Determination of Critical Loads for Eutrophying and Acidifying Air Pollutant Inputs for the Protection of Near-Natural Ecosystems in Germany
Abstract
:1. Introduction
- (1)
- Empirical critical loads for nitrogen were last compiled at an expert workshop in Bern 2022 [12]. The empirical approaches use dose-response relationships based on experience and field studies to assign pollutant input limits to a specific ecological receptor or a defined ecosystem. This allocation table using the EUNIS codes for the different ecosystem types occurring in Europe contains information on empirical critical loads for eutrophying nitrogen based on nitrogen addition experiments, long-term observations or expert opinions. As a rule, these critical loads are given as ranges of values for EUNIS classes. However, not all relevant EUNIS classes are included in the list of empirical critical loads. The simple approach of empirically deriving cause–effect relationships between the nitrogen input and the response of relatively roughly classified vegetation types is particularly suitable for large-scale extrapolations, as comparatively few data are required. The often wide ranges also usually offer a broad scope for interpretation.
- (2)
- According to the simple mass balance (SMB) method [11], the permissible eutrophying nitrogen input into the ecosystem CLnut(N), as well as the acidifying sulphur input CLmaxS can be described as the setting of the equilibrium between substance inputs and outputs, provided that specific critical limits are met. Temporary deviations from the state of equilibrium can only be tolerated as long as the system remains capable of self-regeneration (quasi-steady state). This deterministic and process-based approach simulates the biotic and ecological changes with the help of a mathematical model representation of the most important processes in the ecosystem. However, the mathematical equations used cannot be better than the knowledge of the ecological processes on which they are based.
- (3)
- Dynamic modelling approaches reproduce the changes in vegetation as a function of changing abiotic site factors or forecast them into the future. The most commonly used models are two-stage in that the geochemical processes are simulated first, and their results are then used as drivers in the biotic models [13]. In order to determine critical loads with the help of dynamic models, it is necessary to set parameter values that are to be achieved in the desired target state. Dynamic modelling is primarily suitable for individual sites, as a large amount of input data is required, which can often only be determined with great effort.
2. Methods
2.1. Critical Load Concept and Model Approaches
2.1.1. The SMB Model for Calculating Critical Loads for Eutrophying Nitrogen Depositions
- CLnut(N) = Critical load for eutrophic nitrogen input [kg N ha−1 a−1]
- Nu = Net nitrogen uptake rate by vegetation [kg N ha−1 a−1]
- Ni = Net nitrogen immobilization rate [kg N ha−1 a−1]
- Nle(acc) = Tolerable leaching rate of nitrogen [kg N ha−1 a−1]
- Nde = Denitrification rate [kg N ha−1 a−1]
2.1.2. The SMB Model for Determining Critical Loads for Acidifying Substance Inputs
- CL = Critical load [eq ha−1 a−1]
- S = Sulphur compounds
- N = Nitrogen compounds
- BC*dep = Sea salt-corrected rate of deposition of base cations Ca2+ + Mg2+ + K+ + Na+ [eq ha−1 a−1]
- Cl*dep = Sea salt-corrected rate of deposition of chloride ions [eq ha−1 a−1]
- BCw = Rate of release of base cations by weathering Ca2+ + Mg2+ + K+ + Na+ [eq ha−1 a−1]
- Bcu = Net uptake rate of base cations by vegetation Ca2+ + Mg2+ + K+ [eq ha−1 a−1]
- Ni = Nitrogen immobilization rate [eq ha−1 a−1]
- Nu = Net uptake rate of nitrogen by vegetation [eq ha−1 a−1]
- Nde = Denitrification rate [eq ha−1 a−1]
- ANCle(crit) = Critical discharge rate of acid neutralisation capacity with leachate [eq ha−1 a−1]
- [H]+(crit) = Critical concentration of H+-Ions [eq m−3]
- [Al]3+(crit) = Critical concentration of Al3+-Ions [eq m−3]
- PS = Precipitation surplus [m3 a−1]
- For anhydromorphic humus-poor (<15% OM) mineral soils Kgibb = 300 m6 eq−2,
- for anhydromorphic humus-rich (15–30 % OM) mineral soils Kgibb = 100 m6 eq−2 and
- for peat soils (>70% OM) Kgibb = 9.5 m6 eq−2 is applied.
- [H]crit = critical proton concentration in the soil solution [eq L−1]
- kAlBc = GAPON—Exchange coefficient Al zu Ca + Mg + K
- kHBc = GAPON—Exchange coefficient H zu Ca + Mg + K
- EBC(crit) = BScrit(BERN)/100
- [Bc] = Concentration of base cations Ca + Mg + K in the soil solution
- Bcle = Max {0, Bcdep + Bcw − Bcu(korr) – PS *[Bc]min}
- [Bc]min = 0.01 eq m−3
Variant Comparison
2.2. The BERN Model for Determining Vegetation-Specific Limits
2.2.1. Model Approach and Database
- -
- Soil type, parent material, substrate, humus form;
- -
- Height of the site above sea level;
- -
- Slope inclination [°];
- -
- Latitude [grd:min:sec];
- -
- Water content at field capacity [m3 m−3], mean groundwater-floor distance, mean backwater stage;
- -
- Base saturation according to Kappen-Adrian [%];
- -
- pH value, measured in CaCl2;
- -
- C/N ratio [-];
- -
- Climatic water balance [mm vegetation month−1] (precipitation minus evapotranspiration); this parameter is correlated with R2 = 1 with the parameter for humidity (Bowen value = potential evaporation in the vegetation period /precipitation in the vegetation period); this parameter is also correlated with R2 = 0.98 with the parameter for continentality (De Martonne index = precipitation in the vegetation period/mean temperature in the vegetation period + 10);
- -
- Vegetation period length [d a−1] (mean number of days per year with a daily mean temperature above 10 °C)
- -
- Useful solar radiation [kWh m−2 a−1)] (sum of light energy in the vegetation period); this parameter includes the temporal course of solar radiation as a function of the angle of incidence according to latitude, the modification as a function of slope and exposure, the sunshine probability as an annual average and the overshadowing by overlying vegetation layers as a function of their typical degree of cover in the community;
- -
- Temperature [°] from the minimum (frost hardiness) via minimum and maximum of the optimum plateau (start and end of photosynthesis) to the maximum (heat stress).
2.2.2. Validation
3. Databases
3.1. Critical N Concentration in Leachate
- [N]crit(BERN) = critical concentration of nitrogen in the soil water of the root zone in the long-term annual average [kg N m−3 soil water]
- Nmin(crit) = Critical content of mineral N at the site as a long-term average [kg N m−2]
- W = Water content in the root zone as a long-term average [%]
- z = depth of the community typical root zone [m]
- Corg = Annual long-term average organic carbon content in the rooted zone,
- Fmin = factor for the proportion of Nmin to Nt (depending on the clay content of the soil, Nmin is 5% of Nt at high clay content and 0.1% at clay content = 0).
3.2. Critical pH Value and Critical Base Saturation
3.3. Critical Ratio of Base Cations to Aluminum ions [Bc/Al(crit)] or to Protons [Bc/Hcrit] in Soil Solution
3.4. Determination of the Uptake Rate of Base Cations (Bcu) and Nitrogen (Nu) into Biomass
3.4.1. Estimation of the Plant Physiological Yield Potential of the Biomass
Forest
Open Land
3.4.2. Determining the Soil-Specific Relative Yield Potentials
3.4.3. Determination of Climate-Specific Yield Potentials
- EP(climate-corr) = Climate-corrected yield potential
- EPgeo = Soil-specific yield potential (between 1 and 5)
- VZ = Site-specific vegetation period length (number of days in the year with an average air temperature of ≥10 °C).
3.4.4. Calculation of the Biomass Yield
3.4.5. Substance Content in the Biomass
3.4.6. Nitrogen and Base Uptake into the Biomass
3.5. Denitrification Rate
- Nde = Denitrification rate [eq ha−1 a−1]
- fde = Denitrification factor (function of soil types with a value between 0 and 1)
- Ndep = Atmospheric nitrogen deposition [eq ha−1 a−1], with Ndep ≡ CLnut(N)
- Ni = Net nitrogen immobilization [eq ha−1 a−1]
- Nu = Nitrogen uptake by vegetation [eq ha−1 a−1]
3.6. Nitrogen Immobilization Rate
Ni(T) = 1.5∗ T − 1.75 if T > 1.5 °C; T ≤ 4.5 °C
Nii(T) = 0.0893 ∗ T2 − 2.0071 ∗ T + 11.793 if T > 4.5 °C; T ≤ 11 °C
Ni(T) = 0.5 kgN ha−1a−1, if T > 11 °C
- T = average annual temperature at the site [°C]
- Ni(T) = temperature-dependent immobilization rate [kg N ha−1 a−1]
- Ni(T) = Temperature-dependent immobilization rate
- Ni(phyto) = Vegetation-dependent immobilization rate
- NAV = Available nitrogen (Nav = Ndep − Nu − Ni(T)) with Ndep ≡ CLnut(N) (see below)
- CNmin(geo) = Lowest acceptable (soil specific) C/N ratio
- CNmax(geo) = Highest acceptable (soil specific) C/N ratio
- CNcrit(phyto) = Critical limit for the C/N ratio (vegetation specific)
- The comprehensive derivation is documented by the authors in [14].
- Ni(phyto) now results as follows:
3.7. Tolerable N Leaching Rate with the Precipitation Surplus
- Nle(acc) = Tolerable nitrogen discharge rate with the precipitation surplus [kg N ha−1 a−1]
- PS = precipitation surplus ate [m3 ha−1 a−1]
- [N]crit(BERN) = Limit concentration as a function of the sensitivity of the respective considered plant community, derived by BERN modelling according to Section 3.1 [kg N m−3]
3.8. Deposition of Base Cations and Chloride Ions
3.9. Release Rate of Base Cations through Weathering
- BCw(T) = Temperature-corrected weathering rate [eq ha−1 a−1]
- z = Rooted depth [m] according to Köstler [95].
- WRc = Weathering rate class (according to Table 20)
- T = Mean local temperature in the 30-year average 1981–2010 according to the German Weather Service [141] [K].
- A = Quotient of activation energy and ideal gas constant (= 3600 K)
4. Results
5. Discussion
6. Application
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BÜK: BUEK | Soil map of Germany, scale 1:1 Mio. (BÜK1000) or 1:200,000 (BÜK200) |
CL | Critical Load |
CLC | CORINE Land Cover |
CLRTAP | Convention on Long-range Transboundary Air Pollution 1979 of UNECE |
CORINE | CORINE Land Cover 2006 (CLC 2006), Available online: http://sia.eionet.europa.eu/CLC2006 (accessed on 20 December 2022) |
DWD | Deutscher Wetterdienst (German Weather Service) |
EMEP | European Monitoring and Evaluation Programme (EMEP), Available online: http://www.emep.int. (accessed on 20 December 2022) |
EUNIS | European Nature Information System (EUNIS), Available online: http://eunis.eea.europa.eu. (accessed on 20 December 2022) |
FFH | Habitat Direktive, Special Areas of Conservation (SAC) |
FKZ | Research index of the UBA |
GIS | Geographical Information System |
LRT | Habitat type in Special Areas of Conservation (SAC) |
N | Nitrogen and its compounds (NHy, NOx) |
NFC | National Focal Center, National partner and coordinating bodies for the ICP Modelling & Mapping |
PINETI | Pollutant Input and Ecosystem Impact, UBA-FKZ |
S | Sulphur and its compounds (SOx) |
SAC | Special Areas of Conservation |
SMB | Simple Mass Balance |
SPA | Special Protection Areas |
UBA | German Federal Environmental Agency |
UNECE | United Nations Economic Commission for Europe |
References
- UNECE. UN Convention on Long Range Transboundary Air Pollution. Genf. 1979. Available online: http://www.unece.org/env/lrtap/status/lrtap_s.html (accessed on 19 December 2022).
- UNECE. 1999 Protocol to Abate Acidification, Eutrophication and Ground-Level Ozone to the Convention on Long-Range Transboundary Air Pollution, as Amended on 4 May 2012 and Annex II and II Updated as of 1 April 2017. 2017. Available online: http://www.unece.org/fileadmin/DAM/env/documents/2017/AIR/Gothenburg_Protocol/Annex_II_and_III_updated_clean.pdf (accessed on 19 December 2022).
- Commission of the European Communities (EC). Communication from the Commission to the European Parliament, the Council, The Economic and Social Committee and the Committee of the Regions—A Clean Air Programme for Europe. 2013. Available online: https://data.consilium.europa.eu/doc/document/ST-18155-2013-INIT/en/pdf (accessed on 19 December 2022).
- Commission of the European Communities (EC). “Clean Air for Europe” Program (CAFE). Available online: https://ec.europa.eu/environment/archives/cafe/general/keydocs.htm (accessed on 19 December 2022).
- European Union (EU). Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the Reduction of National Emissions of Certain Atmospheric Pollutants, Amending Directive 2003/35/EC and Repealing Directive 2001/81/EC. 2016. Available online: https://faolex.fao.org/docs/pdf/eur161484.pdf (accessed on 19 December 2022).
- WGE. Working Group on Effects. Available online: https://unece.org/environment-policy/air/working-group-effects (accessed on 19 December 2022).
- ICP Modelling & Mapping (ICP M&M). International Cooperative Programme on Modelling and Mapping of Critical Levels and Loads and Air Pollution Effects, Risks and Trends. Available online: https://unece.org/modelling-and-mapping (accessed on 19 December 2022).
- CCE. Coordination Centre for Effects, Data Centre for the Modelling and Mapping of Critical Levels and Loads and Air Pollution Effects, Risks and Trends. Available online: https://www.eea.europa.eu/data-and-maps/indicators/exposure-of-ecosystems-to-acidification-2/coordination-centre-for-effects-data (accessed on 19 December 2022).
- ICP Modelling & Mapping (ICP M&M). Call for Data 2015–2017-Letter to National Focal Centres. 2015. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/4038/dokumente/letter_call4data_2015.pdf (accessed on 19 December 2022).
- UBA—German Federal Environment Agency. Manual on Methodologies and Criteria for Modeling and Mapping Critical Loads & Levels; UBA-Texte 52/04; Self-Publishing: Dessau-Roßlau, Germany, 2004; 212p. [Google Scholar]
- CLRTAP. Mapping Critical Loads for Ecosystems, Chapter V of Manual on Methodologies and Criteria for Modelling and Maping Critical Loads and Levels and Air Pollution Effects, Risks and Trends. UNECE Convention on Long-Range Transboundary Air Pollution. (Last Update 13 January 2017) 2017. Available online: www.icpmapping.org (accessed on 19 December 2022).
- Bobbink, R.; Loran, C.; Tomassen, H. Review and Revision of Empirical Critical Loads of Nitrogen for Europe. Publisher: German Environment Agency. Dessau-Roßlau, Germany 2022, in preparation. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/4038/dokumente/review_and_revision_of_empirical_critical_loads_final_draft.pdf (accessed on 19 December 2022).
- Schlutow, A.; Balla, S.; Uhl, R.; Förster, M.; Becker, C. Beurteilungsmaßstäbe für Stickstoffeinträge (Critical Loads und Critical Levels). Kap. 8. In Untersuchung und Bewertung von straßenverkehrsbedingten Nährstoffeinträgen in empfindliche Biotope; BMVBS—Bundesministerium Für Verkehr, Bauwesen und Städtebau, Ed.; Endbericht zum FE-Vorhaben 84.0102/2009 im Auftrag der Bundesanstalt für Straßenwesen (Investigation and assessment of road traffic-induced nutrient inputs into sensitive biotopes. Final Report on FE Project 84.0102/2009 on Behalf of the Federal Highway Research Institute; K. = Forschung Straßenbau und Straßenverkehrstechnik; Heft 1099; BMVBS Abteilung Straßenbau: Bonn, Germany, 2013; 362p. [Google Scholar]
- Schlutow, A.; Bouwer, Y.; Nagel, H.-D. Bereitstellung der Critical Load Daten Für den Call for Data 2015-2017 des Coordination Centre for Effects im Rahmen der Berichtspflichten Deutsch-Lands für die Konvention über Weitreichende Grenzüberschreitende Luftverunreinigungen (CLRTAP). Im Auftrag des UBA, Abschlussbericht Projekt-Nr. UBA/43848. Provision of Critical Load Data for the Call for Data 2015-2017 of the Coordination Centre for Effects in the Context of Germany’s Reporting Obligations for the Convention on Long-Range Transboundary Air Pollution (CLRTAP). On behalf of UBA, Final Report Project No. UBA/43848. 2018. Available online: https://www.umweltbundesamt.de/publikationen/critical-load-daten-fuer-die-berichterstattung-2015 (accessed on 19 December 2022).
- UBA—Umweltbundesamt. Bodenbedeckungsdaten für Deutschland CORINE 2012, hochaufgelöste Version LBM-DE2012© BKG/Geobasis-DE Land Cover Data for Germany CORINE 2012, High-Resolution Version LBM-DE2012© BKG/Geobasis-DE. 2015. Available online: https://docplayer.org/182931824-Produktkatalog-open-data-bundesamt-fuer-kartographie-und-geodaesie.html (accessed on 19 December 2022).
- Sakalli, A. Globale Modellierung der Erlenverteilung und der Leguminosendichte zur Verwendung in Globalen N2-Fixierungsmodellen. Global Modelling of Alder Distribution and Legume Density for Use in Global N2 fixation models. Inaugural Dissertation, Justus-Liebig-Universität Gießen, Gießen, Germany, 2012; 156p. [Google Scholar]
- BGR (Bundesanstalt für Geologie und Rohstoffe) (Ed.) Nutzungsdifferenzierte Bodenübersichtskarte 1: 1 000 000 (BÜK1000N) für Deutschland (Wald, Grünland, Acker). Use-Differentiated Soil Overview Map 1: 1 000 000 (BÜK1000N) for Germany (Forest, Grassland, Arable Land). 2014. Available online: https://www.bgr.bund.de/DE/Themen/Boden/Informationsgrundlagen/Bodenkundliche_Karten_Datenbanken/BUEK1000/Nutz_BUEK/nutz_buek_node.html (accessed on 19 December 2022).
- De Vries, W.; Posch, M. Derivation of cation exchange constants for sand, loess, clay and peat soils on the basis of field measurements in the Netherlands. In Alterra-Rapport 701; Self-Publishing Alterra: Wageningen, The Netherlands, 2003; p. 49. [Google Scholar]
- Tüxen, R. Entwurf einer Definition der Pflanzengesellschaft (Lebensgemeinschaft) Draft definition of plant community (habitat community). In Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft (6/7); Self-Publishing: Stolzenau/Weser, Germany, 1957; p. 151. [Google Scholar]
- Dierschke, H. Pflanzensoziologie Plant Sociology; Ulmer: Stuttgart, Germany, 1994; p. 683. [Google Scholar]
- Anders, S.; Beck, W.; Bolte, A.; Hofmann, G.; Jenssen, M.; Krakau, U.-K.; Müller, J. Ökologie Und Vegetation der Wälder Nordostdeutschlands—Einfluss von Niederschlagsarmut und Erhöhtem Stickstoffeintrag auf Kiefern-, Eichen-, und Buchen-Wald-und Forstökosysteme des Nordostdeutschen Tieflandes. Ecology and Vegetation of the Forests of Northeast Germany—Influence of Low Precipitation and Increased Nitrogen Input on Pine, Oak, and Beech Forest and Forest Ecosystems of the Northeast German Lowlands; Publisher Dr. Kessel Oberwinter: Eberswalde, Germany, 2002; p. 283. [Google Scholar]
- Ellenberg, H. Vegetation Mitteleuropas Mit Den Alpen in Ökologischer, Dynamischer und Historischer Sicht, Vegetation of Central Europe with the Alps in Ecological, Dynamic and Historical Perspective, 5th ed.; Ulmer: Stuttgart, Germany, 1996; p. 1096. [Google Scholar]
- Härdtle, W. Vegetationskundliche Untersuchungen in Salzwiesen der Ostholsteinischen Ostseeküste. Mitteilungen der AG Geobotanik in Schlesw-Holst. und Hamburg, Kiel, Heft 48, 415 S. Vegetation Studies in Salt Marshes of the East Holstein Baltic Sea Coast; Mitteilungen der AG Geobotanik in Schlesw-Holst: Und Hamburg/Kiel, Germany, 1984; Volume 48, p. 415. [Google Scholar]
- Härdtle, W. Potentiell Natürliche Vegetation—Ein Beitrag zur Kartierungsmethode am Beispiel der Topographischen Karte 1623 Owschlag. Mitteilungen der AG Geobotanik in Schlesw-Holst. und Hamburg, Kiel, Heft 40, 73 S. Potentially Natural Vegetation—A Contribution to Mapping Methods Using the Example of Topographic Map 1623 Owschlag; Mitteilungen der AG Geobotanik in Schlesw-Holst: Und Hamburg/Kiel, Germany, 1989; Volume 40, p. 73. [Google Scholar]
- Härdtle, W. Vegetation und Standort der Laubwaldgesellschaften (Querco-Fagetea) im Nördlichen Schleswig-Holstein. Vegetation and Location of Deciduous Forest Communities (Querco-Fagetea) in Northern Schleswig-Holstein; Mitteilungen der AG Geobotanik in Schlesw-Holst: Und Hamburg/Kiel, Germany, 1995; Volume 48, p. 415. [Google Scholar]
- Härdtle, W. (Zur Systematik und Synökologie artenarmer Buchenwälder (Flatter-Gras-/Sauerklee-Buchenwälder) in Schleswig-Holstein. On the systematics and synecology of species-poor beech forests (Milio-/Oxalido-Fagetum) in Schleswig-Holstein. Tuexenia 1995, 15, 45–51. [Google Scholar]
- Härdtle, W.; Ewald, J.; Hölzel, N. Wälder des Tieflandes und der Mittelgebirge; Forests of the Lowlands and Low Mountain Ranges; Publisher Eugen Ulmer Stuttgart: Stuttgart, Germany, 2004; p. 250. [Google Scholar]
- Hofmann, G. Zur pflanzensoziologischen Gliederung der Kiefernforsten des nordostdeutschen Tieflandes On the phytosociological structure of the pine forests of the north-east German lowlands. In Feddes Repertorium (80: 4–6); Wiley-VCH: Weinheim, Germany, 1969; pp. 401–412. [Google Scholar]
- Hrivnák, R. Aquatic Plant Communities in the Catchment Area of the Ipeľ River in Slovakia and Hungary. Part I. Classes Lemnetea and Charetea fragilis. Thaiszia J. Bot. Košice 2002, 12, 25–50. Available online: http://www.upjs.sk/bz/thaiszia/index.html (accessed on 19 December 2022).
- Hundt, R. Die Bergwiesen des Harzes, Thüringer Waldes und Erzgebirges. In The Mountain Meadows of the Harz, Thuringian Forest and Ore Mountains; Gustav Fischer Publisher Jena, 284 S.); Gustav Fischer Publisher Jena: Jena, Germany, 1964; p. 284. [Google Scholar]
- Issler, E. Les associations végétales des Vosges méridionales et de la plaine rhénane avoisinante. Première partie: Les forêts. Bull. Soc. Hist. Nat. Colmar 1924, 17, 1–67. [Google Scholar]
- Issler, E. Les Associations Végétales de la Partie Supérieure de la Vallée da la Lane. Bull. Soc. Hist. Nat. Colmar 1926, 120. [Google Scholar]
- Issler, E. Vegetationskunde der Vogesen. In Vegetation Science of the Vosges. Pflanzensoziologie Band 5; Gustav Fischer Publisher: Jena, Germany, 1942; 161p. [Google Scholar]
- Klapp, E. Wiesen und Weiden. 2., Völlig neu Gestaltete Aufl., Meadows and Pastures, 2nd ed.; Publisher Paul Parey: Berlin und Hamburg, Germany, 1954; 519p. [Google Scholar]
- Klapp, E. Grünlandvegetation und Standort—Nach Beispielen aus West-, Mittel-und Süddeutschland. Grassland vegetation and location—According to examples from western, central and southern Germany; Publisher Paul Parey: Berlin/Hamburg, Germany, 1965; p. 384. [Google Scholar]
- Krieger, H. Die flechtenreichen Pflanzengesellschaften der Mark Brandenburg. In The Lichen-Rich Plant Communities of Mark Brandenburg Beih. Bot. Centrbl.; Gustav Fischer: Jena, Germany, 1937; Volume 57, pp. 1–76. [Google Scholar]
- Liebert, H.-P. Umwelteinfluss auf Wachstum und Entwicklung von Wasserpflanzen sowie deren Rolle bei der Reinhaltung unserer Gewässer. In Environmental Influence On the Growth and Development of Aquatic Plants and Their Role in Keeping Our Waters Clean Bibliografische Mitteilungen der Universität Jena 35; Gustav Fischer: Jena, Germany, 1988. [Google Scholar]
- Lohmeyer, W. Der Hainmieren-Schwarzerlenwald Stellario-Alnetum glutinosae (Kästner 1938). The grove alder forest Stellario-Alnetum glutinosae (Kästner 1938). Mitt. Flor.-Soz. Arbeitsgem. 1957, 6–7, 247–257. [Google Scholar]
- Mahn, E.-G. Vegetations-und standortskundliche Untersuchungen an Felsfluren, Trocken-und Halbrocken rasen Mitteldeutschlands. In Vegetation and Site Studies of Rocky Meadows, Dry and Semi-Arid Grasslands in Central Germany Diss; Uni Halle: Halle, Germany, 1959; 215p. [Google Scholar]
- Mahn, E.-G. Vegetationsaufbau und Standortsverhältnisse der kontinental beeinflussten Xerothermrasengesellschaften Mitteldeutschlands Vegetation structure and site conditions of the continental-influenced xerothermic grass communities of Central Germany. In Abhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig; Akademie-Publisher: Berlin, Germany, 1965; 138p. [Google Scholar]
- Matuszkiewicz, A. Zur Systematik der Fagion-Gesellschaften in Polen. On the systematics of the Fagion communities in Poland. Acta Soc. Bot. Pol. 1958, 4, 675–725. [Google Scholar]
- Matuszkiewicz, W. Zur Systematik der natürlichen Kiefernwälder des mittel-und osteuropäischen Flachlandes On the systematics of the natural pine forests of the Central and Eastern European lowlands. Mitt. Flor.-Soz. Arbeitsgem. 1962, 9, 145–186. [Google Scholar]
- Oberdorfer, E. Süddeutsche Vegetationsgesellschaften South German plant communities. Pflanzensoziologie 1957, 10, 564. [Google Scholar]
- Oberdorfer, E. Pflanzensoziologische Exkursionsflora für Deutschland und angrenzende Gebiete, 8. Auflage. In Sociology of Plants for Excursions in Germany and Adjacent Areas, 8th ed.; Ulmer Publisher: Stuttgart, Germany, 2001; p. 1051. [Google Scholar]
- Oberdorfer, E. (Ed.) (Süddeutsche Vegetationsgesellschaften. Teil I 4. Aufl. 1998, Teil II 3. Aufl. 1993, Teil III 3. Aufl. 1993, Teil IV 1992, Gustav-Fischer-Publisher, Jena Stuttgart New York, Teile I-IV in 5 Bänden.) South German Vegetation Communities. Part I 4th ed. 1998, Part II 3rd ed. 1993, Part III 3rd ed. 1993, Part IV 1992; Gustav-Fischer-Publisher: Jena/Stuttgart, Germany; New York, NY, USA, 1992; Volume 5, Parts I–IV. [Google Scholar]
- Passarge, H. Waldgesellschaften NW-Mecklenburgs. Forest communities of North-West Mecklenburg. Arch. Forstwes. 1960, 9, 499–541. [Google Scholar]
- Passarge, H. Vegetationsgesellschaften des nordostdeutschen Flachlandes I. Pflanzensoziologie 1964, 13, 324. [Google Scholar]
- Passarge, H.; Hofmann, G. Vegetationsgesellschaften des nordostdeutschen Flachlandes. II. Pflanzensoziologie 1968, 16, 298. [Google Scholar]
- Preising, E. Süddeutsche Borstgras-u. Zwergstrauchheiden (Nardo-Callunetea). South German bristly grass and dwarf shrub heaths (Nardo-Callunetea). Mitt. Flor.-Soz. Arbeitsgem. 1953, 4, 112–123. [Google Scholar]
- Preising, E.; Vahle, H.-C.; Brandes, H.; Hofmeister, H.; Tüxen, J.; Weber, H.E. Die Pflanzengesellschaften Niedersachsens—Bestandsentwicklung, Gefährdung und Schutzprobleme: Rasen-, Fels-und Geröllgesellschaften. The Plant Communities of Lower Saxony—Population Development, Endangerment and Conservation Problems: Grass, Rock and Boulder Communities Naturschutz und Landschaftspflege Niedersachsens, Heft 20/5 (1-146); Nds. Landesbetrieb für Wasserwirtschaft, Küsten-und Naturschutz: Hannover, Germany, 1997. [Google Scholar]
- Preising, E.; Vahle, H.-C.; Brandes, H.; Hofmeister, H.; Tüxen, J.; Weber, H.E. Die Pflanzengesellschaften Niedersachsens—Bestandsentwicklung, Gefährdung und Schutzprobleme: Salzpflanzengesellschaften der Meeresküsten und des Binnenlandes. The Plant Communities of Lower Saxony—Population Development, Endangerment and Conservation Problems: Salt Plant Communities of the Sea Coasts and Inland Areas. Naturschutz und Landschaftspflege Niedersachsens, Heft 20/7 (1-161); Nds. Landesbetrieb für Wasserwirtschaft, Küsten-und Naturschutz: Hannover, Germany, 1990. [Google Scholar]
- Preising, E.; Vahle, H.-C.; Brandes, H.; Hofmeister, H.; Tüxen, J.; Weber, H.E. Die Pflanzengesellschaften Niedersachsens—Bestandsentwicklung, Gefährdung und Schutzprobleme: Wasser-und Sumpfpflanzengesellschaften des Süßwassers. The Plant Communities of Lower Saxony—Population Development, Endangerment and Conservation Problems: Freshwater Aquatic and Marsh Plant Communities. Naturschutz und Landschaftspflege Niedersachsens, Heft 20/8 (1-161); Nds. Landesbetrieb für Wasserwirtschaft, Küsten-und Naturschutz: Hannover, Germany, 1990. [Google Scholar]
- Pottgiesser, T.; Sommerhäuser, M. Fließgewässertypologie Deutschlands: Die Gewässertypen und ihre Steckbriefe als Beitrag zur Umsetzung der EU-Wasserrahmenrichtlinie. Germany’s stream typology: The water body types and their profiles as a contribution to the implementation of the EU Water Framework Directive. In Handbook of Limnology, 19th Delivery; Steinberg, C., Calmano, W., Wilken, R.-D., Klapper, H., Eds.; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Von Rochow, M. Die Pflanzengesellschaften des Kaiserstuhls. In The Plant Communities of the Kaiserstuhl Pflanzensoziol. 8; G. Fischer: Jena, Germany, 1951; p. 140. [Google Scholar]
- Schmidt, P.A.; Hempel, W.; Denner, M.; Döring, N.; Gnüchtel, B.; Walter, B.; Wendel, D. Potentielle Natürliche Vegetation Sachsens mit Karte 1:200.000. Potential Natural Vegetation of Saxony with Map 1:200.000; Saxon State Office for Environment and Geology, Self-Publishing: Dresden, Germany, 2002; pp. 42–230. [Google Scholar]
- Schubert, R. Die Zwergstrauchreichen Azidiphilen Pflanzengesellschaften Mitteldeutschlands, The Dwarf-Shrub-Rich Acidophilous Plant Communities of Central Germany VEB Gustav; Fischer: Jena, Germany, 1960; 235p. [Google Scholar]
- Schubert, R. Lehrbuch der Ökologie Textbook of Ecology; Publisher Fischer: Jena, Germany, 1991; 657p. [Google Scholar]
- Schubert, R.; Kotz, W.; Hilbig, S. Bestimmungsbuch der Pflanzengesellschaften Mittel-und Nordostdeutschlands. In Identification Book of the Plant Communities of Central and North-Eastern Germany; Fischer: Jena, Germany, 1995; p. 403. [Google Scholar]
- Slobodda, S. Pflanzengesellschaften als Kriterium zur ökologischen Kennzeichnung des Standortsmosaiks Plant communities as a criterion for the ecological characterisation of the site mosaic. Arch. Nat. Und Landsch. 1982, 22, 79–101. [Google Scholar]
- Succow, M. Vorschlag einer systematischen Neugliederung der mineralbodenwasserbeeinflussten wachsenden Moorvegetation Mitteleuropas unter Ausklammerung des Gebirgsraumes Proposal of a systematic reclassification of the mineral soil water-influenced growing mire vegetation of Central Europe excluding the mountain area. Feddes Repert. 1974, 85, 57–113. [Google Scholar]
- Succow, M. Landschaftsökologische Moorkunde Landscape Ecology of Peatlands; Gustav-Fischer-Publisher: Jena, Germany, 1988; p. 126. [Google Scholar]
- Succow, M.; Joosten, H. Landscape Ecology of Peatlands, 2nd ed.; Schweizerbart’sche Publishers-Buchhandlung: Stuttgart, Germany, 2001; p. 622. [Google Scholar]
- Tüxen, R. Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung Today’s potential natural vegetation as the subject of vegetation mapping. Angew. Pflanzensoziol. 1956, 13, 5–42. [Google Scholar]
- Tüxen, R. Die Pflanzengesellschaften Nordwestdeutschlands The plant communities of Northwest Germany. Mitt. Flor.-Soz. Arbeitsgem. Niedersachs. 1937, 3, 1–170. [Google Scholar]
- Tüxen, R. Pflanzengesellschaften Oligotropher Heidetümpel Nordwestdeutschlands Plant Communities of Oligotrophic Heathland Ponds in Northwest Germany; Publishing by Geobotanisches Institut Rübel: Zürich, Switzerland, 1958; Volume 33, pp. 207–231. [Google Scholar]
- Tüxen, R.; Westhoff, V. Saginetea maritimae, eine Gesellschaftsgruppe im wechselhalinen Grenzbereich der europäischen Meeresküsten Saginetea maritimae, a social group in the alternate haline boundary region of the European seacoasts. Mitt. Flor.-Soz. Arbeitsgem. Niedersachs. 1963, 10, 116–129. [Google Scholar]
- Volk, O.H. Über einige Trockenrasengesellschaften des Würzburger Wellenkalkgebietes About some dry grassland communities of the Würzburg Wavy Limestone area. Beih. Bot. Cbl. 1937, 57, 577–598. [Google Scholar]
- Wolfram, C. Die Vegetation des Bottsandes The Vegetation of the Bottsand; Mitt. der AG Geobotanik in Schlesw-Holst: Und Hamburg/Kiel, Germany, 1996; p. 111. [Google Scholar]
- Hartmann, F.K.; Jahn, G. Waldgesellschaften des Mitteleuropäischen Gebirgsraumes Nördlich der Alpen Forest Communities of the Central European Mountain Region North of the Alps; Gustav Fischer: Jena, Germany, 1967; p. 636. [Google Scholar]
- Willner, W. Syntaxonomische Revision der südmitteleuropäischen Buchenwälder Syntaxonomic Revision of the South-Central European Beech Forests. Phytocoenologia 2002, 32, 337–453. [Google Scholar] [CrossRef]
- Willner, W.; Grabherr, G. (Eds.) Die Wälder und Gebüsche Österreichs The Forests and Shrublands of Austria; Elsevier, Spektrum Akademic Publisher: Heidelberg/München, Germany, 2007; Textband 302 S., Tabellenband 290 S. [Google Scholar]
- Horvat, L.; Glavac, V.; Ellenberg, H. Vegetation Südosteuropas Vegetation of Southeast Europe; Gustav Fischer: Jena, Germany; Stuttgart, Germany; New York, NY, USA, 1974; p. 768S. [Google Scholar]
- Michalko, J. Geobotanická Mapa CSSR, Vydavatel’stvo Slovenskej Akadémie Vied; Publishing House of the Slovak Academy of Sciences: Bratislava, Czechoslovakia, 1986; p. 263S. [Google Scholar]
- Neuhäusl, R. Geobotanická Mapa České Socialistické Republiky: Mapa Rekonstru-Ované Přirozené Vegetace; Academy Publishing House: Prague, Czechoslovakia, 1976; p. 263S. [Google Scholar]
- Neuhäusl, R.; Neuhäuslová-Novotná, Z. Syntaxonomische Revision der Azidophilen Eichen-und Eichenmischwälder im Westlichen Teil der Tschechoslowakei Syntaxonomic Revision of the Acidophilous Oak and Mixed Oak Forests in the Western Part of Czechoslovakia© ACADEMIA, Nakladatelství Československé Akademie věd 1967; Springer: Dordrecht, Netherlands, 1965; ISSN 0015-5551. [Google Scholar]
- Knollová, I.; Chytrý, M. Oak-hornbeam forests of the Czech Republic: Geographical and ecological approaches to vegetation classification. Preslia 2004, 76, 291–311. [Google Scholar]
- Rolecek, J. Vegetation types of dry-mesic oak forests in Slovakia. Preslia 2005, 77, 241–261. [Google Scholar]
- Jakucs, P. Die Phytozönologischen Verhältnisse der Flaumeichen—Buschwälder Südostmitteleuropas The Phytozoanological Conditions of Downy Oak—Scrub Forests of South-East Central Europe; Publisher of the Hungarian Academy of Sciences: Budapest, Hungary, 1961; 313p. [Google Scholar]
- Kevey, B.; Borhidi, A. The acidophilous forests of the Mecsek and their relationship with the Balkan-Pannonian acidophilious forests. Acta Bot. Hung. 2005, 47, 273–368. [Google Scholar] [CrossRef]
- Grabherr, G.; Mucina, L. Die Pflanzengesellschaften Österreichs, Teil II: Natürliche Waldfreie Vegetation The Plant Communities of Austria, Part II: Natural Forest-Free Vegetation; Gustav-Fischer-Publisher Jena: Stuttgart, Germany; New York, NY, USA, 1993; p. 524. [Google Scholar]
- Koch, W. Die Vegetationseinheiten der Linthebene unter Berücksichtigung der Verhältnisse in der Nordostschweiz. The vegetation units of the Linth Plain taking into account the conditions in north-eastern Switzerland. Jb. Naturwiss. Ges. St. Gallen 1926, 61, 144. [Google Scholar]
- Soó, R. Die Regionalen Fagion-Verbände und Gesellschaften Südosteuropas The Regional Fagion Associations and Societies of South-Eastern Europe; Publisher of the Hungarian Academy of Sciences: Budapest, Hungary, 1964; p. 104. [Google Scholar]
- European Soil Data Centre (ESDAC). JRC support to the European Joint Programme for soil (EJP SOIL); Panagos, P., Jones, A., Van Liedekerke, M., Orgiazzi, A., Lugato, E., Montanarella, L., Eds.; 2020EUR 30450ENDatasets, Technical Advice and Scientific Guidance. 2020. Available online: https://esdac.jrc.ec.europa.eu/public_path/u890/_Pubs/EUR30450.pdf (accessed on 19 December 2022).
- Eurosoil. Metadata: Soil Geographical Data Base of Europe v.3.2.8.0; Joint Research Centre: Ispra, Italy, 1999. [Google Scholar]
- ICP Forests. Level II-Programm, Part of the International Co-Operative Programme on the Assessment of Air Pollution Effects on Forests under the Convention on Long-Range Transboundary Air Pollution (CLRTAP). 2014. Available online: https://www.thuenen.de/en/fachinstitute/waldoekosysteme/projekte/waldoekologie/projekte-intensivmonitoring/level-ii (accessed on 19 December 2022).
- Glavac, V. Vegetationsökologie Vegetation Ecology; Fischer: Jena, Germany, 1996; p. 125. [Google Scholar]
- Zadeh, L.A. Fuzzy Sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1978, 1, 3–28. [Google Scholar] [CrossRef]
- Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. Available online: https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:31998L0083&rid=1%20 (accessed on 19 December 2022).
- GAFA. Handbuch Forstliche Analytik—Eine Loseblatt-Sammlung der Analysemethoden im Forstbereich. Gutachterausschuss Forstliche Analytik (Hrsg.). In Handbook of Forestry Analysis—A Loose-Leaf Collection of the Methods of Analysis in the Forestry Sector; Expert Committee on Forestry Analysis, Ed.; Chapter A3.2.1.5; Federal Ministry of Consumer Protection, Food and Agriculture: Bonn, Germany, 2005. [Google Scholar]
- Ellenberg, H. Zeigerwerte der Gefäßpflanzen Mitteleuropas Indicator values of the vascular plants of Central Europe, 3rd ed.; Scripta Botanica (Göttingen): Göttingen, Germany, 2001; p. 262. [Google Scholar]
- De Vries, W.; Kros, J.; Reinds, G.J.; Wamelink, W.; Mol, J.; Van Dobben, H.; Bobbink, R.; Emmett, B.; Smart, S.; Evans, C.; et al. Developments in deriving critical limits and modelling critical loads of nitrogen for terrestrial ecosystems in Europe. In Alterra Green World Research, Report 1382; Self-Publishing Alterra: Wageningen, The Netherlands, 2007; p. 206. [Google Scholar]
- Sverdrup, H.; Warfvinge, P. The effect of soil acidification on the growth of trees, grass and herbs as expressed by the (Ca+Mg+K)/Al ratio. Rep. Ecol. Environ. Eng. 1993, 2, 177. [Google Scholar]
- Schober, R. Ertragstafeln Wichtiger Baumarten bei Verschiedenen Durchforstungen Yield Tables of Important Tree Species in Different Thinnings. Sauerländer’s: Frankfurt, Germany, 1975; p. 137. [Google Scholar]
- Schlutow, A.; Schröder, W. Rule-based classification and mappingof ecosystem services with data on the integrityof forest ecosystems. Environ. Sci. Eur. 2021, 33, 50. [Google Scholar] [CrossRef]
- Köstler, J.N.; Brückner, E.; Bibelriether, H. Die Wurzeln der Waldbäume The Roots of the Forest Trees; Publisher Paul Parey: Hamburg/Berlin, Germany, 1968; p. 284. [Google Scholar]
- Scheffer, F.; Ulrich, B. Humus und Humusdüngung Humus and Humus Fertilization. Zweite, Völlig neu Bearbeitete Auflage Second, Completely Reworked Edition. Band I: Morphologie, Biologie, Chemie und Dynamik des Humus. Mit 45 Abbildungen und 39 Tabellen. 1960. VII, 266 Seiten Volume I: Morphology, Biology, Chemistry and Dynamics of Humus. With 45 Figures and 39 Tables. 1960. VII, 266p. Available online: https://www.amazon.com/Humusdungung-Morphologie-Biologie-Chemic-Dynamik/dp/B001714U8E (accessed on 19 December 2022).
- Jacobsen, C.; Rademacher, P.; Meesenburg, H.; Meiwes, K.J. Element-Gehalte in Baum-Kompartimenten: Literatur-Studie und Datensammlung Element contents in tree compartments: Literature study and data collection. In Niedersächsische Forstliche Versuchsanstalt, Report; Forschungszentrum Waldökosysteme der Universität Göttingen: Göttingen, Germany, 2002; p. 80. [Google Scholar]
- De Vries, W.A.; Hol, S.; Tjalma und, J.C.V. Amounts and turnover rates of elements in forest ecosystems: A literature study. In Winand Staring Center Report; Winand Staring Center Wageningen: Wageningen, The Netherlands, 1990. [Google Scholar]
- Bohner, A.; Eder, G.; Schink, M. Nährstoffkreislauf und Stoffflüsse in einem Grünland-Ökosystem. In 12. Gumpensteiner Lysimetertagung, Bericht HBLFA Raumberg-Gumpenstein; Lehr-und Forschungszentrum für Landwirtschaft Raumberg-Gumpenstein: Raumberg, Austria, 2007; pp. 91–99. [Google Scholar]
- Bolte, A. Biomasse-und Elementvorräte der Bodenvegetation auf Flächen des forstlichen Umweltmonitorings in Rheinland-Pfalz. Biomass and element stocks of ground vegetation on plots of forest environmental monitoring in Rhineland-Palatinate. In Reports of the Forest Ecosystems Research Centre, Series B; Forschungszentrum Waldökosysteme der Universität Göttingen: Göttingen, Germany, 2006; Volume 72, p. 29. [Google Scholar]
- Brenner, S.; Pfeffer, E.; Schumacher, W. Extensive Schafbeweidung von Magerrasen im Hinblick auf Nährstoffentzug und Futterselektion Extensive sheep grazing of rough grasslands with regard to nutrient removal and forage selection. Nat. Und Landsch. 2004, 4, 167–174. [Google Scholar]
- Briemle, G.; Eickhoff, D.; Wolf, R. Mindestpflege und Mindestnutzung Unterschiedlicher Grünlandtypen aus Landschaftsökologischer und Landeskultureller Sicht; Minimum care and minimum use of different grassland types from a landscape ecological and land cultural perspective; Supplement 60 to the Publications for Nature Conservation and Landscape Management in Baden-Württemberg; Landesanstalt für Umweltschutz Baden-Württemberg und Staatliche Lehr-und Versuchsanstalt für Viehhaltung und Grünlandwirtschaft (LVVG): Karlsruhe, Germany, 1991; p. 160. [Google Scholar]
- Brünner, F.; Schöllhorn, J. Management of Meadows and Pastures, 2nd ed.; Publisher Eugen Ulmer: Stuttgart, Germany, 1972; p. 166. [Google Scholar]
- Dierschke, H.; Briemle, G. Kulturgrasland. In Wiesen, Weiden und Verwandte Staudenfluren Cultivated Grassland. Meadows, Pastures and Related Herbaceous Vegetation; Ulmer Stuttgart: Stuttgart, Germany, 2008; p. 239. [Google Scholar]
- Elsäßer, M. Düngung von Wiesen und Weiden. In Merkblätter für die umweltgerechte Landbewirtschaftung Nr. 13, 4th ed.; Bildungs-und Wissenszentrum Für Viehhaltung, Grünlandwirtschaft, Wild und Fischerei, Aulendorf (Hrsg.) (2008): Merkblätter Für Die Umweltgerechte Landbewirtschaftung Fertilisation of Meadows and Pastures, 2008. In Education and Knowledge Centre for Livestock, Grassland Management, Game and Fisheries; Publisher LTZ Augustenberg: Karlsruhe, Germany, 2008. [Google Scholar]
- Keienburg, T.; Prüter, J. Feuer und Beweidung als Instrumente zur Erhaltung magerer Offenlandschaften in Nordwestdeutschland—Ökologische und sozioökonomische Grundlagen des Heidemanagements auf Sand-und Hochmoorstandorten Fire and Grazing as Instruments for the Conservation of Lean Open Landscapes in Northwest Germany—Ecological and Socio-economic Foundations of Heathland Management on Sand and High Moor Sites. In NNA-Berichte (17) Heft 2 Schneverdingen 221 S; Alfred Töpfer Akademie für Naturschutz Schneverdingen: Schneverdingen, Germany, 2004. [Google Scholar]
- Luthardt, V.; Brauner, O.; Hoffmann, C.; Haggenmüller, K. Lebensräume im Wandel. Jahresbericht der ökosystemaren Umweltbeobachtung (ÖUB) zum Offenland des Biosphärenreservates Flusslandschaft Elbe und des Biosphärenreservates Schorfheide-Chorin: Zeitreihenuntersuchungen des Mineralischen Graslandes und des Entwässerten, Landwirtschaftlich Genutzten und Aufgelassenen Moorgraslandes (zzgl. 3-Jährige Parameter der Naturnahen Moore im BR SC). Habitats in Transition. In Annual Report of the Ecosystem-Based Environmental Monitoring (ÖUB) on the Open Land of the Biosphere Reserve Flusslandschaft Elbe and the Biosphere Reserve Schorfheide-Chorin: Time Series Studies of the Mineral Grassland and the Drained, Agriculturally Used and Abandoned Moor Grassland (Plus 3-Year Parameters of the Semi-Natural Moors in the BR SC); University of Applied Sciences Eberswalde—Department of Landscape Use and Nature Conservation: Nordrhein-Westfalen, Germany, 2008. [Google Scholar]
- Petersen, A. Die Gräser als Kulturpflanzen und Unkräuter auf Wiese, Weide und Acker The Grasses as Cultivated Plants and Weeds on Meadow, Pasture and Field, 5th ed.; Akademie-Verlag: Berlin, Germany, 1981; 280p. [Google Scholar]
- Quade, J. Faustzahlen für Landwirtschaft und Gartenbau Practical figures for agriculture and horticulture, 12th ed.; Landwirtschafts-Verlag: Münster, Germany, 1993; p. 618. [Google Scholar]
- Ruhr-Stickstoff-Aktiengesellschaft (Hrsg). Faustzahlen für Landwirtschaft und Gartenbau. Practical Figures for Agriculture and Horticulture, 12th ed.; BLV-Verlag: Bochum, Germany, 1988; p. 587. [Google Scholar]
- Elias, D.; Hölzel, N.; Tischew, S. Goat Paddock Grazing Improves the Conservation Status of Shrub-Encroached Dry Grasslands; Floristisch-soziologische Arbeitsgemeinschaft e.V. Osnabrück, Germany. Tuexenia 2011, 38, 215–233. Available online: http://www.zobodat.at (accessed on 19 December 2022). [CrossRef]
- Trüby, P. Zum Schwermetallhaushalt von Waldbäumen On the heavy metal balance of forest trees. Freiburg/Breisgau. In Institut für Bodenkunde und Waldernährungslehre, Freiburger Bodenkundliche Abhandlungen 33; Institut für Bodenkunde und Waldernährungslehre der Albert-Ludwigs-Universität Freiburg: Freiburg, Germany, 1994. [Google Scholar]
- Stein-Bachinger, K.; Bachinger, J.; Schmitt, L. Nährstoffmanagement im Ökologischen Landbau Nutrient Management in Organic Farming; Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL): Darmstadt, Germany, 2004; 136p. [Google Scholar]
- Bösch, B. Neue Bonitierungs-und Zuwachshilfen New Bonitisation and Increment Aids. Schriftenreihe Freiburger Forstliche Forschung, Wissenstransfer in Praxis und Gesellschaft, FVA-Forschungstage, Band 18. 2001. Available online: https://www.waldwissen.net/technik/inventur/fva_schaetzhilfen/fva_schaetzhilfen.pdf (accessed on 19 December 2022).
- Meesenburg, H.; Meiwes, K.-J.; Fortmann, H.; Scheler, B.; Eichhorn, J. Nährstoffhaushalt von Buchenbeständen auf Muschelkalk, Basalt und Buntsandstein Nutrient balance of beech stands on shell limestone, basalt and red sandstone. Ergeb. Angew. Forsch. Zur Buche 2008, 1, 1–19. [Google Scholar]
- Schulte-Bisping, H.; Beese, F. N-Fluxes and N-turnover in a Mixed Beech-Pine Forest under Low N-Inputs. In Journal of Forest Research; Springer-Publisher: Berlin/Heidelberg, Germany, 2016; Available online: https://www.researchgate.net/publication/289706545_N-fluxes_and_N-turnover_in_a_mixed_beech-pine_forest_under_low_N-inputs (accessed on 19 December 2022).
- Bobbink, R.; Hettelingh, J.-P. (Eds.) Review and Revision of Empirical Critical Loads and Dose-Response Relationships. In Proceedings of the Expert Workshop Noordwijkerhout, Noordwijkerhout, The Netherlands, 23–25 June 2010; Coordination Centre for Effects RIVM: Hague, The Netherlands, 2011. Available online: https://www.researchgate.net/publication/288936123_Review_and_revision_of_empirical_critical_loads_and_dose-response_relationships_National_Institute_for_Public_Health_and_the_Environment_RIVM (accessed on 19 December 2022).
- Kaiser, E.-A.; Eiland, F.; Germon, J.C.; Gispert, M.A.; Heinemeyer, O.; Henault, C.; Lind, A.M.; Maag, M.; Saguer, E.; Van Cleemput, O.; et al. What predicts nitrous oxide emission and denitrification N-loss from European soils? Z. Für Pflanz. Und Bodenkd. 1996, 159, 541–547. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Gasche, R.; Willibald, G.; Papen, H. Exchange of N-Gases at the Höglwald Forest—A Summary. Plant Soil 2002, 240, 117–123. [Google Scholar] [CrossRef]
- Brumme, R.; Meesenburg, H.; Bredemeier, M.; Jacobsen, C.; Schönfelder, E.; Meiwes, K.-J.; Eichhorn, J. Changes in Soil Solution Chemistry, Seepage Losses, and Input-Output Budgets at Three Beech Forests in Response to Atmospheric Depositions. In Functioning and Management of European Beech Forest Ecosystems, Ecological Studies; Brumme, R., Khanna, P.K., Eds.; Springer: Dordrecht, The Netherlands, 2009; Volume 208, pp. 303–336. [Google Scholar]
- Schachtschabel, P.; Auerswald, K.; Brümmer, G.; Hartke, K.H.; Schwertmann, U. Scheffer/Schachtschabel Lehrbuch der Bodenkunde Textbook of Soil Science; Publisher Ferdinand Enke: Stuttgart, Germany, 1998; p. 494. [Google Scholar]
- Stanford, G.; Frere, M.H.; Schwaninger, D.H. Temperature coefficient of soil nitrogen mineralization. Soil Sci. 1973, 115, 321–323. [Google Scholar] [CrossRef]
- Stuhrmann, M. Verbleib eingetragenen Stickstoffs in Waldböden entlang eines klimatischen Transektes durch Europa Fate of nitrogen in forest soils along a climatic transect through Europe. In Bayreuther Forum Ökologie; Bayreuther Institut für Terrestrische Ökosystemforschung Bayreuth: Bayreuth, Germany, 2000; Volume 79, p. 154. [Google Scholar]
- Foster, N.W. Influences of seasonal temperature on nitrogen and sulfur mineralization/Immobilization in a marple-birch forest floor in central Ontario. Can. J. Soil Sci. 1989, 69, 501–514. [Google Scholar] [CrossRef]
- Hornung, M.; Sutton, M.A.; Wilson, R.B. (Eds.) Mapping and modelling of critical loads for nitrogen—A workshop report. In Report of a Workshop Held at Grange-Over-Sands, Cumbria, UK under the Auspices of the UN-ECE Convention on Long Range Transboundary Air Pollution, Working Group for Effects, 24–26 October 1994; NERC Institute of Terrestrial Ecology: Edinburgh, UK, 1995; 204p, Available online: https://nora.nerc.ac.uk/id/eprint/7283/ (accessed on 19 December 2022).
- Wellbrock, N.; Bolte, A.; Flessa, H. (Eds.) Dynamik und Räumliche Muster Forstlicher Standorte in Deutschland. Ergebnisse der Bodenzustandserhebung im Wald 2006 bis 2008 Dynamics and Spatial Patterns of Forest Sites in Germany. Results of the Soil Condition Survey in Forests 2006 to 2008. Thünen-Institut, Braunschweig, Thünen Report 43. 2016. Available online: https://literatur.thuenen.de/digbib_extern/dn057211.pdf (accessed on 19 December 2022).
- Gundersen, P.; Callesen, I.; De Vries, W. Nitrate leaching in forest ecosystems is controlled by forest floor C/N ratio. Environ. Pollut. 1998, 102, 403–407. [Google Scholar] [CrossRef]
- Schlutow, A.; Becker, R.; Hübener, P. KliStWa—Einfluss Regionalisierter Klimaprognosen und Stoffhaushaltssimu-Lationen (Dynamische Modellierung) auf den Stoffhaushalt Repräsentativer Standorts-und Waldbestandstypen im Freistaat Sachsen. Influence of Regionalised Climate Forecasts and Material Balance Simulations (Dynamic Modelling) on the Material Balance of Representative Site and Forest Stand Types in the Free State of Saxony. 2005. Available online: http://www.umwelt.sachsen.de/lfug/documents/Abschlussbericht_KliStWa_Teil_1.pdf (accessed on 19 December 2022).
- Klap, J.M.; De Vries, W.; Erisman, J.W.; Van Leeuwen, E.P. Relationships between forest condition and natural and anthropogenic stress factors on the European scale; pilot study. In DLO Winard Staring Centre for Integrated Land, Soil and Water Research, Report 150; DLO Winand Staring Centre for Integrated Land, Soil and Water Research: Wageningen, The Netherlands, 1997. [Google Scholar]
- Matzner, E. Der Stoffumsatz zweier Waldökosysteme im Solling. Berichte des Forschungszentrums Waldökosysteme/Waldsterben The turnover of matter of two forest ecosystems in the Solling. In Reports of the Research Centre Forest Ecosystems/Forest Dieback, Rh. A, 40; Research Centre Forest Ecosystems/Forest Dieback: Göttingen, Germany, 1988. [Google Scholar]
- Feger, K.H. Bedeutung von Ökosysteminternen Umsätzen und Nutzungseingriffen für den Stoffhaushalt von Waldlandschaften Significance of Ecosystem-Internal Turnover and Use Interventions for the Material Balance of Forest Landscapes. Freibg. Bodenkdl. Abh.; Institut für Bodenkunde und Waldernährungslehre der Albert-Ludwigs-Universität: Freiburg, Germany, 1993; p. 31. [Google Scholar]
- Rosén, K.; Gundersen, P.; Tegnhammar, L.; Johansson, M.; Frogner, T. Nitrogen enrichment in Nordic forest ecosystems—The concept of critical loads. Ambio 1992, 21, 364–368. [Google Scholar]
- Höhle, J.; Wellbrock, N. Background Paper–Immobilisation of Nitrogen: Literature Review and Analysis of German, French and Swiss Soil Data; Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2017; 20p. [Google Scholar]
- BGR (Bundesanstalt für Geologie und Rohstoffe). Landnutzungsdifferenzierte Mittlere Jährliche Sickerwasserrate aus dem Boden. Bereitstellung Digitaler Daten. Land Use-Differentiated Mean Annual Seepage Rate from Soil. Provision of Digital Data; Federal Institute for Geology and Raw Materials: Hanover, Germany, 2014; unpublished dataset. [Google Scholar]
- Eichhorn, J. Kennwerte zur Beurteilung eines möglichen Humusvorratsabbaus. In Bundesministerium Für Ernährung; Landwirtschaft und Forsten, Ed.; Kennwerte zur Charakterisierung des ökochemischen Bodenzustandes und des Gefährdungspotentials durch Bodenversauerung und Stickstoffsättigung an Level II-Waldökosystem-Dauerbeobachtungsflächen; Bundesministerium für Ernährung; Landwirtschaft und Forsten: Bonn, Germany, 2000; pp. 81–93. [Google Scholar]
- Hornung, M.; Roda, F.; Langan, S.J. (Eds.) A review of small catchment studies in Western Europe producing hydrochemical budgets. In Air Pollution Research Report 28; Commission of the European Communities: Brussels, Belgium, 1990; ISBN 2-87263-040-6. [Google Scholar]
- Dise, N.B.; Wright, R.F. Nitrogen leaching from European forests in relation to nitrogen deposition. For. Ecol. Manag. 1995, 71, 153–161. [Google Scholar] [CrossRef]
- Schaap, M.; Wichink Kruit, R.; Hendriks, C.; Kranenburg, R.; Segers, A.; Builtjes, P.; Banzhaf, S. Modelling and Assessment of Acidifying and Eutrophying Atmospheric Deposition to Terrestrial Ecosystems (PINETI2). Part I: Atmospheric Deposition to German Natural and Semi-Natural Ecosystems during 2009, 2010 and 2011, UBA-Texte 62/2017. 2017. Available online: https://www.umweltbundesamt.de/publikationen/modelling-assessment-of-acidifying-eutrophying (accessed on 19 December 2022).
- Sverdrup, H. The Kinetics Base of Cation Release Due to Chemical Weathering; Lund University Press: Lund, Sweden, 1990. [Google Scholar]
- De Vries, W.; Posch, M.; Reinds, G.J.; Kämäri, J. Critical Loads and their Exceedance on Forest Soils in Europe. The Winand Staring Centre for Integrated Land, Soil and Water Research, Wageningen, The Netherlands. 1993. Available online: https://www.dwd.de/DE/leistungen/klimadatendeutschland/mittelwerte/nieder_8110_fest_html.html?view=nasPublication&nn=16102 (accessed on 19 December 2022).
- Deutscher Wetterdienst (DWD). Mittlere Tagesmitteltemperatur und Jahresniederschlagssummen der Referenzperiode 1981–2010 für Sommer und Winter. Rasterdatei. Mean Daily Temperature and Annual Precipitation Totals of the Reference Period 1981–2010 for Summer and Winter. Raster File. 2012. Available online: https://www.dwd.de/DE/leistungen/klimadatendeutschland/vielj_mittelwerte.html (accessed on 19 December 2022).
- Becker, R. (Simulation des Stoffhaushaltes für 10 Level II-und 498 BZE-Standorte in Nordrhein-Westfalen mittels eines dynamischen Modells im Hinblick auf den Einfluß der Luftschadstoffbelastung und der Waldbewirtschaftung. Abschlussbericht zum Werkvertrag, bearbeitet durch ÖKO-DATA im Auftrag der Landesanstalt für Ökologie) Bodenordnung und Forsten Nordrhein-Westfalen. Simulation of the Material Balance for 10 Level II and 498 BZE Sites in North Rhine-Westphalia by Means of a Dynamic Model with Regard to the Influence of Air Pollution and Forest Management. Final Report on the Work Contract, Processed by ÖKO-DATA on Behalf of the North Rhine-Westphalia State Institute for Ecology, Land Management and Forestry; North Rhine-Westphalia State Institute for Ecology, Land Management and Forestry: Recklinghausen, Germany, 2003; unpublished. [Google Scholar]
- LAI/LANA (Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz, Bund/Länder-Arbeitsgemeinschaft Naturschutz, Landschaftspflege und Erholung) 2019: Hinweise zur Prüfung von Stickstoffeinträgen in der FFH-Verträglichkeitsprüfung für Vorhaben nach dem Bundes-Immissionsschutzgesetz—Stickstoffleitfaden BImSchG-Anlagen—20 S. Federal and Länder Working Group on Immission Control, Federal and Länder Working Group on Nature Conservation, Landscape Management and Recreation: Notes on the assessment of nitrogen inputs in the Habitats Directive impact assessment for projects under the Federal Immission Control Act—Nitrogen Guidance. Available online: https://www.umweltministerkonferenz.de/umlbeschluesse/umlaufBericht2019_12.pdf (accessed on 19 December 2022).
- TA Luft. (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit): Neufassung der Ersten Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft—TA Luft) vom 28.5.2021. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety): Revision of the First General Administrative Regulation on the Federal Immission Control Act (Technical Instructions on Air Quality Control). 2021. Available online: http://www.verwaltungsvorschriften-im-internet.de/bsvwvbund_18082021_IGI25025005.htm (accessed on 19 December 2022).
- FGSV (Forschungsgesellschaft für Straßen und Verkehr). Hinweise zur Prüfung von Stickstoffeinträgen in der FFH-Verträglichkeitsprüfung für Straßen (H PSE)—Stickstoffleitfaden Straße. Ausgabe 2019. FGSV-Verlag Köln. 75 S. Research Society for Roads and Transport) (2019): Guidance on the Assessment of Nitrogen Inputs in the FFH Impact Assessment for Roads (H PSE)—Nitrogen Guidance Road; FGSV (Forschungsgesellschaft für Straßen und Verkehr): Köln, Germany, 2019; 75p. [Google Scholar]
- EMEP—Co-Operative Programme for Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in Europe—Status Report 1/2022. Available online: https://emep.int/publ/reports/2022/EMEP_Status_Report_1_2022.pdf (accessed on 19 December 2022).
- CCE—Coordination Centre for Effects (1991–2017): CCE Status Reports. Available online: https://www.umweltbundesamt.de/en/cce-status-reports?parent=68093 (accessed on 19 December 2022).
- SRU (Sachverständigenrat für Umweltfragen). Stickstoff: Lösungsstrategien für ein Drängendes Umweltproblem, Berlin. German Advisory Council on the Environment: Nitrogen: Solution Strategies for A Pressing Environmental Problem. 2015. Available online: https://www.umweltrat.de/SharedDocs/Downloads/DE/02_Sondergutachten/2012_2016/2015_01_SG_Stickstoff_HD.html (accessed on 19 December 2022).
- Schaap, M. PINETI 4. 2023, in preparation. Available online: https://www.umweltbundesamt.de/daten/flaeche-boden-land-oekosysteme/land-oekosysteme/ueberschreitung-der-belastungsgrenzen-fuer-0#situation-in-deutschland (accessed on 19 December 2022).
- The Federal Government of Germany. Germany’s Sustainable Development Strategy. 2021. Available online: https://www.bundesregierung.de/breg-en/issues/sustainability/germany-s-sustainable-development-strategy-354566 (accessed on 19 December 2022).
- Schlutow, A. Ermittlung der Standortspezifischen und Standorttypischen Critical Loads für Eutrophierende und Versauernde Luftschadstoffeinträge für die Empfindlichen Biotope in Nordrhein-Westfalen. Rasterdatensatz und Methodendokumentation. Im Auftrag des Landesamtes für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen. Veröffentlichung in Vorbereitung. Determination of Site-Specific and Site-Typical Critical Loads for Eutrophying and Acidifying Air Pollutant Inputs for the Sensitive Biotopes in North Rhine-Westphalia. Grid Data Set and Method Documentation; North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection: Recklingshausen, Germany, 2023. [Google Scholar]
- Streuber, O. Luftschadstoffkontingentierung für das Industrieareal, Newpark“ in Datteln (Aktualisierung), Oktober 2021. Air Pollution Contingent for the Industrial Area “newpark” in Datteln (update), Dortmund, October 2021. 2021. Available online: https://www.buergerbeteiligung-datteln.de/Bauleitplanverfahren/newPark_/Anlagen_Gutachten/49_Luftschadstoffuntersuchung_Kontingentierung_2021.pdf (accessed on 19 December 2022).
- UNEP/EA.5/Res.2: United Nations Environment Assembly of the United Nations Environment Programme, Fifth Session, Nairobi (hybrid), 22 and 23 February 2021 and 28 February–2 March 2022. Resolution adopted by the United Nations Environment Assembly on 2 March 2022. 2022. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/39816/SUSTAINABLE%20NITROGEN%20MANAGEMENT.%20English.pdf?sequence=1&isAllowed=y (accessed on 19 December 2022).
- Schlutow, A.; Dirnböck, T.; Pecka, T.; Scheuschner, T. Use of an empirical model approach for modelling trends of ecological sustainability (Chapter 14). In Critical Loads and Dynamic Risk Assessments: Nitrogen, Acidity and Metals in Terrestrial and Aquatic Ecosystems; De Vries, W., Hettelingh, J.-P., Posch, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; p. 662. [Google Scholar]
- Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (2007): Nationale Strategie zur biologischen Vielfalt. Kabinettsbeschluss vom 7. November 2007. Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (2007): National Strategy on Biological Diversity. Cabinet Decision of 7 November 2007. Available online: https://www.bmuv.de/fileadmin/Daten_BMU/Pools/Broschueren/nationale_strategie_biologische_vielfalt_2015_bf.pdf (accessed on 19 December 2022).
- Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit: Neuauflage der Nationalen Strategie zur Biologischen Vielfalt. Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety: New Edition of the National Strategy on Biological Diversity. 2020. Available online: https://www.bfn.de/neuauflage-der-nationalen-strategie-zur-biologischen-vielfalt (accessed on 19 December 2022).
CORINE-Code | Description | Area in Germany [ha] | Area in Germany [%] | Proportion of Total Receptors [%] |
---|---|---|---|---|
311 | Deciduous forests | 3,601,128 | 10.05 | 32.05 |
312 | Coniferous forests | 55,84,084 | 15.59 | 49.69 |
313 | Mixed forests | 1,585,015 | 4.43 | 14.11 |
321 | Natural grassland | 187,810 | 0.52 | 1.67 |
322 | Heaths and moor heaths | 96,628 | 0.27 | 0.86 |
411 | Bogs | 69,595 | 0.19 | 0.62 |
412 | Peat bogs | 87,381 | 0.24 | 0.78 |
421 | Salt marshes | 25,432 | 0.07 | 0.23 |
Sum of the receptor areas | 11,237,072 | 31.38 | 100 |
Sand | Silt | Clay | Peat | |
---|---|---|---|---|
kHBc | 3.296 | 3.193 | 3.616 | 2.809 |
kAlBc | 0.503 | 0.292 | −0.595 | −0.497 |
Vegetation Type | Bc/Alcrit | Bc/Hcrit |
---|---|---|
Semi-natural open land vegetation | 0.8 | 0.24 |
Scots pine, black pine, mountain pine | 1.2 | 1.2 |
Spruce | 1.2 | 1.2 |
European larch | 2 | 2 |
European beech | 0.6 | 0.18 |
English oak, sessile oak, downy oak | 0.6 | 0.18 |
Alder, ash | 2 | 1.05 |
Small-leaved lime, large-leaved lime | 1.4 | 0.42 |
Hornbeam | 6 | 1.8 |
Birch, all species | 1 | 0.18 |
Willow, all species | 0.8 | 0.24 |
Aspen, poplar | 0.6 | 0.18 |
Fir | 5 | 1.5 |
Mountain ash, service tree | 1.4 | 1.4 |
Downy birch, Carpathian birch | 1 | 1.5 |
Other deciduous trees | 0.8 | 0.24 |
Tree Species | Average Annual Growth Rates after 100 Years (DGZ 100) | |
---|---|---|
Net Primary Productivity of Yield Class I | Net Primary Productivity of the Worst Yield Class | |
Emax(Phyto) | Emin(Phyto) | |
[t dry mass ha−1 a−1] | [t dry mass ha−1 a−1] | |
Scots pine | 3.5 | 1.4 |
Spruce | 4.9 | 3.2 |
Mountain and Black pine | 0.7 | 0.7 |
Silver fir | 3.5 | 3 |
European larch | 2.5 | 2 |
Beech | 4.9 | 2.4 |
Oak, all species | 4 | 1.4 |
Alder | 4.3 | 2.5 |
Birch, all species | 2.8 | 2.1 |
Willows, all species | 2.3 | 1.6 |
Elm, all species | 4.8 | 3 |
Ash | 3.7 | 2.5 |
Mountain ash | 2.1 | 1.6 |
Lime tree, all species | 5.2 | 3 |
Maple, all species | 3.5 | 2.5 |
Aspen | 4.5 | 1.1 |
Hornbeam | 5.6 | 2.5 |
Vegetation Type | Average Annual Growth Rates [t Dry Mass ha−1 a−1] | |
---|---|---|
Emin(Phyto) | Emax(Phyto) | |
Grassland | 0.65 | 1.5 |
Heathland | 0.7 | 1.5 |
Dry calcareous grassland | 0.8 | 1.4 |
Wet and marshy meadows | 0.11 | 1.7 |
Flood meadows and floodplain meadows | 0.1 | 2.5 |
Fresh meadows/fresh pastures | 0.8 | 1.6 |
Subtotal Factor | Criterion |
---|---|
Soil water balance | Usable field capacity |
Porosity with dead water (waterlogging tendency) | |
Risk of dehydration | |
Groundwater and backwater influence | |
Nutrient balance | Cation exchange capacity |
Usable field capacity | |
Humus level | |
Soil structure | Thoroughness |
Root penetration | |
Slope of solidification |
Soil Texture According to Pedological Mapping Instructions 5th Edition | Genesis | Porosity < 0.2 µm with Dead Water (pF > 4.2)/Formation of Stagnant Moisture | Risk of Dehydration | Groundwater or Backwater Influence | Usable Field Capacity (Pore Content 0.2–50 µm with Plant-Available Adhesive Water pF 4.2–1.8) | Cation Exchange Capacity | Thoroughness | Root Penetration (Pore Content > 50 µm with Air. pF < 1.8) | Slope of Solidification in the B-Horizon | Relative Yield Potential EP(geo-hoz) |
---|---|---|---|---|---|---|---|---|---|---|
Ss | D | 5 | 1 | 1 | 1 | 1 | 3 | 5 | 1 | 2.00 |
Al | 5 | 1 | 4 | 1 | 1 | 4 | 5 | 1 | 2.36 | |
K | 5 | 1 | 1 | 1 | 1 | 2 | 5 | 1 | 1.89 | |
V | 5 | 1 | 1 | 1 | 1 | 2 | 5 | 1 | 1.89 | |
Su2, Sl2, Sl3, St2 | D | 4 | 2 | 1 | 3 | 2 | 3 | 5 | 1 | 2.67 |
Al | 4 | 2 | 5 | 3 | 2 | 4 | 5 | 1 | 3.11 | |
K | 4 | 2 | 4 | 3 | 2 | 3 | 5 | 1 | 2.92 | |
V | 4 | 2 | 3 | 3 | 2 | 2 | 5 | 1 | 2.72 | |
Su3, Su4 | D | 3 | 3 | 2 | 4 | 2 | 3 | 5 | 2 | 3.11 |
Lo | 3 | 3 | 2 | 4 | 2 | 5 | 5 | 2 | 3.33 | |
Al, K | 3 | 3 | 5 | 4 | 2 | 4 | 5 | 2 | 3.47 | |
V | 3 | 3 | 3 | 4 | 2 | 2 | 5 | 2 | 3.08 | |
Vg | 3 | 3 | 1 | 4 | 2 | 1 | 5 | 2 | 2.81 | |
Slu, Sl4, St3 | D | 3 | 4 | 2 | 5 | 3 | 3 | 4 | 3 | 3.61 |
Lo | 3 | 4 | 2 | 5 | 3 | 5 | 4 | 3 | 3.83 | |
Al, K | 3 | 4 | 5 | 5 | 3 | 5 | 4 | 3 | 4.08 | |
V | 3 | 4 | 3 | 5 | 3 | 2 | 4 | 3 | 3.58 | |
Vg | 3 | 4 | 1 | 5 | 3 | 1 | 4 | 3 | 3.31 | |
Ls2-4, Lt2, Lts, Ts4, Ts3 | D | 3 | 4 | 3 | 5 | 4 | 3 | 3 | 4 | 3.86 |
Lo | 3 | 4 | 2 | 5 | 4 | 5 | 3 | 4 | 4.00 | |
Al | 3 | 4 | 5 | 5 | 4 | 5 | 3 | 4 | 4.25 | |
K | 3 | 4 | 4 | 5 | 4 | 3 | 3 | 4 | 3.94 | |
V | 3 | 4 | 3 | 5 | 4 | 2 | 3 | 4 | 3.75 | |
Vg | 3 | 4 | 1 | 5 | 4 | 1 | 3 | 4 | 3.47 | |
Uu, Us, Ut2-4, Uls, Lu | D | 2 | 3 | 3 | 4 | 3 | 3 | 2 | 5 | 3.28 |
Al | 2 | 5 | 5 | 4 | 4 | 5 | 2 | 5 | 4.00 | |
Lo | 2 | 3 | 2 | 4 | 4 | 5 | 2 | 5 | 3.58 | |
K | 2 | 3 | 4 | 4 | 3 | 4 | 2 | 5 | 3.47 | |
V | 2 | 3 | 3 | 4 | 3 | 2 | 2 | 5 | 3.17 | |
Vg | 2 | 3 | 1 | 4 | 3 | 1 | 2 | 5 | 2.89 | |
Lt3, Tu2-4, Ts2, Tl, Tt | D | 1 | 1 | 2 | 3 | 5 | 3 | 1 | 5 | 2.92 |
Al | 1 | 1 | 5 | 3 | 5 | 4 | 1 | 5 | 3.28 | |
Lo | 1 | 1 | 2 | 3 | 5 | 5 | 2 | 5 | 3.25 | |
K | 1 | 1 | 4 | 3 | 5 | 1 | 1 | 5 | 2.86 | |
V | 1 | 1 | 3 | 3 | 5 | 2 | 1 | 5 | 2.89 | |
Vg | 1 | 1 | 2 | 3 | 5 | 1 | 1 | 5 | 2.69 | |
Hh | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.00 | |
Hn | 1 | 1 | 1 | 2 | 3 | 4 | 3 | 1 | 2.14 |
Soil Texture | Hydromorph | Anhydromorph in Climate/Altitude Zone | With | |||||||
---|---|---|---|---|---|---|---|---|---|---|
With Groundwater Influence | With Stagnic Water Influence | Ridge Zone, Higher Mountain Zone | Middle Mountain Zone | Lower Mountains and Hill Country | Lower Mountains and Hill Country | Lowland | Lower Mountains and Hill Country | Lowland | Erosions-Conditional Erosion | |
All Climate Zones | With Humid Cool Climate | With Moderately Dry Climate | With Dry Warm Climate | |||||||
Sand | 3 | 3 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 2 |
Slightly loamy sand | 4 | 3 | 4 | 4 | 4 | 3 | 4 | 3 | 3 | 4 |
Silty sand | 4 | 3 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 4 |
Strong loamy sand | 4 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 3 |
Clayey loam, sandy clay | 5 | 4 | 3 | 3 | 4 | 3 | 3 | 4 | 4 | 3 |
Silt, loess | 5 | 4 | 4 | 4 | 3 | 4 | 4 | 3 | 4 | 4 |
Clay | 5 | 5 | 4 | 4 | 3 | 5 | 5 | 3 | 5 | 5 |
Species | Ca | Mg | K | N | |
---|---|---|---|---|---|
eq t−1 DM | eq t−1 DM | eq t−1 DM | eq t−1 DM | kg t−1 DM | |
Pine | 53.89 | 19.8 | 16.6 | 77.82 | 1.09 |
Spruce | 70.36 | 14.8 | 19.7 | 87.10 | 1.22 |
Copper beech, hornbeam | 89.82 | 21.4 | 35.8 | 103.57 | 1.45 |
Oaks | 123.3 | 14.8 | 26.9 | 149.93 | 2.10 |
Alder | 84.83 | 24.7 | 33.3 | 99.95 | 1.40 |
Birch | 59.88 | 16.5 | 19.2 | 121.37 | 1.70 |
Mountain pine | 47.9 | 18.1 | 15.6 | 82.14 | 1.15 |
Willow | 149.7 | 19.8 | 25.6 | 99.95 | 1.40 |
Other deciduous tree species | 84.83 | 24.7 | 33.3 | 99.95 | 1.40 |
Vegetation Type of the Open Land | N | Bc (Ca + Mg + K) | |
---|---|---|---|
eq t−1 TS | kg t−1 TS | eq t−1 TS | |
Grassland | 884 | 12.4 | 450 |
Heathland | 506 | 7.1 | 332 |
Calcareous dry grasslands | 704 | 9.9 | 743 |
Wet and marshy meadows | 585 | 8.2 | 371 |
Flood meadows and floodplain meadows, salt meadows | 1615 | 22.6 | 1286 |
Fresh meadows/fresh pastures | 983 | 13.8 | 517 |
Bcu | Nu | |
---|---|---|
[eq (Ca + K + Mg) ha−1 a−1] | [kg N ha−1 a−1] | |
5th Perc. | 110 | 1.35 |
25th Perc. | 217 | 2.76 |
Median | 276 | 3.33 |
75th Perc. | 469 | 4.92 |
95th Perc. | 549 | 5.92 |
Avg. | 329 | 3.9 |
Soil Parameters | ƒde | |
---|---|---|
Gleyed sandy soils | 0.5 | |
Peaty soils | 0.8 | |
Podsole | - | 0.1 |
Drainage status | status excessive | 0 |
Drainage status | status good | 0.1 |
Drainage status | status moderate | 0.2 |
Drainage status | status imperfect | 0.4 |
Drainage status | status poor | 0.7 |
Drainage status | status very poor | 0.8 |
By clay content [%] | <10.5 bis <20.0 | 0.1 |
By clay content [%] | >20.0 bis <30.0 | 0.2 |
By clay content [%] | >30.0 bis <37.5 | 0.3 |
By clay content [%] | >37.5 bis <62.5 | 0.3 |
By clay content [%] | >62.5 bis >70.0 | 0.5 |
Nde | |
---|---|
[kg N ha−1 a−1] | |
5th Perc. | 0.08 |
25th Perc. | 0.38 |
Median | 1.08 |
75th Perc. | 2.94 |
95th Perc. | 10.92 |
Avg. | 2.57 |
Soil Type of Mineral Topsoil | Minimum C/N Ratio to Ensure Immobilization C/Nmin(geo) | Critical Maximum of C/N Ratio to Ensure Mineralization C/Nmax(geo) |
---|---|---|
Raised bog peat | 20 | 60 |
Rich moor peat | 15 | 40 |
Large-pored soil types (sand, clay) | 15 | 35 |
Fine-pored soil types (clay) | 10 | 25 |
Volcanic soils | 10 | 20 |
Lime soils | 10 | 20 |
Ni | |
---|---|
[kg N ha−1 a−1] | |
5th Perc. | 0.65 |
25th Perc. | 0.85 |
Median | 1.05 |
75th Perc. | 1.34 |
95th Perc. | 2.27 |
Avg. | 1.20 |
Nle(acc) | |
---|---|
[kg N ha−1 a−1] | |
5th Perc. | 0.12 |
25th Perc. | 0.54 |
Median | 1.68 |
75th Perc. | 3.26 |
95th Perc. | 10.45 |
Avg. | 3.06 |
BC*dep = Bcdep | |
---|---|
[eq ha−1 a−1] | |
5th Perc. | 90 |
25th Perc. | 109 |
Median | 124 |
75th Perc. | 142 |
95th Perc. | 186 |
Avg. | 129 |
Parent Material | Class |
---|---|
Moor peat | Organic |
(Fluviatile) sands and thick sandy cover layers | Acidic |
Sand sols | Acidic |
Acidic igneous rocks and metamorphic rocks | Acidic |
Sandstones | Acidic |
Sediments in the intertidal zone (mudflats) | Intermediate |
Sand solutes over terrace and gravel deposits | Intermediate |
Loess and loess derivatives | Intermediate |
Boulder clay and loam alternating with low-density sandy cover layers | Intermediate |
Loess over clay substrates | Intermediate |
Sand loess over loess and loess derivatives | Intermediate |
Clay substrates | Intermediate |
Loess over acidic magmatites and metamorphic rocks or sandstone | Intermediate |
Sandstones, silts | Intermediate |
Fersiallitic and ferrallitic palaeosols | Intermediate |
Anthrosol (anthropogenically modified areas) | Intermediate |
Alluvial sediments | Basic |
Terrace and gravel deposits | Basic |
Boulder clay and boulder marls | Basic |
Silicate substrates | Basic |
Loess and loess derivatives over basic magmatites and metamorphites | Basic |
Basic igneous rocks and metamorphic rocks | Basic |
Bimstuff | Basic |
Silicate substrates over carbonate substrates (lime and marl substrates) | Basic |
Alluvial sediments | Calcareous |
Loess and loess derivatives over carbonate substrates (lime and marl substrates) | Calcareous |
Carbonate substrates (lime and marl substrates) | Calcareous |
Carbonate substrates (lime and marl substrates) over clay substrates or loess | Calcareous |
Claystone | Calcareous |
Lime marsh | Calcareous |
Soil Type Clay | Clay Content [%] | Silt Content [%] | Sand Content [%] | Texture Class |
---|---|---|---|---|
Ss | 3 | 5 | 92 | 1 |
Sl2 | 7 | 16 | 77 | 1 |
Sl3 | 10 | 25 | 65 | 1 |
Sl4 | 15 | 25 | 60 | 2 |
Slu | 13 | 45 | 42 | 2 |
St2 | 11 | 5 | 84 | 1 |
St3 | 21 | 8 | 71 | 2 |
Su2 | 3 | 16 | 81 | 1 |
Su3 | 4 | 33 | 63 | 2 |
Su4 | 4 | 45 | 51 | 2 |
Ls2 | 21 | 45 | 34 | 2 |
Ls3 | 21 | 35 | 44 | 2 |
Ls4 | 21 | 23 | 56 | 2 |
Lt2 | 30 | 40 | 30 | 2 |
Lt3 | 40 | 40 | 20 | 4 |
Lts | 35 | 23 | 42 | 4 |
Lu | 24 | 58 | 18 | 3 |
Uu | 4 | 90 | 6 | 3 |
Uls | 13 | 58 | 29 | 3 |
Us | 4 | 65 | 31 | 2 |
Ut2 | 10 | 87 | 3 | 3 |
Ut3 | 14 | 75 | 11 | 3 |
Ut4 | 21 | 70 | 9 | 3 |
Tt | 75 | 15 | 10 | 5 |
Tl | 55 | 23 | 22 | 4 |
Tu2 | 52 | 42 | 6 | 4 |
Tu3 | 36 | 58 | 6 | 4 |
Tu4 | 28 | 69 | 3 | 3 |
Ts2 | 55 | 8 | 37 | 4 |
Ts3 | 40 | 8 | 52 | 4 |
Ts4 | 30 | 8 | 62 | 2 |
Weathering Rate Classes | Texture Class | ||||
---|---|---|---|---|---|
Parent Material | 1 | 2 | 3 | 4 | 5 |
Acidic | 1 | 3 | 3 | 6 | 6 |
Intermediate | 2 | 4 | 4 | 6 | 6 |
Basic | 2 | 5 | 5 | 6 | 6 |
Calcareous | 20 | ||||
Organic | W(class) = 6 for basic peats, otherwise Wc(class) = 1 |
BCw | |
---|---|
[eq (Ca + K + Mg + Na) ha−1 a−1] | |
5th Perc. | 295 |
25th Perc. | 870 |
Median | 1297 |
75th Perc. | 1916 |
95th Perc. | 4267 |
Avg. | 1579 |
CLnut(N) Class | Receptor Area Share |
---|---|
kg N ha−1 a−1 | % |
<5 | 20.16 |
5–<10 | 33.87 |
10–<15 | 22.68 |
>15 | 22.95 |
CLmax(S) Class | Receptor Area Share |
---|---|
eq ha−1 a−1 | % |
<500 | 4.36 |
501–1000 | 22.11 |
1001–1500 | 25.08 |
1501–2000 | 17.52 |
2001–5000 | 8.09 |
>5000 | 9.37 |
EUNISCode | SMB CLnut(N) min [14] | SMB CLnut(N) av. [14] | SMB CLnut(N) max [14] | CLemp 2022 [12] | Reliability 2022 * [12] |
---|---|---|---|---|---|
kg N ha−1 a−1 | |||||
MA2243 | 16 | 26 | 33 | 10–20 | (#) |
Q11111 | 4 | 8 | 22 | 5–10 | ## |
Q222 | 6 | 8 | 11 | 5–15 | ## |
Q412 | 10 | 15 | 32 | 15–25 | # |
Q4221 | 6 | 16 | 27 | 15–25 | # |
Q433 | 13 | 31 | 79 | 15–25 | # |
R1A3 | 10 | 33 | 69 | 10–20 | ## |
R1M2 | 2 | 15 | 26 | 6–10 | ## |
R1P | 1 | 9 | 19 | 5–15 | (#) |
R1Q | 11 | 12 | 14 | 5–15 | (#) |
R222 | 10 | 35 | 89 | 10–20 | (#) |
R231 | 9 | 16 | 53 | 10–15 | # |
R351 | 22 | 34 | 46 | 15–25 | (#) |
R372 | 7 | 9 | 15 | 10–20 | # |
R44311 | 7 | 27 | 56 | 5–10 | # |
S223 | 1 | 6 | 11 | 5–10 | # |
S422 | 7 | 8 | 13 | 5–15 | ## |
T171 | 6 | 18 | 63 | 10–15 | (#) |
T181 | 5 | 17 | 48 | 10–15 | (#) |
T1B1 | 6 | 13 | 18 | 10–15 | (#) |
T1E16 | 7 | 13 | 31 | 15–20 | (#) |
T312 | 3 | 12 | 48 | 10–15 | (#) |
T323 | 4 | 10 | 19 | 10–15 | (#) |
T35211 | 3 | 9 | 45 | 5–15 | # |
CL Class | CLmax(S)(Manual) | CLmax(S)(BERN) |
---|---|---|
eq S ha−1 a−1 | % of the Receptor Area | |
<500 | 7.93 | 4.36 |
500–1000 | 41.15 | 22.11 |
1000–1500 | 18.49 | 25.08 |
1500–2000 | 14.23 | 17.52 |
2000–3000 | 10.2 | 13.47 |
3000–>5000 | 7.99 | 17.46 |
CL class | CLnut(N)(Manual) | CLnut(N)(BERN) |
kg N ha−1 a−1 | % of the Receptor Area | |
<5 | 19.0 | 20.16 |
5.0–10.0 | 30.98 | 33.87 |
>10.0–15.0 | 18.51 | 22.68 |
>15.0 | 31.51 | 22.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlutow, A.; Scheuschner, T. Determination of Critical Loads for Eutrophying and Acidifying Air Pollutant Inputs for the Protection of Near-Natural Ecosystems in Germany. Atmosphere 2023, 14, 383. https://doi.org/10.3390/atmos14020383
Schlutow A, Scheuschner T. Determination of Critical Loads for Eutrophying and Acidifying Air Pollutant Inputs for the Protection of Near-Natural Ecosystems in Germany. Atmosphere. 2023; 14(2):383. https://doi.org/10.3390/atmos14020383
Chicago/Turabian StyleSchlutow, Angela, and Thomas Scheuschner. 2023. "Determination of Critical Loads for Eutrophying and Acidifying Air Pollutant Inputs for the Protection of Near-Natural Ecosystems in Germany" Atmosphere 14, no. 2: 383. https://doi.org/10.3390/atmos14020383
APA StyleSchlutow, A., & Scheuschner, T. (2023). Determination of Critical Loads for Eutrophying and Acidifying Air Pollutant Inputs for the Protection of Near-Natural Ecosystems in Germany. Atmosphere, 14(2), 383. https://doi.org/10.3390/atmos14020383