, A.M.; Roy, D.P.; Tinkham, W.T.; Hoffman, C.M.; Morgan, P.; Lannom, K.O. Is burn severity related to fire intensity? Observations from landscape scale remote sensing. Int. J. Wildland Fire 2013, 22, 910–918. [Google Scholar] [CrossRef]
- Trigo, I.F.; Dacamara, C.C.; Viterbo, P.; Roujean, J.; Olesen, F.; Barroso, C.; Camacho-de-Coca, F.; Carrer, D.; Freitas, S.C.; García-Haro, J.; et al. The satellite application facility for land surface analysis. Int. J. Remote Sens. 2011, 32, 2725–2744. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.; Freeborn, P.H.; Xu, W.; Govaerts, Y.; Beeby, R.; He, J.; Lattanzio, A.; Fisher, D.; Mullen, R. LSA SAF Meteosat FRP products—Part 1: Algorithms, product contents, and analysis. Atmos. Chem. Phys. 2015, 15, 13217–13239. [Google Scholar] [CrossRef]
- LSA SAF. Fire Radiative Power; Validation Report; LSA SAF: Lisbon, Portugal, 2015. [Google Scholar]
- Wooster, M.J.; Roberts, G.; Perry, G.; Kaufman, Y. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. 405 Res. Atmos. 2005, 110, 2005. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Wooster, M.J. Remote classification of head and backfire types from MODIS fire radiative power and smoke plume observations. Int. J. Wildland Fire 2005, 14, 249–254. [Google Scholar] [CrossRef]
- Johnston, J.M.; Wooster, M.J.; Paugam, R.; Wang, X.; Lynham, T.J.; Johnston, L.M. Direct estimation of Byram’s fire intensity from infrared remote sensing imagery. Int. J. Wildland Fire 2017, 26, 668–684. [Google Scholar] [CrossRef]
- Bowman, D.M.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 0058. [Google Scholar] [CrossRef]
- Viegas, D.X.; Reis, R.M.; Cruz, M.G.; Viegas, M.T. Calibração do Sistema Canadiano de Perigo de Incêndio para Aplicação em Portugal. Silva Lusit. 2004, 12, 77–93. [Google Scholar]
- Paulo, P.; Pedro, P. Interpretação dos índices do Sistema Canadiano de Indexação do Perigo de Incêndio Florestal; 2007, UTAD/AFLOPEN. Available online: https://www.researchgate.net/publication/278754059_Interpretacao_dos_indices_do_Sistema_Canadiano_de_Indexacao_do_Perigo_de_Incendio_Florestal?channel=doi&linkId=55851e7d08ae7bc2f4484d63&showFulltext=true (accessed on 29 April 2022). (In Portuguese).
- Trigo, R.M.; Sousa, P.; Pereira, M.; Rasilla, D.; Gouveia, C.M. Modeling wildfire activity in Iberia with different atmospheric circulation weather types. Int. J. Climatol. 2016, 36, 2761–2778. [Google Scholar] [CrossRef]
- Wotton, B.M. Interpreting and using outputs from the Canadian forest fire danger rating system in research applications Environ. Ecol. Stat. 2009, 16, 107–131. [Google Scholar] [CrossRef]
- Pereira, M.G.; Trigo, R.M.; Da Camara, C.C.; Pereira, J.M.C.; Leite, S.M. Synoptic patterns associated with large summer forest fires in Portugal. Agr. For. Meteorol. 2005, 129, 11–25. [Google Scholar] [CrossRef]
- Trigo, R.M.; Pereira, J.; Pereira, M.G.; Mota, B.; Calado, T.J.; Dacamara, C.C.; Santo, F.E. Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. Int. J. Climatol. 2006, 26, 1741–1757. [Google Scholar] [CrossRef]
- Amraoui, M.; Pereira, M.G.; Dacamara, C.C.; Calado, T.J. Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region. Sci. Total Environ. 2015, 524, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Lagouvardos, K.; Kotroni, V.; Giannaros, T.M.; Dafis, S. Meteorological conditions conducive to the rapid spread of the deadly wildfire in eastern Attica Greece. Bull. Am. Meteorol. Soc. 2019, 100, 2137–2145. [Google Scholar] [CrossRef]
Class | FWI | FFMC |
---|---|---|
Very Low | 0–8.5 | 0–25 |
Low | 8.5–17.2 | 25–50 |
Moderate | 17.2–24.6 | 50–75 |
High | 24.6–38.3 | 75–90 |
Very High | 38.3–50.1 | 90–95 |
Extreme | 50.1–64 | 95–99 |
Very Extreme | >64 | >99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durão, R.; Alonso, C.; Gouveia, C. The Performance of ECMWF Ensemble Prediction System for European Extreme Fires: Portugal/Monchique in 2018. Atmosphere 2022, 13, 1239. https://doi.org/10.3390/atmos13081239
Durão R, Alonso C, Gouveia C. The Performance of ECMWF Ensemble Prediction System for European Extreme Fires: Portugal/Monchique in 2018. Atmosphere. 2022; 13(8):1239. https://doi.org/10.3390/atmos13081239
Chicago/Turabian StyleDurão, Rita, Catarina Alonso, and Célia Gouveia. 2022. "The Performance of ECMWF Ensemble Prediction System for European Extreme Fires: Portugal/Monchique in 2018" Atmosphere 13, no. 8: 1239. https://doi.org/10.3390/atmos13081239
APA StyleDurão, R., Alonso, C., & Gouveia, C. (2022). The Performance of ECMWF Ensemble Prediction System for European Extreme Fires: Portugal/Monchique in 2018. Atmosphere, 13(8), 1239. https://doi.org/10.3390/atmos13081239