Strategy for the Prediction of Typhoon Wind and Storm Surge Height Using the Parametric Typhoon Model: Case Study for Hinnamnor in 2022
Abstract
:1. Introduction
2. Data and Methods
3. Estimation of the Radius of Maximum Wind Speed
4. Simulation of Hinnamnor Surface Wind and Storm Surge Height
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, D.-S.R.; Ho, C.-H.; Kim, J.-H.; Kim, H.-S. Strong landfall typhoons in Korea and Japan in a recent decade. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Son, J.-H.; Heo, K.-Y.; Choi, J.-W.; Kwon, J.-I. Long-lasting upper ocean temperature responses induced by intense typhoons in mid-latitude. Sci. Rep. 2022, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Typhoon Impact and Crisis Management; Tang, D.L.; Sui, G.; Lavy, G.; Pozdnyakov, D.; Song, Y.T.; Switzer, A.D. (Eds.) Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–578. [Google Scholar]
- Holland, G.J. Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci. 1983, 40, 328–342. [Google Scholar] [CrossRef]
- Son, J.-H.; Kwon, J.-I.; Heo, K.-Y. Weak upstream westerly wind attracts western North Pacific typhoon tracks to west. Environ. Res. Lett. 2021, 16, 124041. [Google Scholar] [CrossRef]
- Wong, M.L.M.; Chan, J.C.L. Tropical Cyclone Motion in Response to Land Surface Friction. J. Atmos. Sci. 2006, 63, 1324–1337. [Google Scholar] [CrossRef]
- Chan, J.C.L.; Liang, X. Convective Asymmetries Associated with Tropical Cyclone Landfall. Part I: f-Plane Simulations. J. Atmos. Sci. 2003, 60, 1560–1576. [Google Scholar] [CrossRef]
- Fujiwhara, S. The natural tendency towards symmetry of motion and its application as a principle in meteorology. Q. J. R. Meteorol. Soc. 1921, 47, 287–292. [Google Scholar] [CrossRef]
- Ge, X.; Li, T.; Peng, M. Effects of Vertical Shears and Midlevel Dry Air on Tropical Cyclone Developments*. J. Atmos. Sci. 2013, 70, 3859–3875. [Google Scholar] [CrossRef]
- Kim, H.-K.; Seo, K.-H. Cluster Analysis of Tropical Cyclone Tracks over the Western North Pacific Using a Self-Organizing Map. J. Clim. 2016, 29, 3731–3751. [Google Scholar] [CrossRef]
- Yun, K.S.; Chan, J.C.L.; Ha, K.J. Effects of SST magnitude and gradient on typhoon tracks around East Asia: A case study for Typhoon Maemi (2003). Atmos. Res. 2012, 109–110, 36–51. [Google Scholar] [CrossRef]
- Chang, M.; Ho, C.; Chan, J.C.L.; Park, M.; Son, S.; Kim, J. The Tropical Transition in the Western North Pacific: The Case of Tropical Cyclone Peipah (2007). J. Geophys. Res. Atmos. 2019, 124, 5151–5165. [Google Scholar] [CrossRef]
- Chang, M.; Park, D.-S.R.; Ho, C.-H. Possible Cause of Seasonal Inhomogeneity in Interdecadal Changes of Tropical Cyclone Genesis Frequency over the Western North Pacific. J. Clim. 2021, 34, 635–642. [Google Scholar] [CrossRef]
- Sitkowski, M.; Kossin, J.; Rozoff, C.M. Intensity and Structure Changes during Hurricane Eyewall Replacement Cycles. Mon. Weather. Rev. 2011, 139, 3829–3847. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.M.; Kay, J.K.; Lee, S.-W. Development and Evaluation of the High Resolution Limited Area Ensemble Prediction System in the Korea Meteorological Administration. Atmosphere 2015, 25, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M.; Sakai, R.; Kyoda, M.; Komori, T.; Kadowaki, T. Typhoon Ensemble Prediction System Developed at the Japan Meteorological Agency. Mon. Weather Rev. 2009, 137, 2592–2604. [Google Scholar] [CrossRef]
- Thompson, E.F.; Cardone, V.J. Practical Modeling of Hurricane Surface Wind Fields. J. Waterw. Port Coast. Ocean Eng. 1996, 122, 195–205. [Google Scholar] [CrossRef]
- Das, Y. Parametric modeling of tropical cyclone wind fields in India. Nat. Hazards 2018, 93, 1049–1084. [Google Scholar] [CrossRef]
- Kwon, J.I.; Lee, J.C.; Park, K.S.; Jun, K.C. Comparison of Typhoon wind models based on storm surge heights induced by Typhoon Maemi. Asia Pac. J. Atmos. Sci. 2008, 44, 443–454. [Google Scholar]
- Chow, S.H. A Study of the Wind Field in the Planetary Boundary Layer of a Moving Tropical Cyclone. Master’s Thesis, New York University, New York, NY, USA, 1971. [Google Scholar]
- Cardone, V.J.; Greenwood, C.V.; Greenwood, J.A. Unified Program for the Specification of Hurricane Boundary Layer Winds over Surfaces of Specified Roughness; Contract Rep. CERC-92; U.S. Army Engrs. Wtrwy-1, Experiment Station: Vicksburg, MS, USA, 1992.
- Myers, V.A. Characteristics of United States Hurricanes Pertinent to Levee Design for Lake Okeechobee, Florida; Hydrometeorological Report; U.S. Weather Bureau: Silver Spring, MD, USA, 1954; Volume 32, p. 126.
- Schloemer, R.W. Analysis and Synthesis of Hurricane Wind Patterns over Lake Okeechobee, Florida; Hydrometeorological Report 31; National Oceanic and Atmospheric Administration: Washington, DC, USA, 1954; p. 49.
- Anthes, R.A. Tropical cyclones: Their evolution, structure, and effects. Meteorol. Monogr. 1982, 41, 208. [Google Scholar]
- Hsu, S.A.; Martin, M.F., Jr.; Blanchard, B.W. An evaluation of the USACE’s deep water wave prediction techniques under hurricane conditions during Georges in 1998. J. Coast. Res. 2000, 16, 823–829. [Google Scholar]
- Hsu, S.A.; Babin, A. Estimating the radius of maximum winds via satellite during hurricane LILI (2002) over the Gulf of Mexico. Natl. Weather Assoc. 2005, 6, 1–6. [Google Scholar]
- Kieu, C.Q. An investigation into the contraction of the hurricane radius of maximum wind. Meteorol. Atmos. Phys. 2011, 115, 47–56. [Google Scholar] [CrossRef]
- Liu, F.; Sasaki, J. Hybrid methods combining atmospheric reanalysis data and a parametric typhoon model to hindcast storm surges in Tokyo Bay. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Kim, Y.S.; Jang, C.J.; Noh, J.H.; Kim, K.-T.; Kwon, J.-I.; Min, Y.; Jeong, J.; Lee, J.; Min, I.-K.; Shim, J.-S.; et al. A Yellow Sea Monitoring Platform and Its Scientific Applications. Front. Mar. Sci. 2019, 6, 601. [Google Scholar] [CrossRef]
- Ha, K.-J.; Nam, S.; Jeong, J.-Y.; Moon, I.-J.; Lee, M.; Yun, J.; Jang, C.J.; Kim, Y.S.; Byun, D.-S.; Heo, K.-Y.; et al. Observations Utilizing Korea Ocean Research Stations and their Applications for Process Studies. Bull. Am. Meteorol. Soc. 2019, 100, 2061–2075. [Google Scholar] [CrossRef]
- Knaff, J.A.; Sampson, C.R.; DeMaria, M.; Marchok, T.P.; Gross, J.M.; McAdie, C.J. Statistical Tropical Cyclone Wind Radii Prediction Using Climatology and Persistence. Weather Forecast. 2007, 22, 781–791. [Google Scholar] [CrossRef]
- Weatherford, C.L.; Gray, W.M. Typhoon Structure as Revealed by Aircraft Reconnaissance. Part I: Data Analysis and Climatology. Mon. Weather Rev. 1988, 116, 1032–1043. [Google Scholar] [CrossRef]
- Moon, I.-J.; Kwon, J.-I.; Lee, J.-C.; Shim, J.-S.; Kang, S.K.; Oh, I.S.; Kwon, S.J. Effect of the surface wind stress parameterization on the storm surge modeling. Ocean Model. 2009, 29, 115–127. [Google Scholar] [CrossRef]
- Lee, J.C.; Kwon, J.I.; Park, K.S.; Jun, K.C. Calculations of storm surges, Typhoon Maemi. J. Korean Soc. Coast. Ocean Eng. 2008, 20, 93–100. [Google Scholar]
- Jelesnianski, C.P. A numerical calculation of storm surges induced by a tropical storm impinging on a continental shelf. Mon. Weather Rev. 1965, 93, 343–358. [Google Scholar] [CrossRef]
- Kim, H.-J.; Moon, I.-J.; Oh, I. Comparison of Tropical Cyclone Wind Radius Estimates between the KMA, RSMC Tokyo, and JTWC. Asia-Pac. J. Atmos. Sci. 2022, 58, 563–576. [Google Scholar] [CrossRef]
- Toyoda, M.; Mori, N.; Yoshino, J. Optimization of empirical typhoon model considering the difference of radius between pressure gradient and wind speed distributions. Coast. Eng. J. 2022, 64, 376–386. [Google Scholar] [CrossRef]
Name (YYNN) | Generation (KST) | When latitude > 30°N | Termination |
---|---|---|---|
Prapiroon (1807) | 2018-06-28 21:00 | 2018-07-03 00:00 | 2018-07-04 18:00 |
Rumbia (1818) | 2018-08-15 15:00 | 2018-08-16 15:00 | 2018-08-18 09:00 |
Soulik (1819) | 2018-08-16 03:00 | 2018-08-22 09:00 | 2018-08-25 03:00 |
Trami (1824) | 2018-09-21 03:00 | 2018-09-30 09:00 | 2018-10-01 15:00 |
Kong-rey (1825) | 2018-09-28 15:00 | 2018-10-05 18:00 | 2018-10-07 09:00 |
Danas (1905) | 2019-07-16 09:00 | 2019-07-19 15:00 | 2019-07-21 21:00 |
Francisco (1908) | 2019-08-01 21:00 | 2019-08-05 09:00 | 2019-08-07 21:00 |
Lekima (1909) | 2019-08-04 15:00 | 2019-08-10 15:00 | 2019-08-12 21:00 |
Krosa (1910) | 2019-08-06 09:00 | 2019-08-14 21:00 | 2019-08-16 21:00 |
Lingling (1913) | 2019-09-01 21:00 | 2019-09-06 18:00 | 2019-09-08 09:00 |
Tapah (1917) | 2019-09-18 09:00 | 2019-09-22 06:00 | 2019-09-23 09:00 |
Mitag (1918) | 2019-09-26 21:00 | 2019-10-01 21:00 | 2019-10-03 12:00 |
Jangmi (2005) | 2020-08-09 03:00 | 2020-08-10 03:00 | 2020-08-10 17:00 |
Bavi (2008) | 2020-08-22 09:00 | 2020-08-25 18:00 | 2020-08-27 15:00 |
Maysak (2009) | 2020-08-28 03:00 | 2020-09-02 06:00 | 2020-09-03 12:00 |
Haishen (2010) | 2020-09-01 09:00 | 2020-09-06 18:00 | 2020-09-07 21:00 |
Lupit (2109) | 2021-08-03 09:00 | 2021-08-08 15:00 | 2021-08-09 09:00 |
Omais (2112) | 2021-08-15 09:00 | 2021-08-23 12:00 | 2021-08-24 06:00 |
Chanthu (2114) | 2021-09-06 21:00 | 2021-09-13 15:00 | 2021-09-18 09:00 |
Aere (2204) | 2022-07-01 03:00 | 2022-07-04 09:00 | 2022-07-05 03:00 |
Songda (2205) | 2022-07-27 03:00 | 2022-07-30 03:00 | 2022-08-01 09:00 |
Trases (2206) | 2022-07-31 12:00 | 2022-08-01 03:00 | 2022-08-01 21:00 |
Hinnamnor (2211) | 2022-08-28 15:00 | 2022-09-05 12:00 | 2022-09-06 21:00 |
Date (KST) | Latitude (°N) | Longitude (°E) | Center Pressure (hPa) | Radius of Strong Wind (km) |
---|---|---|---|---|
2022-08-28 15:00 | 25.8 | 149.5 | 1004 | - |
2022-08-28 21:00 | 26.9 | 148.5 | 998 | 220 |
2022-08-29 3:00 | 27.2 | 147 | 994 | 220 |
2022-08-29 9:00 | 27.3 | 145.2 | 985 | 230 |
2022-08-29 15:00 | 27.4 | 143.3 | 980 | 260 |
2022-08-29 21:00 | 27.3 | 141.2 | 965 | 280 |
2022-08-30 3:00 | 27.1 | 139.3 | 965 | 300 |
2022-08-30 9:00 | 26.8 | 137.3 | 945 | 300 |
2022-08-30 15:00 | 26.8 | 135.4 | 925 | 300 |
2022-08-30 21:00 | 26.5 | 133.6 | 915 | 300 |
2022-08-31 3:00 | 26.3 | 131.9 | 915 | 230 |
2022-08-31 9:00 | 25.9 | 130.3 | 915 | 240 |
2022-08-31 15:00 | 25.4 | 129 | 915 | 250 |
2022-09-01 3:00 | 23.7 | 126.4 | 915 | 280 |
2022-09-01 15:00 | 21.8 | 125.5 | 920 | 300 |
2022-09-01 21:00 | 21.3 | 125.5 | 920 | 320 |
2022-09-02 3:00 | 21.3 | 125.5 | 925 | 320 |
2022-09-02 9:00 | 21.5 | 125.4 | 935 | 340 |
2022-09-02 15:00 | 21.9 | 125.1 | 935 | 360 |
2022-09-02 21:00 | 22.2 | 124.8 | 935 | 360 |
2022-09-03 3:00 | 22.5 | 124.7 | 940 | 400 |
2022-09-03 9:00 | 23 | 124.6 | 940 | 410 |
2022-09-03 15:00 | 23.6 | 124.6 | 940 | 420 |
2022-09-03 21:00 | 24.3 | 124.8 | 940 | 430 |
2022-09-04 3:00 | 25.1 | 124.6 | 940 | 430 |
2022-09-04 9:00 | 26 | 124.5 | 940 | 430 |
2022-09-04 15:00 | 27 | 124.8 | 935 | 430 |
2022-09-04 21:00 | 27.7 | 124.6 | 935 | 430 |
2022-09-05 3:00 | 28.6 | 124.7 | 935 | 430 |
2022-09-05 6:00 | 29.2 | 124.8 | 935 | 430 |
2022-09-05 9:00 | 29.8 | 124.9 | 930 | 430 |
2022-09-05 12:00 | 30.2 | 125.1 | 930 | 430 |
2022-09-05 15:00 | 31 | 125.6 | 935 | 430 |
2022-09-05 18:00 | 31.7 | 126.1 | 940 | 430 |
2022-09-05 21:00 | 32.4 | 126.6 | 940 | 420 |
2022-09-06 0:00 | 33.3 | 127.3 | 945 | 410 |
2022-09-06 3:00 | 34.2 | 128 | 950 | 400 |
2022-09-06 6:00 | 35.2 | 129.2 | 955 | 400 |
2022-09-06 9:00 | 36.5 | 130.5 | 965 | 390 |
2022-09-06 12:00 | 37.8 | 131.6 | 970 | 370 |
2022-09-06 15:00 | 39.3 | 133 | 975 | 280 |
2022-09-06 18:00 | 42 | 135.7 | 975 | 280 |
2022-09-06 21:00 | 44.4 | 136.7 | 980 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, J.-H.; Kim, H.; Heo, K.-Y.; Kwon, J.-I.; Jeong, S.-H.; Choi, J.-Y.; Chun, J.-Y.; Kwon, Y.-Y.; Choi, J.-W. Strategy for the Prediction of Typhoon Wind and Storm Surge Height Using the Parametric Typhoon Model: Case Study for Hinnamnor in 2022. Atmosphere 2023, 14, 82. https://doi.org/10.3390/atmos14010082
Son J-H, Kim H, Heo K-Y, Kwon J-I, Jeong S-H, Choi J-Y, Chun J-Y, Kwon Y-Y, Choi J-W. Strategy for the Prediction of Typhoon Wind and Storm Surge Height Using the Parametric Typhoon Model: Case Study for Hinnamnor in 2022. Atmosphere. 2023; 14(1):82. https://doi.org/10.3390/atmos14010082
Chicago/Turabian StyleSon, Jun-Hyeok, Hojin Kim, Ki-Young Heo, Jae-Il Kwon, Sang-Hun Jeong, Jin-Yong Choi, Je-Yun Chun, Yeong-Yeon Kwon, and Jung-Woon Choi. 2023. "Strategy for the Prediction of Typhoon Wind and Storm Surge Height Using the Parametric Typhoon Model: Case Study for Hinnamnor in 2022" Atmosphere 14, no. 1: 82. https://doi.org/10.3390/atmos14010082
APA StyleSon, J. -H., Kim, H., Heo, K. -Y., Kwon, J. -I., Jeong, S. -H., Choi, J. -Y., Chun, J. -Y., Kwon, Y. -Y., & Choi, J. -W. (2023). Strategy for the Prediction of Typhoon Wind and Storm Surge Height Using the Parametric Typhoon Model: Case Study for Hinnamnor in 2022. Atmosphere, 14(1), 82. https://doi.org/10.3390/atmos14010082