Extremely Low Frequency (ELF) Electromagnetic Signals as a Possible Precursory Warning of Incoming Seismic Activity
Abstract
:1. Introduction
2. The Involvement of ELF Waves in Earth Sciences
3. Case Study in Greece
- An EQ must have a magnitude greater than M4.0;
- The seismic epicenter must be located within 250–300 km from the observation site;
- We must perform different studies for EQs that occur on land and at sea.
- EQ occurrences further than 250–300 km from the observation site, particularly those that occur in the sea, do not have detectable signals. Cases 10, 23, 33, 37, 42, 47, 51, 55, 57, 68, 73, and 75, as well as EQs with magnitudes less than M4.0, such as cases 7, 18, 25, 43, and 54, belong to this group.
- Typical quasi-seismic signals appear from a few days to almost three weeks before a main EQ occurrence that has a magnitude higher than M4.0 and a distance shorter than 250–300 km from the observational site.
- No “orphan” signals were detected without the occurrence of an EQ later. This case is discussed further in the following section.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, K.; Baker, D.M. Ionospheric effects observed around the time of the Alaska earthquake of 28 March 1964. J. Geophys. Res. 1965, 70, 2251–2253. [Google Scholar] [CrossRef]
- Leonard, R.S.; Barnes, R.A., Jr. Observation of ionospheric disturbances following the Alaska earthquake. JGR Lett. 1965, 70, 1250–1253. [Google Scholar] [CrossRef]
- Hayakawa, M.; Fujinawa, Y. (Eds.) Electromagnetic Phenomena Related to Earthquake Prediction; Terra Scientific Publishing Company: Syracuse, NY, USA, 1994. [Google Scholar]
- Hayakawa, M.; Molchanov, O. (Eds.) Seismo-Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling; Terra Scientific Publiching Company: Tokyo, Japan, 2002. [Google Scholar]
- Hayakawa, M.; Molchanov, O.A. Seismo-electromagnetics: As a new field of radiophysics: Electromagnetic phenomena associated with earthquakes. Radio Sci. Bull. 2007, 320, 8–17. [Google Scholar]
- Pullinets, A.S. Lithosphere-Atmosphere-Ionosphere Coupling Related to Earthquakes. In Proceedings of the 2nd URSI AT-OASC, Gran Canaria, Spain, 28 May–1 June 2018. [Google Scholar]
- Pulinets, S.; Ouzounov, D. Intergeospheres Interaction as a source of earthquake precursor’s generation. In Proceedings of the EMSEV 2018 International Workshop, Potenza, Italy, 17–21 September 2018. [Google Scholar]
- Zhao, B.; Qian, C.; Yu, H.; Liu, J.; Maimaitusun, N.; Yu, C.; Zhang, X.; Ma, Y. Preliminary Analysis of Ionospheric Anomalies before Strong Earthquakes in and around Mainland China. Atmosphere 2022, 13, 410. [Google Scholar] [CrossRef]
- Hayakawa, M.; Tomakazu, A.; Rozhnoi, A.; Solovieva, M. Very -low -to Low -Frequency Sounding of Ionospheric Perturbations and Possible Association with Earthquakes. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Geophysical Monograph 234; AGU: Washington, DC, USA, 2018; pp. 277–304. [Google Scholar]
- Pulinets, S.; Boyarsschuc, X.X. Ionospheric Precursors of Earthquakes; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3, p. 15. [Google Scholar]
- Hayakawa, M. Earthquake precursor studies in Japan. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Geophysical Monograph 234; AGU: Washington, DC, USA, 2018; pp. 7–18. [Google Scholar]
- Schvets, A.V.; Hayakawa, M.; Meakana, S. Results of sub-ionospheric radio LF monitoring prior to the Tokachi (M = 8, Hokkaido, 25 September 2003) earthquake. Nat. Hazards Earth System Sci. 2004, 4, 647–653. [Google Scholar] [CrossRef]
- Namgaladge, A.; Karpov, M.; Knyazeva, M. Seismogenic disturbances of the ionosphere during high geomagnetic activity. Atmosphere 2019, 10, 359. [Google Scholar] [CrossRef]
- Schvets, A.V.; Hayakawa, M.; Molchanov, O.A.; Ando, Y. A study of ionospheric response to regional seismic activity by VLF radio sounding. Phys. Chem. Earth 2004, 29, 627–637. [Google Scholar] [CrossRef]
- Sorokin, M.V.; Pokhotelov, A.O. Gyrotropic Waves in the mid-latitude ionosphere. J. Atmos. Sol. Terr. Phys. 2005, 67, 921–930. [Google Scholar] [CrossRef]
- Hayakawa, M.; Ohta, K.; Sorokin, M.V.; Yaschenko, K.A.; Izutsu, J.; Hobara, Y.; Nickolaenko, P.A. Interpretation in terms of gyrotropic waves of Schumann–resonance-like line emissions observed at Nakatsugawa in possible association with nearby Japanese earthquakes. J. Atmos. Terrestrial Phys. 2010, 72, 1292–1298. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Saha, M.; Khan, R.; Mandal, S.; Acharyya, K.; Saha, R. Possible detection of ionospheric disturbances during Sumatra Andaman islands earthquakes in December. Indian J. Radio Space Phys. 2005, 34, 314–317. [Google Scholar]
- Sorokin, V.M.; Hayakawa, M. On the generation of narrow-banded ULF/ELF pulsations in the lower ionospheric conducting layer. J. Geophys. Res. 2008, 113, A06306. [Google Scholar] [CrossRef]
- Chakrabarti, S.K.; Sasmal, S. Ionospheric anomaly due to seismic activities—Part 2: Evidence from D-layer preparation and disappearance times. Nat. Hazards Earth Syst. Sci. 2010, 10, 1751–1757. [Google Scholar] [CrossRef]
- Tao, D.; Wang, G.; Zong, J.; Wen, Y.; Cao, J.; Battiston, R.; Zeren, Z. Are the Significant Ionospheric Anomalies Associated with the 2007 Great Deep –Focus Undersea Jakarta-Java Earthquake? Remote Sens. 2022, 14, 2211. [Google Scholar] [CrossRef]
- Harrison, G.R.; Aplin, L.K.; Rycroft, J.M. Atmospheric electricity coupling between earthquake regions and the ionosphere. J. Atmos. Sol. Terr. Phys. 2010, 72, 376–381. [Google Scholar] [CrossRef]
- Munawar, S.; Shuanggen, J. Pre-seismic ionospheric anomalies of the 2013 Mw 7.7 Pakistan earthquake from GPS and COSMIC observations. Geod. Geodyn. 2018, 9, 378–387. [Google Scholar]
- Nayak, K.; López-Urías, C.; Romero-Andrade, R.; Sharma, G.; Guzmán-Acevedo, G.M.; Trejo-Soto, M.E. Ionospheric Total Electron Content (TEC) Anomalies as Earthquake Precursors: Unveiling the Geophysical Connection Leading to the 2023 Moroccan 6.8 Mw Earthquake. Geosciences 2023, 13, 319. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chuo, Y.J.; Shan, S.J.; Tsai, Y.B.; Chen, Y.I.; Pulinets, S.A.; Yu, S.B. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Ann. Geophys. 2004, 22, 1585–1593. [Google Scholar] [CrossRef]
- Tsugawa, T.; Saito, A.; Otsuka, Y.; Nishioka, M.; Maruyama, T.; Kato, H.; Nagatsuma, T.; Murata, K.T. Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 2011, 63, 875–879. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, X.; Du, X. Analysis of Ionospheric precursors possibly related to Yangbi Ms 6.4 and Maduo Ms 7.4 earthquake occurred on 21st May, 2021 in China by GPS TEC and GIM TEC data. Atmosphere 2022, 13, 1725. [Google Scholar] [CrossRef]
- Walker, S.N.; Kadirkamanathan, V.; Pokhotelov, O.A. Changes in the ultra-low frequency wave field during the precursor phase to the Sichuan earthquake: DEMETER observations. Ann. Geophys. 2013, 31, 1597–1603. [Google Scholar] [CrossRef]
- Parrot, M.; Li, M. Demeter Results Related to Seismic Activity. URSI Radio Sci. Bull. 2017, 88, 18–25. [Google Scholar]
- Li, M.; Shen, X.; Yu, C.; Zhang, X. Primary joint statistical seismic influence on ionospheric parameters recorded by the CSES and DEMETER satellites. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028116. [Google Scholar] [CrossRef]
- De Santis, A.; Balasis, G.; Pav´on-Carrasco, F.J.; Cianchini, G.; Mandea, M. Potential earthquake precursory pattern from space: The 2015 Nepal event as seen by magnetic Swarm satellites. Adv. Space Res. 2017, 461, 119–126. [Google Scholar] [CrossRef]
- Li, M.; Yang, Z.; Song, J.; Zhang, Y.; Jiang, X.; Shen, X. Statistical Seismo-Ionospheric influence with focal Mechanism under consideration. Atmosphere 2023, 14, 455. [Google Scholar] [CrossRef]
- Florios, K.; Contopoulos, I.; Christofilakis, V.; Tatsis, G.; Chronopoulos, S.; Repapis, C.; Tritakis, V. Pre-seismic Electromagnetic Perturbations in Two Earthquakes in Northern Greece. Pure App. Geophys. 2020, 177, 787–799. [Google Scholar] [CrossRef]
- Florios, K.; Contopoulos, I.; Tatsis, G.; Christofilakis, V.; Chronopoulos, S.; Repapis, C.; Tritakis, V. Possible earthquake forecasting in a narrow space-time-magnitude window. Earth Sci. Inform. 2020, 14, 349–364. [Google Scholar] [CrossRef]
- Karamanos, K.; Peratzakis, A.; Kapiris, P.; Nikolopoulos, S.; Kopanas, X.; Eftaxias, K. Extractihg preseismic electromagnetic, signatures in terms of symbolic dynamics. Nonlinear Process. Geophys. 2005, 12, 835–848. [Google Scholar] [CrossRef]
- Karamanos, K. Preseismic electromagnetic signals in terms of complexity. Phys. Rev. E 2006, 74, 016104. [Google Scholar] [CrossRef] [PubMed]
- Karamanos, K.; Dakopoulos, D.; Aloupis, K.; Peratzakis, A.; Athanasopoulou, S.; Nikolopoulos, S.; Kapiris, P.; Eftaxias, K. Study of pre-seismic Electromagnetic signals in terms of complexity. Phys. Rev. E 2005, 74, 016104/1–21. [Google Scholar] [CrossRef]
- Schumann, W.O. On the free oscillations of a conducting sphere which is surrounded by an air layer and an ionosphere shell. Z. Naturforschaftung 1952, 7a, 149–154. (In German) [Google Scholar] [CrossRef]
- Balser, M.; Wagner, C. Observations of Earth–Ionosphere Cavity Resonances. Nature 1960, 188, 638–641. [Google Scholar] [CrossRef]
- Balser, M.; Wagner, C.A. Diurnal power variations of the Earth-ionosphere cavity modes and their relationship to worldwide thunderstorm activity. JGR 1962, 67, 619–625. [Google Scholar] [CrossRef]
- Williams, E.R. The Schumann Resonance: A Global Tropical Thermometer. Science 1992, 256, 1184–1187. [Google Scholar] [CrossRef] [PubMed]
- Nickolaenko, P.A.; Hayakawa, M. Schumann Resonance for Tyros; Springer Geophysics: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Nickolaenko, P.A.; Hayakawa, M. Resonances in the Earth-Ionosphere Cavity; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Galejs, J. Schumann Resonance. Radio Sci. J. Res. NBS/USNC-URSI 1965, 69D, 1043–1055. [Google Scholar] [CrossRef]
- Simoes, F.; Pfaff, R.; Berthelier, J.-J.; Klenzing, J. A Review of low Frequency Electromagnetic Wave Phenomena Related to Tropospheric Coupling Mechanisms. Space Sci. Rev. 2012, 168, 551–593. [Google Scholar] [CrossRef]
- Price, C.; Melnikov, A. Diurnal, Seasonal and Inter-annual variations in the Schumann resonance parameters. J. Atmos. Sol-Terr. Phys. 2004, 66, 1179–1185. [Google Scholar] [CrossRef]
- Nickolaenko, P.A.; Galuk, P.Y.; Hayakawa, M. The effect of a compact ionosphere disturbance over the earthquake: A focus on Schumann resonance. Int. J. Electron. Appl. Res. 2018, 5, 181444053. [Google Scholar] [CrossRef]
- Schekotov, A.; Chebrov, D.; Hayakawa, M.; Belyaev, G.; Berseneva, N. Short-term earthquake prediction in Kamchatka using low-frequency magnetic fields. Nat. Hazards 2020, 100, 735–755. [Google Scholar] [CrossRef]
- Sekiguchi, M.; Hobara, Y.; Hayakawa, M. Diurnal and seasonal variations in the Schumann resonance parameters at Moshiri, Japan. J. Atmos. Electr. 2008, 28, 1–10. [Google Scholar] [CrossRef]
- Sentman, D.D. Magnetic elliptical polarization of Schumann resonances. Radio Sci. 1987, 22, 595–606. [Google Scholar] [CrossRef]
- Roldugin, V.C.; Maltsev, Y.P.; Petrova, G.A.; Vasiljev, A.N. Decrease of the first Schumann resonance frequency during solar proton events. J. Geophys. Res. 2001, 106, 18555–18562. [Google Scholar] [CrossRef]
- Shvets, A.V.; Nickolaenko, A.P.; Belyaev, G.G.; Schekotov, A.Y. Analysis Schumann Resonance Parameter Variations Associated with Solar Proton Events. Telecommun. Radio Eng. 2005, 64, 771–791. [Google Scholar] [CrossRef]
- Huang, E.; Williams, E.; Boldi, R.; Heckman, S.; Lyons, W.; Taylor, M.; Nelson, T.; Wong, C. Criteria for sprites and elves based on Schumann resonance observations. J. Geophys. Res. Atmos. 1999, 104, 16943–16964. [Google Scholar] [CrossRef]
- Yang, H.; Pasko, V.P. Power “variations of Schumann resonances related to El Nino and La Nina phenomena”. Geophys. Res. Lett 2007, 34, 1102. [Google Scholar] [CrossRef]
- Wever, R.A. The Circadian System of Man. Results of Experiments under Temporal Isolation; Springer: Berlin/Heidelberg, Germany, 1979; pp. 17–24. [Google Scholar]
- Wever, R. The effects of electric fields on circadian rhythmicity in men. Life Sci Space Res. 1970, 8, 177–187. [Google Scholar] [PubMed]
- Panagopoulos, D.J.; Balmori, A. On the biophysical mechanism of sensing atmospheric discharges by living organisms. Sci. Total. Environ. 2017, 599-600, 2026–2034. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulos, D.J.; Chrousos, G.P. Shielding methods and products against man-made Electromagnetic Fields: Protection versus risk. Sci. Total. Environ. 2019, 667, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Fdez-Arroyabe, P.; Fornieles-Callejón, J.; Santurtún, A.; Szangolies, L.; Donner, R.V. Schumann Resonance and cardiovascular hospital admission in the area of Granada, Spain: An event coincidence analysis approach. Sci. Total Environ. 2020, 705, 135813. [Google Scholar] [CrossRef] [PubMed]
- Elhalel, G.; Price, C.; Fixler, D.; Shainberg, A. Cardioprotection from stress conditions by weak magnetic fields in the Schumann Resonance band. Sci. Rep. 2019, 9, 1645. [Google Scholar] [CrossRef] [PubMed]
- Nieckarz, Z.; Kułak, A.; Zięba, S.; Michalec, A. Day-to-Day Variation of the Angular Distribution of Lightning Activity Calculated from ELF Magnetic Measurements. Coupling of thunderstorms and lightning discharges to near-earth space. In Proceedings of the Workshop, Corte, France, 23–27 June 2008; pp. 28–33. [Google Scholar]
- Mlynarczyk, J.; Kulak, A.; Salvador, J. The Accuracy of Radio Direction Finding in the Extremely Low Frequency Range. Radio Sci. 2017, 52, 1245–1252. [Google Scholar] [CrossRef]
- Yagova, N.V.; Sinha, A.K.; Pilipenko, V.A.; Fedorov, E.N.; Holzworth, R.; Vichare, G. ULF electromagnetic noise from regional lightning activity: Model and observations. J. Atmos. Sol. Terr. Phys. 2018, 182, 223–228. [Google Scholar] [CrossRef]
- Schekotov, A.; Pilipenko, V.; Shiokawa, K.; Fedorov, E. ULF impulsive magnetic response at mid-latitudes to lightning activity. Earth Planets Space 2011, 63, 119–128. [Google Scholar] [CrossRef]
- Fraser-Smith, A.C. ULF magnetic fields generated by electrical storms and their significance to geomagnetic pulsation generation. Geophys. Res. Lett. 1993, 20, 467–470. [Google Scholar] [CrossRef]
- Koloskov, A.V.; Budanov, O.V.; Yampolski, Y.M. Long-term monitoring of the Schumann resonance signals from Antarctica. In Proceedings of the 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 6–23 August 2014; pp. 1–4. [Google Scholar]
- Tatsis, G.; Votis, C.; Christofilakis, V.; Kostarakis, P.; Tritakis, V.; Repapis, C. A prototype data acquisition and processing system for Schumann resonance measurements. J. Atmos. Sol. Terr. Phys. 2015, 135, 152–160. [Google Scholar] [CrossRef]
- Hobara, Y.; Parrot, M. Ionospheric perturbations linked to a very powerful seismic event. J. Atmos. Sol.-Terr. Phys. 2005, 67, 677–685. [Google Scholar] [CrossRef]
- Sinitsind, V.; Gordeev, E.; Hayakawa, M. Seismoionospheric depression of the ULF geomagnetic fluctuations at Kamchatka and Japan. Phys Chem Earth 2006, 31, 313–318. [Google Scholar]
- Fidani, C.; Battiston, R. Analysis of NOAA particle data and correlations to seismic activity. Nat. Hazards Earth Syst. Sci. 2008, 8, 1277–1291. [Google Scholar] [CrossRef]
- Chowdhury, S.; Kundu, S.; Ghosh, S.; Hayakawa, M.; Schekotov, A.; Potirakis, S.M.; Chakrabarti, S.K.; Sasmal, S. Direct and indirect evidence of pre-seismic electromagnetic emissions associated with two large earthquakes in Japan. Nat. Hazards 2022, 112, 2403–2432. [Google Scholar] [CrossRef]
- Christofilakis, V.; Tatsis, G.; Votis, G.; Contopoulos, I.; Repapis, C.; Tritakis, V. Significant ELF perturbations in the Schumann Resonance band before and during a shallow mid-magnitude seismic activity in the Greek area (Kalpaki). J. Atmos. Sol. Terr. Phys. 2019, 182, 138–146. [Google Scholar] [CrossRef]
- Tritakis, V.; Contopoulos, I.; Mlynarczyk, J.; Christofilakis, V.; Tatsis, G.; Repapis, C. How Effective and Prerequisite Are Electromagnetic Extremely Low Frequency (ELF) Recordings in the Schumann Resonances Band to Function as Seismic Activity Precursors. Atmosphere 2022, 13, 185. [Google Scholar] [CrossRef]
- Tatsis, G.; Christofilakis, V.; Chronopoulos, S.K.; Kostarakis, P.; Nistazakis, H.E.; Repapis, C.; Tritakis, V. Design and Implementation of a Test Fixture for ELF Schumann Resonance Magnetic Antenna Receiver and Magnetic Permeability Measurements. Electronics 2020, 9, 171. [Google Scholar] [CrossRef]
- Tatsis, G.; Christofilakis, V.; Chronopoulos, S.K.; Baldoumas, G.; Sakkas, A.; Paschalidou, A.K.; Kassomenos, P.; Petrou, I.; Kostarakis, P.; Repapis, C.; et al. Study of the variations in THE Schumann resonances parameters measured in a Southern Mediterranean environment. Sci. Total Environ. 2020, 715, 136926. [Google Scholar] [CrossRef] [PubMed]
- Votis, C.I.; Tatsis, G.; Christofilakis, V.; Chronopoulos, S.K.; Kostarakis, P.; Tritakis, V.; Repapis, C. A new portable ELF Schumann resonance receiver: Design and detailed analysis of the antenna and the analog front-end. J. Wirel. Com Netw. 2018, 2018, 155. [Google Scholar] [CrossRef]
- Mlynarczyk, J.; Popek, M.; Kulak, A.; Klucjasz, S.; Martynski, K.; Kubisz, J. New Broadband ELF Receiver for Studying Atmospheric Discharges in Central Europe. In Proceedings of the Baltic URSI Symposium, Poznan, Poland, 14–17 May 2018. [Google Scholar]
- Wouters, B.; Gardner, A.S.; Moholdt, G. Global Glacier Mass Loss during the GRACE satellite Mission (2002–2016). Front. Earth Sci. 2019, 7, 96. [Google Scholar] [CrossRef]
- Mlynarczyk, J.; Tritakis, V.; Contopoulos, I.; Nieckarz, Z.; Christofilakis, V.; Tatsis, G.; Repapis, C. Anthropogenic Sources of Electromagnetic Interference in the Lowest ELF Band Recordings (Schumann Resonances). Magnetism 2022, 2, 152–167. [Google Scholar] [CrossRef]
- Sasmal, S.; Chowdhury, S.; Kundu, S.; Politis, D.Z.; Potirakis, S.M.; Balasis, G.; Hayakawa, M.; Chakrabarti, S.K. Pre-Seismic Irregularities during the 2020 Samos (Greece) Earthquake (M = 6.9) as Investigated from Multi-Parameter Approach by Ground and Space-Based Techniques. Atmosphere 2021, 12, 1059. [Google Scholar] [CrossRef]
- Uyanık, H.; Şentürk, E.; Akpınar, M.H.; Ozcelik, S.T.A.; Kokum, M.; Freeshah, M.; Sengur, A. A Multi-Input Convolutional Neural Networks Model for Earthquake Precursor Detection Based on Ionospheric Total Electron Content. Remote. Sens. 2023, 15, 5690. [Google Scholar] [CrossRef]
No | Year/Month/Day | Place of Occurrence | Magnitude (Richters) | Land/Sea/Island | Coordinates |
---|---|---|---|---|---|
YEAR 2020 | |||||
01 | 20/02/15 | Nafpaktos | 4.5 | S | 38.42 N/21.98 E |
02 | 20/03/20 | Parga | 4.3 | S | 39.17 N/20.24 E |
03 | 20/03/21 | Parga | 5.6 | S | 39.16 N/20.23 E |
04 | 20/08/09 | Kyllini | 4.2 | S | 37.85 N/21.11 E |
05 | 20/08/17 | Hydra | 4.6 | S | 37.15 N/23.28 E |
06 | 20/09/11 | Alkyonides | 4.2 | S | 38.65 N/23.34 E |
07 | 20/09/11 | Nafpaktos | 3.2 | S | 38.21 N/21.52 E |
08 | 20/09/18 | Kreta | 4.1 | L | 35.14 N/24.48 E |
09 | 20/09/18 | Kythira | 5.3 | S | 35.54 N/22.49 E |
10 | 20/10/12 | Siteia | 5.2 | S | 35.80 N/26.90 E |
11 | 20/12/09 | Euboia | 3.9 | L | 38.90 N/24.10 E |
12 | 20/12/02 | Thibae | 4.4 | L | 38.19 N/23.25 E |
YEAR 2021 | |||||
13 | 21/01/13 | Nafpaktos/Aigion | 4.2 | S | 38.19 N/22.04 E |
14 | 21/02/17 | Nafpaktos | 4.9 | S | 38.25 N/22.17 E |
15 | 21/03/04 | Helassona | 6.1 | L | 39.51 N/22.85 E |
16 | 21/06/01 | Helassona | 4.6 | L | 39.83 N/22.07 E |
17 | 21/06/03 | Kalavrita | 4.8 | L | 38.13 N/22.02 E |
18 | 21/07/05 | Herakleio | 4.2 | L | 35.15 N/28.25 E |
19 | 21/07/10 | Thevae | 3.3 | L | 38.32 N/23.33 E |
20 | 21/07/11 | Thibae | 4.2 | L | 38.28 N/22.92 E |
21 | 21/07/20 | Thibae | 4.5 | L | 38.26 N/22.89 E |
22 | 21/07/21 | Herakleio | 4.8 | L | 35.18 N/25.83 E |
23 | 21/07/30 | Thibae | 4.1 | L | 38.35 N/23.36 E |
24 | 21/08/01 | Nisyros | 5.3 | S | 36.40 N/27.06 E |
25 | 21/08/11 | Thibae | 4.3 | L | 38.29 N/20.45 E |
26 | 21/08/11 | Arvi/Kreta | 3.4 | L | 34.98 N/25.26 E |
27 | 21/09/02 | Thibae | 4.0 | L | 35.13 Ν/25.26 Ε |
28 | 21/09/12 | Thibae | 4.0/3/5 | L | 35.18 Ν/25.23 Ε |
29 | 21/09/14 | Zakynthos | 4.5 | S | 37.73 Ν/20.28 Ε |
30 | 21/09/27 | Kreta | 5.8 | L | 35.12 Ν/25.26 Ε |
31 | 21/09/27 | Kreta/Arkalochori | 5.8 | L | 35.85 N/25.15 E |
32 | 21/09/28 | Herakleion | 5.3 | S | 35.15 Ν/25.22 Ε |
33 | 21/10/12 | Kreta | 6.3 | S | |
34 | 21/10/19 | Karpathos | 6.1 | L | 28.38 Ν/38.84 Ε |
35 | 21/12/15 | Aigio | 4.2 | L | 38.15 N/22.33 E |
36 | 21/12/29 | kreta | 5.7 | S | 35.83 Ν/25.21 Ε |
37 | 22/01/02 | Zakynthos | 4.1 | S | 37.76 N/19.97 E |
38 | 22/03/29 | Amfilochia | 3.9 | L | 38.83 N/21.23 E |
39 | 22/04/07 | Thibae | 3.9/3.6 | L | 38.29 N/23.43 E |
40 | 22/04/08 | Myrtoo | 4.5 | S | 36.57 N/23.38 E |
41 | 22/04/08 | Zakynthos | 4.0/3.8 | S | 37.31 N/20.56 E |
42 | 22/04/10 | Thibae | 4.3 | L | 38.31 N/23.37 E |
43 | 22/04/19 | Santorini | 3.7 | S | 36.48 N/25.44 E |
44 | 22/04/27 | Kalamata | 3.5 | S | 36.69 N/23.09 E |
45 | 22/04/27 | Kythira | 5.2 | S | 35.48 N/22.51 E |
46 | 22/05/04 | Chania/Kreta | 3.9 | L | 35.53 N/23.58 E |
47 | 22/05/08 | Kreta/Arkaloxori | 4.4 | L | 35.15 N/25.31 E |
48 | 22/05/22 | Amfilochia | 4.3 | L | 38.72 N/21.26 E |
49 | 22/05/26 | Gerolimenas | 4.2 | S | 36.36 N/22.20 E |
50 | 22/06/04 | Kreta/Arkalochori | 3.9 | L | 35.13 N/25.30 E |
51 | 22/07/17 | Herakleio | 3.6 | L | 35.16 N/28.26 E |
52 | 22/07/13 | Arkalochori | 4.1 | L | 35.18 N/25.31 E |
53 | 22/07/29 | Marathia | 4.3 | S | 38.41 N/21.99 E |
54 | 22/08/12 | Arkalochori | 3.5 | L | 35.19 N/25.33 E |
55 | 22/08/16 | Kyllini | 3.6 | L | 37.69 N/21.71 E |
56 | 22/08/16 | Preveza | 4.0 | L | 39.20 N/20.60 E |
57 | 22/08/30 | Leykada | 4.3 | S | 38.33 N/20.32 E |
58 | 22/08/31 | Samos | 4.7/5.7 | S | 37.45 N/26.51 E |
59 | 22/09/03 | Thibae | 3.9 | L | 38.33 N/23.37 E |
60 | 22/09/03 | Kreta/Zakros | 5.2 | S | 34.87 N/20.44 E |
61 | 22/09/07 | Monemvasia | 3.6 | L | 36.24 N/22.57 E |
62 | 22/09/08 | Zakynthos | 5.4 | S | 37.87 N/19.93 E |
63 | 22/09/24 | Leykada | 4.1 | S | 38.29 N/20.30 E |
64 | 22/09/15 | Kreta/South | 3.7 | S | 34.36 N/25.33 E |
65 | 22/09/19 | Kreta/Siteia | 4.2 | S | 35.81 N/26.92 E |
66 | 22/09/29 | kreta | 4.5 | L | 35.21 N/2536 E |
67 | 22/10/02 | Kreta/Lasithi | 5.0 | S | 35.79 N/26.88 E |
68 | 22/10/08 | Itea | 5.0 | S | 38.31 N/22.52 E |
69 | 22/11/20 | Kasos | 5.5 | Isl. | 35.72 N/26.54 E |
70 | 22/11/29 | Euboia | 4.7 | L | 38.25 N/24.26 E |
71 | 22/12/14 | Euboia | 4.3 | L | 38.23 N/24.24 E |
72 | 22/12/28 | Euboia/Psachna | 4.9 | L | 38.56 N/23.69 E |
73 | 22/12/14 | Euboia | 4.3 | L | 38.23 N/24.24 E |
YEAR 2023 | |||||
74 | 23/01/04 | Euboia | 4.2 | L | 38.73 N/23.68 E |
75 | 23/01/07 | Lesbos | 4.9 | Isl. | 39.01 N/26.14 E |
76 | 23/01/22 | Kamena Vourla | 4.1 | L | 35.48 N/22.45 E |
77 | 23/01/25 | Rhodes | 5.9 | S | 36.23 N/28.14 E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tritakis, V.; Mlynarczyk, J.; Contopoulos, I.; Kubisz, J.; Christofilakis, V.; Tatsis, G.; Chronopoulos, S.K.; Repapis, C. Extremely Low Frequency (ELF) Electromagnetic Signals as a Possible Precursory Warning of Incoming Seismic Activity. Atmosphere 2024, 15, 457. https://doi.org/10.3390/atmos15040457
Tritakis V, Mlynarczyk J, Contopoulos I, Kubisz J, Christofilakis V, Tatsis G, Chronopoulos SK, Repapis C. Extremely Low Frequency (ELF) Electromagnetic Signals as a Possible Precursory Warning of Incoming Seismic Activity. Atmosphere. 2024; 15(4):457. https://doi.org/10.3390/atmos15040457
Chicago/Turabian StyleTritakis, Vasilis, Janusz Mlynarczyk, Ioannis Contopoulos, Jerzy Kubisz, Vasilis Christofilakis, Giorgos Tatsis, Spyridon K. Chronopoulos, and Christos Repapis. 2024. "Extremely Low Frequency (ELF) Electromagnetic Signals as a Possible Precursory Warning of Incoming Seismic Activity" Atmosphere 15, no. 4: 457. https://doi.org/10.3390/atmos15040457
APA StyleTritakis, V., Mlynarczyk, J., Contopoulos, I., Kubisz, J., Christofilakis, V., Tatsis, G., Chronopoulos, S. K., & Repapis, C. (2024). Extremely Low Frequency (ELF) Electromagnetic Signals as a Possible Precursory Warning of Incoming Seismic Activity. Atmosphere, 15(4), 457. https://doi.org/10.3390/atmos15040457