Comparison of Trace Element Deposition in Cupressus macrocarpa Leaves and Soils from a High-Pollution Area in the Puchuncaví Valley (Chile) Using a Biomonitoring Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sampling Area Description
2.3. Plant Material Description
2.4. Soil Description
2.5. Analytical Procedure and Determination of Elements by ICP-MS in Leaves and Soil
2.6. Enrichment Factors in Leaves
2.7. Enrichment Factors in Soil
2.8. Statistical Analysis
3. Results and Discussion
3.1. Element Concentrations
3.1.1. Element Concentrations in Cupressus macrocarpa Leaves
Elements | LG | LM | Pu | VA | CS | ANOVA (p-Value) |
---|---|---|---|---|---|---|
Al | 1188 ± 786 | 431 ± 127 | 386 ± 178 | 434 ± 76.03 | 355 ± 188 | 0.135 |
As | 6.92 ± 4.51 | 3.11 ± 0.94 | 2.46 ± 1.06 | 6.26 ± 3.41 | 2.39 ± 1.32 | 0.160 |
Ba | 44.13 ± 7.75 b | 20.34 ± 6.21 a | 23.16 ± 15.34 a | 52.00 ± 8.49 b | 20.39 ± 3.81 a | 0.004 |
Ca | 14,974 ± 454 a | 9299 ± 1759 a | 14,182 ± 5456 ab | 21,585 ± 3806 b | 9980 ± 2144 a | 0.006 |
Cd | 0.58 ± 0.13 d | 0.28 ± 0.04 bc | 0.22 ± 0.02 ab | 0.20 ± 0.05 a | 0.34 ± 0.09 c | 0.001 |
Ce | 1.31 ± 0.93 | 0.43 ± 0.14 | 0.43 ± 0.26 | 0.41 ± 0.08 | 0.34 ± 0.18 | 0.180 |
Co | 0.73 ± 0.42 | 0.34 ± 0.10 | 0.59 ± 0.50 | 0.66 ± 0.30 | 0.31 ± 0.15 | 0.338 |
Cr | 5.00 ± 2.80 | 3.64 ± 1.36 | 2.31 ± 1.67 | 3.86 ± 1.74 | 3.52 ± 1.57 | 0.573 |
Cu | 318 ± 218 c | 79.87 ± 28.56 ab | 105 ± 49.23 abc | 226 ± 92.41 bc | 56.08 ± 27.23 a | 0.026 |
Fe | 1654 ± 1163 | 628 ± 219 | 553 ± 310 | 805 ± 309 | 495 ± 277 | 0.229 |
Hg | BLQ | BLQ | BLQ | BLQ | BLQ | - |
K | 7592 ± 1083 b | 4595 ± 1012 a | 6540 ± 2258 ab | 7330 ± 876 b | 4636 ± 830 a | 0.047 |
La | 1.08 ± 0.72 | 0.32 ± 0.08 | 0.38 ± 0.20 | 0.41 ± 0.10 | 0.26 ± 0.14 | 0.112 |
Li | BLQ | BLQ | BLQ | BLQ | BLQ | - |
Mg | 3002 ± 382 | 2147 ± 394 | 2536 ± 413 | 2460 ± 573 | 2254 ± 313 | 0.200 |
Mn | 91.68 ± 33.07 | 70.04 ± 2.41 | 139 ± 122 | 110 ± 57.80 | 73.40 ± 40.07 | 0.879 |
Mo | 3.94 ± 2.71 | 1.84 ± 0.63 | 1.62 ± 0.71 | 3.13 ± 1.12 | 1.36 ± 0.69 | 0.166 |
Na | 2355 ± 1219 | 1103 ± 492 | 914 ± 210 | 841 ± 366 | 723 ± 195 | 0.087 |
Nd | 0.57 ± 0.39 | 0.18 ± 0.06 | 0.24 ± 0.16 | 0.19 ± 0.04 | 0.23 ± 0.13 | 0.183 |
Ni | 4.99 ± 1.26 | 4.14 ± 0.97 | 3.42 ± 1.47 | 4.03 ± 1.68 | 3.56 ± 1.65 | 0.695 |
Pb | 9.41 ± 6.07 | 3.85 ± 1.01 | 3.45 ± 1.99 | 12.14 ± 8.36 | 2.92 ± 1.61 | 0.181 |
S | 1788 ± 781 | 1123 ± 81.97 | 1622 ± 533 | 1934 ± 271 | 1012 ± 152 | 0.109 |
Sb | 1.04 ± 0.41 | 0.58 ± 0.16 | 0.51 ± 0.27 | 0.83 ± 0.28 | 0.46 ± 0.24 | 0.135 |
Sr | 166 ± 5.38 b | 131 ± 6.93 a | 190 ± 43.66 b | 310 ± 63.31 c | 160 ± 17.89 b | 0.000 |
Ti | 73.52 ± 46.41 | 30.45 ± 9.74 | 25.80 ± 14.16 | 24.90 ± 5.40 | 23.88 ± 12.85 | 0.195 |
V | 3.71 ± 2.68 | 1.36 ± 0.47 | 1.13 ± 0.61 | 1.12 ± 0.28 | 1.06 ± 0.62 | 0.201 |
Zn | 43.68 ± 17.21 | 19.78 ± 3.14 | 26.40 ± 13.91 | 58.24 ± 32.80 | 16.79 ± 7.08 | 0.064 |
3.1.2. Element Concentrations in Soil
Elements | LG | LM | Pu | VA | CS | ANOVA (p-Value) |
---|---|---|---|---|---|---|
Al | 6535 ± 542 c | 4338 ± 666 ab | 5340 ± 1045 b | 3996 ± 220 a | 4715 ± 654 ab | 0.001 |
As | 13.08 ± 0.89 c | 7.26 ± 3.88 bc | 3.38 ± 2.58 a | 2.44 ± 0.37 a | 4.18 ± 1.92 ab | 0.001 |
Ba | 42.15 ± 3.76 c | 29.69 ± 10.90 b | 19.48 ± 6.20 ab | 13.47 ± 0.49 a | 25.36 ± 8.96 b | 0.001 |
Ca | 1479 ± 216 | 2880 ± 1308 | 1735 ± 547 | 1512 ± 112 | 1730 ± 420 | 0.092 |
Cd | BLQ | BLQ | BLQ | BLQ | BLQ | - |
Co | 2.05 ± 0.06 | 1.68 ± 0.29 | 2.05 ± 0.53 | 1.53 ± 0.06 | 1.86 ± 0.15 | 0.077 |
Cr | 5.05 ± 0.24 b | 3.52 ± 0.65 a | 5.09 ± 1.46 b | 3.33 ± 0.12 a | 3.54 ± 0.35 a | 0.005 |
Cu | 1012 ± 189 c | 414 ± 260 b | 49.33 ± 35.76 a | 17.09 ± 5.11 a | 22.74 ± 4.41 a | 0.000 |
Fe | 8255 ± 404 | 7305 ± 1286 | 7580 ± 900 | 6872 ± 53.48 | 6609 ± 713 | 0.076 |
Hg | BLQ | BLQ | BLQ | BLQ | BLQ | - |
K | 881 ± 103 c | 1047 ± 294 c | 627 ± 169 b | 564 ± 36.23 ab | 377 ± 4.33 a | 0.000 |
Li | 2.97 ± 0.24 c | 1.96 ± 0.40 b | 1.65 ± 0.53 b | 1.50 ± 0.06 b | 1.19 ± 0.60 a | 0.000 |
Mg | 868 ± 68.81 b | 824 ± 152 b | 607 ± 245 a | 543 ± 19.53 a | 411 ± 96.72 a | 0.002 |
Mn | 123 ± 7.64 a | 137 ± 23.77 a | 139 ± 26.19 a | 120 ± 8.10 a | 261 ± 92.38 b | 0.002 |
Mo | 1.67 ± 0.86 | 1.76 ± 0.88 | BLQ | BLQ | BLQ | |
Na | 97.90 ± 2.34 b | 124 ± 71.62 b | 93.71 ± 37.57 ab | 60.58 ± 10.33 a | 61.30 ± 15.99 a | 0.025 |
Ni | 2.57 ± 0.12 b | 1.76 ± 0.38 a | 1.64 ± 0.28 a | BLQ | 1.38 ± 0.23 a | 0.004 |
Pb | 42.35 ± 6.28 c | 16.26 ± 9.65 b | 6.63 ± 4.83 a | 4.44 ± 0.47 a | 8.40 ± 5.61 ab | 0.000 |
S | 904 ± 522 | BLQ | BLQ | BLQ | BLQ | - |
Sb | BLQ | BLQ | BLQ | BLQ | BLQ | - |
Sr | 13.93 ± 1.73 | 19.19 ± 8.19 | 16.77 ± 5.65 | 12.26 ± 0.67 | 14.40 ± 3.17 | 0.352 |
Ti | 73.41 ± 18.53 b | 72.20 ± 24.54 b | 52.07 ± 13.88 ab | 37.54 ± 7.08 a | 52.58 ± 7.62 ab | 0.028 |
V | 14.98 ± 0.95 | 12.70 ± 2.21 | 13.48 ± 2.59 | 12.71 ± 0.50 | 14.23 ± 1.36 | 0.298 |
Zn | 84.83 ± 43.22 | BLQ | BLQ | BLQ | BLQ | - |
3.1.3. Comparison of Element Concentrations in Soil and Cupressus macrocarpa Leaves
3.2. Element Source by Principal Component Analysis (PCA)
3.3. Enrichment Factors (EFs) in Leaves and Soil
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardaway, C.; Sneddon, J.; Sneddon, E.; Boggavarapu, K.; Brent, J.L.; McCray, T.C.; Bowser, D.Q.; Douvris, C. Study of selected metal concentrations in sediments by inductively coupled plasma-optical emission spectrometry from a metropolitan and more pristine bayou in Southwest Louisiana, United States. Microchem. J. 2016, 127, 213–219. [Google Scholar] [CrossRef]
- Bussan, D.; Harris, A.; Douvris, C. Monitoring of selected trace elements in sediments of heavily industrialized areas in Calcasieu Parish, Louisiana, United States by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Microchem. J. 2019, 144, 51–55. [Google Scholar] [CrossRef]
- De Gregori, I.; Fuentes, E.; Rojas, M.; Pinochet, H.; Potin-Gautie, M. Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile. J. Environ. Monit. 2003, 5, 287–295. [Google Scholar] [CrossRef]
- Ginocchio, R. Effects of a copper smelter on a grassland community in the Puchuncaví Valley, Chile. Chemosphere 2000, 41, 15–23. [Google Scholar] [CrossRef]
- Parra, S.; Bravo, M.A.; Quiroz, W.; Moreno, T.; Karanasiou, A.; Font, O.; Vidal, V.; Cereceda, F. Distribution of trace elements in particle size fractions for contaminated soils by a copper smelting from different zones of the Puchuncaví Valley (Chile). Chemosphere 2014, 111, 513–521. [Google Scholar] [CrossRef]
- Parra, S.; Bravo, M.A.; Quiroz, W.; Moreno, T.; Karanasiou, A.; Font, O.; Vidal, V.; Cereceda-Balic, F. Source apportionment for contaminated soils using multivariate statistical methods. Chemometr. Intell. Lab. Syst. 2014, 138, 127–132. [Google Scholar] [CrossRef]
- Verdejo, J.; Ginocchio, R.; Sauvé, S.; Salgado, E.; Neaman, A. Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile. Ecotoxicol. Environ. Saf. 2015, 122, 171–177. [Google Scholar] [CrossRef]
- Salmani-Ghabeshi, S.; Palomo-Marín, M.R.; Bernalte, E.; Rueda-Holgado, F.; Miró-Rodríguez, C.; Cereceda-Balic, F.; Fadic, X.; Vidal, V.; Funes, M.; Pinilla-Gil, E. Spatial gradient of human health risk from exposure to trace elements and radioactive pollutants in soils at the Puchuncaví-Ventanas industrial complex, Chile. Environ. Pollut. 2016, 218, 322–330. [Google Scholar] [CrossRef]
- Tapia-Gatica, J.; González-Miranda, I.; Salgado, E.; Bravo, M.; Tessini, C.; Dovletyarova, E.; Paltseva, A.; Neaman, A. Advanced determination of the spatial gradient of human health risk and ecological risk from exposure to As, Cu, Pb, and Zn in soils near the Ventanas Industrial Complex (Puchuncaví, Chile). Environ. Pollut. 2020, 258, 113488. [Google Scholar] [CrossRef]
- Tapia-Gatica, J.; Selles, I.; Bravo, M.; Tessini, C.; Barros-Parada, W.; Novoselov, A.; Neaman, A. Global issues in setting legal limits on soil metal contamination: A case study of Chile. Chemosphere 2022, 290, 133404. [Google Scholar] [CrossRef]
- Salmanighabeshi, S.; Palomo-Marín, M.R.; Bernalte, E.; Rueda-Holgado, F.; Miró-Rodríguez, C.; Fadic-Ruiz, X.; Vidal-Cortez, V.; Cereceda-Balic, F.; Pinilla-Gil, E. Long-term assessment of ecological risk from deposition of elemental pollutants in the vicinity of the industrial area of Puchuncaví-Ventanas, central Chile. Sci. Total Environ. 2015, 527–528, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Salmani-Ghabeshi, S.; Fadic-Ruiz, X.; Miró-Rodríguez, C.; Pinilla-Gil, E.; Cereceda-Balic, F. Trace Element Levels in Native Plant Species around the Industrial Site of Puchuncaví-Ventanas (Central Chile): Evaluation of the Phytoremediation Potential. Appl. Sci. 2021, 11, 713. [Google Scholar] [CrossRef]
- Muñoz, A.A.; Klock-Barría, K.; Sheppard, P.; Aguilera-Betti, I.; Toledo, I.; Christie, D.; Gorena, T.; Gallardo, L.; Gonzalez-Reyes, A.; Lara, A.; et al. Multidecadal environmental pollution in a mega-industrial area in central Chile registered by tree rings. Sci. Total Environ. 2019, 696, 133915. [Google Scholar] [CrossRef]
- Gorena, T.; Fadic, X.; Cereceda-Balic, F. Cupressus macrocarpa leaves for biomonitoring the environmental impact of an industrial complex: The case of Puchuncaví-Ventanas in Chile. Chemosphere 2020, 260, 127521. [Google Scholar] [CrossRef]
- CODELCO (Corporación Nacional del Cobre de Chile), 2016 Annual Report. 2016. Available online: https://www.codelco.com/prontus_codelco/site/edic/base/port/memorias.html (accessed on 21 July 2022).
- Figueiredo, A.M.G.; Nogueira, C.A.; Saiki, M.; Milian, F.M.; Domingos, M. Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor. Environ. Pollut. 2007, 145, 279–292. [Google Scholar] [CrossRef]
- De La Cruz, A.R.H.; De La Cruz, J.K.H. Trace element biomonitoring in the Peruvian andes metropolitan region using Flavoparmelia caperata lichen. Chemosphere 2018, 210, 849–858. [Google Scholar] [CrossRef]
- Barbier, M. The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. J. Geol. Geophys. 2016, 5, 1000237. [Google Scholar] [CrossRef]
- Kaiser, H.F. The Varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Rodríguez, J.A.; De Arana, C.; Ramos-Miras, J.J.; Gil, C.; Boluda, R. Impact of 70 years urban growth associated with heavy metal pollution. Environ. Pollut. 2015, 196, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Rossini Oliva, S.; Mingorance, M.D. Assessment of airborne heavy metal pollution by aboveground plant parts. Chemosphere 2006, 65, 177–182. [Google Scholar] [CrossRef]
- Al-Alawi, M.; Mandiwana, K. The use of Aleppo pine needles as a bio-monitor of heavy metals in the atmosphere. J. Hazard. Mater. 2007, 148, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.-T.; Odsuren, U.; Kim, S.-Y.; Park, B.-J. Particulate Matter Accumulation and Leaf Traits of Ten Woody Species Growing with Different Air Pollution Conditions in Cheongju City, South Korea. Atmosphere 2022, 13, 1351. [Google Scholar] [CrossRef]
- Jiménez-Ballesta, R.; Bravo, S.; Amorós, J.A.; Pérez-de-los-reyes, C.; García-Pradas, J.; Sanchez, M.; García-Navarro, F.J. Soil and Leaf Mineral Element Contents in Mediterranean Vineyards: Bioaccumulation and Potential Soil Pollution. Water Air Soil Pollut. 2022, 233, 20. [Google Scholar] [CrossRef]
- Du, L.; Turner, J. Using PM2.5 lanthanoid elements and nonparametric wind regression to track petroleum refinery FCC emissions. Sci. Total Environ. 2015, 529, 65–71. [Google Scholar] [CrossRef]
- Kulkarni, P.; Chellam, S.; Flanagan, J.B.; Jayanty, R.K.M. Microwave digestion ICP-MS for elemental analysis in ambient airborne fine particulate matter: Rare earth elements and validation using a filter borne fine particle certified reference material. Anal. Chim. Acta. 2007, 599, 170–176. [Google Scholar] [CrossRef]
- Kulkarni, P.; Chellam, S.; Fraser, M.P. Lanthanum and lanthanides in atmospheric fine particles and their apportionment to refinery and petrochemical operations in Houston, TX. Atmos. Environ. 2006, 40, 508–520. [Google Scholar] [CrossRef]
- Owoade, O.K.; Fawole, O.G.; Olise, F.S.; Ogundele, L.T.; Olaniyi, H.B.; Almeida, M.S.; Ho, M.D.; Hopke, P.K. Characterization and source identification of airborne particulate loadings at receptor site-classes of Lagos Mega-City, Nigeria. J. Air Waste Manag. Assoc. 2013, 63, 1026–1035. [Google Scholar] [CrossRef]
- Rueda-Holgado, F.; Calvo-Blázquez, L.; Cereceda-Balic, F.; Pinilla-Gil, E. Temporal and spatial variation of trace elements in atmospheric deposition around the industrial area of Puchuncaví-Ventanas (Chile) and its influence on exceedances of lead and cadmium critical loads in soils. Chemosphere 2016, 144, 1788–1796. [Google Scholar] [CrossRef]
- Talan, D.; Huang, Q. A review study of rare Earth, Cobalt, Lithium, and Manganese in Coal-based sources and process development for their recovery. Miner. Eng. 2022, 189, 107897. [Google Scholar] [CrossRef]
- Schauer, J.J.; Lough, G.C.; Shafer, M.M.; Christensen, W.F.; Arndt, M.F.; De Minter, J.T.; Park, J.-S. Characterization of Metals Emitted from Motor Vehicles; Research Report, 133; Health Effects Institute: Boston, MA, USA, 2006. [Google Scholar]
- Dzierżanowski, K.; Popek, R.; Gawrońska, H.; Sæbø, A.; Gawroński, S.W. Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Waxes of Urban Forest Species. Int. J. Phytoremediation 2011, 13, 1037–1046. [Google Scholar] [CrossRef]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427–428, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Sgrigna, G.; Sæbø, A.; Gawronski, S.; Popek, R.; Calfapietra, C. Particulate Matter deposition on Quercus ilex leaves in an industrial city of central Italy. Environ. Pollut. 2015, 197, 187–194. [Google Scholar] [CrossRef] [PubMed]
EF Element | F1 | F2 | F3 | F4 |
---|---|---|---|---|
Na | 0.951 | 0.023 | 0.040 | 0.064 |
Mg | 0.683 | −0.080 | 0.361 | 0.581 |
Al | 0.930 | 0.276 | 0.205 | 0.096 |
S | 0.266 | 0.537 | 0.477 | 0.416 |
K | 0.425 | 0.111 | 0.627 | 0.625 |
Ca | 0.036 | 0.384 | 0.251 | 0.878 |
Ti | 0.944 | 0.202 | 0.243 | 0.016 |
V | 0.940 | 0.266 | 0.200 | 0.001 |
Cr | 0.569 | 0.553 | 0.504 | −0.061 |
Mn | 0.068 | 0.014 | 0.984 | 0.024 |
Fe | 0.825 | 0.499 | 0.234 | 0.107 |
Co | 0.299 | 0.329 | 0.869 | 0.155 |
Ni | 0.531 | 0.170 | 0.762 | 0.110 |
Cu | 0.475 | 0.746 | −0.130 | 0.082 |
Zn | 0.126 | 0.777 | 0.409 | 0.402 |
As | 0.391 | 0.853 | 0.160 | 0.237 |
Sr | −0.357 | 0.600 | 0.004 | 0.703 |
Mo | 0.491 | 0.787 | 0.144 | 0.252 |
Cd | 0.758 | −0.200 | −0.093 | 0.234 |
Sb | 0.598 | 0.533 | 0.354 | 0.342 |
Ba | 0.300 | 0.539 | −0.190 | 0.750 |
La | 0.882 | 0.314 | 0.230 | 0.175 |
Ce | 0.918 | 0.287 | 0.225 | 0.044 |
Pb | 0.105 | 0.921 | 0.175 | 0.255 |
% Cumulative variance | 37.76 | 62.13 | 79.23 | 93.20 |
EF Element | F1 | F2 | F3 |
---|---|---|---|
Li | 0.012 | 0.973 | −0.005 |
Na | 0.382 | 0.831 | −0.056 |
Mg | 0.634 | 0.705 | −0.045 |
Al | 0.745 | 0.063 | 0.429 |
K | 0.537 | 0.687 | −0.365 |
Ca | 0.086 | 0.984 | 0.043 |
Ti | 0.500 | 0.259 | −0.013 |
V | 0.042 | 0.340 | 0.631 |
Cr | 0.147 | −0.050 | 0.865 |
Mn | 0.106 | 0.739 | 0.487 |
Co | 0.331 | 0.243 | 0.768 |
Ni | 0.852 | 0.310 | 0.370 |
Cu | 0.965 | 0.091 | −0.019 |
As | 0.870 | 0.382 | 0.174 |
Sr | 0.135 | 0.922 | 0.314 |
Ba | 0.795 | 0.296 | 0.180 |
Pb | 0.951 | 0.185 | 0.162 |
% Cumulative variance | 40.03 | 66.79 | 82.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorena, T.; Sandoval, F.; Fadic, X.; Cereceda-Balic, F. Comparison of Trace Element Deposition in Cupressus macrocarpa Leaves and Soils from a High-Pollution Area in the Puchuncaví Valley (Chile) Using a Biomonitoring Method. Atmosphere 2023, 14, 893. https://doi.org/10.3390/atmos14050893
Gorena T, Sandoval F, Fadic X, Cereceda-Balic F. Comparison of Trace Element Deposition in Cupressus macrocarpa Leaves and Soils from a High-Pollution Area in the Puchuncaví Valley (Chile) Using a Biomonitoring Method. Atmosphere. 2023; 14(5):893. https://doi.org/10.3390/atmos14050893
Chicago/Turabian StyleGorena, Tamara, Franco Sandoval, Ximena Fadic, and Francisco Cereceda-Balic. 2023. "Comparison of Trace Element Deposition in Cupressus macrocarpa Leaves and Soils from a High-Pollution Area in the Puchuncaví Valley (Chile) Using a Biomonitoring Method" Atmosphere 14, no. 5: 893. https://doi.org/10.3390/atmos14050893
APA StyleGorena, T., Sandoval, F., Fadic, X., & Cereceda-Balic, F. (2023). Comparison of Trace Element Deposition in Cupressus macrocarpa Leaves and Soils from a High-Pollution Area in the Puchuncaví Valley (Chile) Using a Biomonitoring Method. Atmosphere, 14(5), 893. https://doi.org/10.3390/atmos14050893