Predicted Hydrofluorocarbon (HFC) and Perfluorocarbon (PFC) Emissions for the Years 2010–2050 in the Czech Republic
Abstract
:1. Introduction
2. Methodologies of F-Gas Emission Projections in the Czech Republic
2.1. Model Phoenix
2.2. MAC Emissions
2.3. Other F-Gas Emissions
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michel-Kerjan, E.; Morlaye, F. Extreme Events, Global Warming, and Insurance-Linked Securities: How to Trigger the “Tipping Point”. Geneva Pap. Risk Insur. Issues Pract. 2008, 33, 153–176. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.R.; Dube, O.P.; Solecki, W.; Aragón-Durand, F.; Cramer, W.; Humphreys, S.; Kainuma, M.; Kala, J.; Mahowald, N.; Mulugetta, Y.; et al. Framing and Context. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; University Press: Cambridge, UK, 2018; pp. 49–92. [Google Scholar]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.L.; Engelbrecht, F.; et al. Impacts of 1.5 °C of Global Warming on Natural and Human Systems. In Global Warming of 1.5 °C. an IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; University Press: Cambridge, UK, 2018; pp. 175–312. [Google Scholar]
- Nullis, C. IPCC issues Special Report on Global Warming of 1.5 °C. WMO Bull. 2018, 67, 4–7. [Google Scholar]
- EC. Causes of Climate Change. Available online: https://climate.ec.europa.eu/climate-change/causes-climate-change_en (accessed on 29 September 2022).
- EEA. What Is the Current State of the Ozone Layer? Available online: https://www.eea.europa.eu/themes/climate/ozone-depleting-substances-and-climate-change-1 (accessed on 29 September 2022).
- EU. Regulation (EU) No 517/2014 of the european parliament and of the council on fluorinated greenhouse gases. Off. J. Eur. Union 2014, 2014, L150. [Google Scholar]
- EFCTC. About F-Gases. Available online: https://www.refrigerantanswers.eu/about-f-gases/ (accessed on 4 November 2022).
- WBG. Ozone-Depleting Substances: Alternatives. In Pollution Prevention and Abatement Handbook; World Bank Group: Washington, DC, USA, 1998. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; University Press: Cambridge, UK, 2021; pp. 3–32. [Google Scholar]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Kyoto, Japan, 2006.
- CHMI. National Greenhouse Gas Inventory Report of the Czech Republic (Reported Inventories 1990–2020); CHMI: Prague, Czech Republic, 2022. [Google Scholar]
- Ondrúšová, B.; Krtková, E. The Phoenix calculation model for emission estimates of F-gases used in refrigeration and air conditioning. Meteorologické Zprávy 2018, 71, 24–29. [Google Scholar]
- UN. Amendment to the Montreal Protocol on Substances That Deplete the Ozone Layer; EU: Kigali, Rwanda, 2016. [Google Scholar]
- 2006/40/EC; Directive 2006/40/EC of the European Parliament and of the Council Relating to Emissions from Air Conditioning Systems in Motor Vehicles. EU: Luxembourg, 2006.
- Mota-Babiloni, A.; Makhnatch, P. Predictions of European refrigerants place on the market following F-gas regulation restrictions. Int. J. Refrig. 2021, 127, 101–110. [Google Scholar] [CrossRef]
- Devotta, S.; Chelani, A.; Vonsild, A. Prediction of global warming potentials of refrigerants and related compounds from their molecular structure—An artificial neural network with group contribution method. Int. J. Refrig. 2021, 131, 756–765. [Google Scholar] [CrossRef]
- Zolcer Skačanová, K.; Battesti, M. Global market and policy trends for CO2 in refrigeration. Int. J. Refrig. 2019, 107, 98–104. [Google Scholar] [CrossRef]
- Karampour, M.; Sawalha, S. State-of-the-art integrated CO2 refrigeration system for supermarkets: A comparative analysis. Int. J. Refrig. 2018, 86, 239–257. [Google Scholar] [CrossRef] [Green Version]
- Cecchinato, L.; Corradi, M.; Minetto, S. Energy performance of supermarket refrigeration and air conditioning integrated systems working with natural refrigerants. Appl. Therm. Eng. 2012, 48, 378–391. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Antunes, E.; Vuppaladadiyam, S.S.V.; Baig, Z.T.; Subiantoro, A.; Lei, G.; Leu, S.-Y.; Sarmah, A.K.; Duan, H. Progress in the development and use of refrigerants and unintended environmental consequences. Sci. Total Environ. 2022, 823, 153670. [Google Scholar] [CrossRef] [PubMed]
- Velders, G.J.M.; Ravishankara, A.R.; Miller, M.K.; Molina, M.J.; Alcamo, J.; Daniel, J.S.; Fahey, D.W.; Montzka, S.A.; Reimann, S. Preserving Montreal Protocol Climate Benefits by Limiting HFCs. Am. Assoc. Adv. Sci. 2012, 335, 922–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Paula, C.H.; Duarte, W.M.; Rocha, T.T.M.; de Oliveira, R.N.; Maia, A.A.T. Optimal design and environmental, energy and exergy analysis of a vapor compression refrigeration system using R290, R1234yf, and R744 as alternatives to replace R134a. Int. J. Refrig. 2020, 113, 10–20. [Google Scholar] [CrossRef]
- Müllerová, M.; Krtková, E.; Rošková, Z. F-Gases: Trends, Applications and Newly Applied Gases in the Czech Republic. Atmosphere 2020, 11, 455. [Google Scholar] [CrossRef]
- Belman-Flores, J.M.; Rangel-Hernández, V.H.; Usón, S.; Rubio-Maya, C. Energy and exergy analysis of R1234yf as drop-in replacement for R134a in a domestic refrigeration system. Energy 2017, 132, 116–125. [Google Scholar] [CrossRef]
- Dieckmann, J. Global Comparative Analysis of HFC and Alternative Technologies for Refrigeration Air Conditioning, Foam, Solvent, Aerosol Propellant, and Fire Protection Applications; 49648; Arthur D. Little, Inc.: Tokyo, Japan, 1999. [Google Scholar]
- USEPA. Global Mitigation of Non-CO2 Greenhouse Gases. Available online: https://19january2017snapshot.epa.gov/global-mitigation-non-co2-greenhouse-gases/global-mitigation-non-co2-greenhouse-gases-fire_.html (accessed on 8 November 2022).
- EPA-430-R-19-010; Global Non-CO2 Greenhouse Gas Emission Projections & Mitigation 2015–2050. United States Environmental Protection Agency, Office of Atmospheric Programs (6207A): Washington, DC, USA, 2019.
Application | F-Gas |
---|---|
Commercial Refrigeration | HFC-125, HFC-152a, HFC-32, HFC-143a, HFC-134a, HFC-23, C3F8, C2F6, C6F14, HFC-227ea, |
Domestic Refrigeration | HFC-134a, |
Industrial Refrigeration | HFC-125, HFC-32, HFC-143a, HFC-134a |
Transport Refrigeration | HFC-125, HFC-32, HFC-143a, HFC-134a |
MAC | HFC-134a, |
SAC | HFC-125, HFC-32, HFC-143a, HFC-134a |
FBA | HFC-134a, HFC-227ea, HFC-245fa |
Fire Protection | HFC-227ea, HFC-236fa, C3F8 |
Aerosols and Metered-dose Inhalers | HFC-134a, HFC-227ea |
Solvents | HFC-152a, HFC-134a, HFC-245fa |
Total Consumption | Total Consumption with the KA | |
---|---|---|
2010 | 3289.67 | |
2011 | 3148.43 | |
2012 | 2335.22 | |
2013 | 2766.24 | |
2014 | 3390.28 | 3375.87 |
2015 | 3453.01 | 3439.83 |
2019 | 2233.03 | 2211.48 |
2020 | 1060.42 | 1060.42 |
2021 | 2177.49 | 1759.98 |
2022 | 1888.41 | 1220.71 |
2025 | 1195.52 | 736.58 |
2030 | 588.77 | 564.11 |
2035 | 719.31 | 422.77 |
2036 | 697.98 | 356.50 |
2040 | 615.67 | 341.77 |
2045 | 512.24 | 324.69 |
2050 | 408.74 | 308.36 |
Lifetime (Years) | Emission Factors (% of Initial Charge/Year) | End-of-Life Emissions (%) | |||
---|---|---|---|---|---|
Factor in Equations | (d) | (k) | (x) | (ηrec,d) | (p) |
Initial Emissions | Operation Emissions | Recovery Efficiency | Initial Charge Remaining | ||
Commercial refrigeration | 10.5 | 3.0 | 13.0 | 55.0 | 70.0 |
Domestic refrigeration | 13.5 | 0.5 | 3.5 | 55.0 | 70.0 |
Industrial refrigeration | 17.0 | 3.0 | 13.0 | 55.0 | 70.0 |
Transport refrigeration | 8.5 | 0.5 | 20.0 | 55.0 | 30.0 |
SAC | 13.5 | 0.5 | 6.5 | 55.0 | 70.0 |
Car Producer | %-Share | Average Initial MAC Fluid Charge [g] |
---|---|---|
A | 61.0 | 478 |
B | 14.5 | 390 |
C | 24.5 | 570 |
MAC Consumption | MAC Consumption the KA Corrected | |
---|---|---|
2010 | 726.97 | |
2011 | 841.85 | |
2012 | 848.25 | |
2013 | 829.76 | |
2014 | 892.55 | 892.55 |
2015 | 961.57 | 961.57 |
2019 | 371.37 | 371.37 |
2020 | 322.28 | 322.28 |
2021 | 394.62 | 394.62 |
2022 | 412.46 | 412.46 |
2025 | 447.13 | 447.13 |
2030 | 471.33 | 251.99 |
2035 | 422.02 | 167.99 |
2036 | 411.43 | 125.99 |
2040 | 366.11 | 125.99 |
2045 | 301.84 | 125.99 |
2050 | 226.43 | 125.99 |
Lifetime (Years) | Emission Factors (% of Initial Charge/Year) | End-of-Life Emissions (%) | |||
---|---|---|---|---|---|
Factor in Equations | (d) | (k) | (x) | (ηrec,d) | (p) |
Initial Emissions | Operation Emissions | Recovery Efficiency | Initial Charge Remaining | ||
Passenger cars | 15.0 | 0.5 | 20.0 | 10.0 | 30.0 |
Light duty vehicles | 13.0 | ||||
Heavy duty trucks | 16.0 | ||||
Buses | 14.0 |
Fire Protection | Fire Protection with the KA | |
---|---|---|
2010 | 103.65 | |
2011 | 63.33 | |
2012 | 81.72 | |
2013 | 96.73 | |
2014 | 111.51 | |
2015 | 107.81 | |
2019 | 128.38 | 29.90 |
2020 | 53.0 | 55.95 |
2021 | 43.09 | 43.09 |
2022 | 39.77 | 39.77 |
2025 | 29.83 | 29.83 |
2030 | 15.47 | 15.47 |
2035 | 9.67 | 9.67 |
2036 | 8.29 | 8.29 |
2040 | 2.76 | 2.76 |
2045 | 2.76 | 2.76 |
2050 | 2.76 | 2.76 |
Lifetime (Years) | First Year Losses (%) | Annual Losses (%) | Disposal Losses (%) | |
---|---|---|---|---|
FBA | 20.0 | 10.0 | 4.5 | 100.0 |
Fire Protection | 15.0–20.0 | 2.0 | 2.0 | 15.0 |
Aerosols/Metered-dose Inhalers | 2.0 | 50.0 | 50.0 | NO 1 |
Solvents | 2.0 | 50.0 | 50.0 | NO 1 |
HFCs | PFCs | |||||||
---|---|---|---|---|---|---|---|---|
Refrigeration and SAC | MAC | Other Use | Total HFCs | Refrigeration and SAC | MAC | Other Use | Total PFCs | |
2010 | 1634 | 739 | 51 | 2423 | 7.8 | NO | 0.02 | 7.8 |
2011 | 1839 | 799 | 49 | 2686 | 5.8 | NO | 0.03 | 5.9 |
2012 | 1923 | 835 | 40 | 2798 | 4.9 | NO | 0.03 | 4.9 |
2013 | 2040 | 847 | 39 | 2926 | 3.9 | NO | 0.03 | 4.0 |
2014 | 2209 | 840 | 36 | 3085 | 2.7 | NO | 0.03 | 2.7 |
2015 | 2370 | 901 | 35 | 3305 | 1.7 | NO | 0.03 | 1.7 |
2019 | 2840 | 884 | 36 | 3760 | 1.1 | NO | 0.03 | 1.1 |
2020 | 2722 | 885 | 38 | 3645 | 0.57 | NO | 0.03 | 0.60 |
2021 | 2678 | 878 | 38 | 3590 | 0.28 | NO | 0.03 | 0.31 |
2022 | 2496 | 875 | 42 | 3410 | 0.13 | NO | 0.03 | 0.16 |
2025 | 2003 | 857 | 48 | 2904 | 0.01 | NO | 0.03 | 0.04 |
2030 | 1226 | 791 | 53 | 2066 | <0.01 | NO | 0.02 | 0.02 |
2035 | 823 | 650 | 55 | 1527 | <0.01 | NO | 0.02 | 0.02 |
2040 | 544 | 526 | 54 | 1122 | <0.01 | NO | 0.02 | 0.02 |
2045 | 435 | 402 | 52 | 887 | <0.01 | NO | 0.02 | 0.02 |
2050 | 376 | 293 | 48 | 716 | <0.01 | NO | 0.02 | 0.02 |
Commercial Refrigeration | Domestic Refrigeration | Industrial Refrigeration | Transport Refrigeration | SAC | MAC | FBA | Fire Protection | Aerosols | Solvents | |
---|---|---|---|---|---|---|---|---|---|---|
2010 | 903 | 2.0 | 262 | 108 | 367 | 742 | 3.2 | 15 | 32 | 0.93 |
2011 | 1005 | 2.0 | 293 | 119 | 426 | 802 | 3.0 | 16 | 29 | 0.93 |
2012 | 1043 | 2.1 | 302 | 118 | 463 | 839 | 2.9 | 17 | 18 | 2.0 |
2013 | 1079 | 2.4 | 322 | 122 | 519 | 851 | 2.8 | 19 | 13 | 4.3 |
2014 | 1142 | 2.8 | 357 | 134 | 575 | 844 | 2.6 | 21 | 9.7 | 2.7 |
2015 | 1223 | 2.6 | 389 | 144 | 612 | 922 | 2.6 | 23 | 8.5 | 0.78 |
2019 | 1477 | 2.2 | 439 | 157 | 767 | 887 | 4.0 | 29 | 2.4 | 0.00 |
2020 | 1379 | 2.2 | 396 | 136 | 808 | 885 | 3.5 | 31 | 2.5 | 0.51 |
2021 | 1304 | 2.0 | 399 | 138 | 836 | 878 | 1.1 | 33 | 3.4 | 0.68 |
2022 | 1138 | 1.6 | 384 | 138 | 835 | 875 | 2.5 | 36 | 4.0 | 0.29 |
2025 | 716 | 1.2 | 395 | 134 | 758 | 857 | 2.9 | 42 | 3.0 | 0.08 |
2030 | 175 | 0.87 | 351 | 104 | 596 | 791 | 0.83 | 49 | 3.2 | NO |
2035 | 50 | 0.71 | 293 | 69 | 410 | 650 | 0.78 | 51 | 3.2 | NO |
2040 | 31 | 0.44 | 201 | 45 | 266 | 526 | 0.62 | 50 | 3.2 | NO |
2045 | 31 | 0.29 | 159 | 37 | 208 | 402 | 0.92 | 48 | 3.2 | NO |
2050 | 28 | 0.22 | 148 | 34 | 166 | 293 | 0.66 | 45 | 3.2 | NO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rošková, Z.; Schneider, J.; Štengel, M. Predicted Hydrofluorocarbon (HFC) and Perfluorocarbon (PFC) Emissions for the Years 2010–2050 in the Czech Republic. Atmosphere 2023, 14, 111. https://doi.org/10.3390/atmos14010111
Rošková Z, Schneider J, Štengel M. Predicted Hydrofluorocarbon (HFC) and Perfluorocarbon (PFC) Emissions for the Years 2010–2050 in the Czech Republic. Atmosphere. 2023; 14(1):111. https://doi.org/10.3390/atmos14010111
Chicago/Turabian StyleRošková, Zuzana, Julieta Schneider, and Martin Štengel. 2023. "Predicted Hydrofluorocarbon (HFC) and Perfluorocarbon (PFC) Emissions for the Years 2010–2050 in the Czech Republic" Atmosphere 14, no. 1: 111. https://doi.org/10.3390/atmos14010111