Carbonyl Sulfide (COS) in Terrestrial Ecosystem: What We Know and What We Do Not
Abstract
:1. Introduction
2. Ecological and Environmental Impacts of COS
2.1. Stratospheric Climate Impact
2.2. Photosynthetic Tracer
3. Source and Sink of COS
3.1. Plant
3.2. Soil
4. Mechanism of COS Production/Consumption and Main Influencing Factors
4.1. The Function of CA
4.2. Leaf Structural Traits
4.3. Soil Condition
4.4. Microbial Action
5. Conclusions and Perspective
5.1. The Ecological and Environmental Impacts of COS Are Becoming Increasingly Evident
5.2. The Estimation Methods of COS Require Further Improvement
5.3. The Metabolic Mechanism and Influencing Factors of COS Require Further Investigation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Couërbe, J.P. Ueber Den Schwefelkohlenstoff. J. Prakt. Chem. 1841, 23, 83–124. [Google Scholar] [CrossRef]
- Ferm, R.J. The Chemistry Of Carbonyl Sulfide. Chem. Rev. 1957, 57, 621–640. [Google Scholar] [CrossRef]
- Torres, A.L.; Maroulis, P.J.; Goldberg, A.B.; Bandy, A.R. Atmospheric OCS Measurements on Project Gametag. J. Geophys. Res. 1980, 85, 7357–7360. [Google Scholar] [CrossRef]
- Turco, R.P.; Whitten, R.C.; Toon, O.B.; Pollack, J.B.; Hamill, P. OCS, Stratospheric Aerosols and Climate. Nature 1980, 283, 283–285. [Google Scholar] [CrossRef]
- Lennartz, S.T.; Marandino, C.A.; Von Hobe, M.; Cortes, P.; Quack, B.; Simo, R.; Booge, D.; Pozzer, A.; Steinhoff, T.; Arevalo-Martinez, D.L.; et al. Direct Oceanic Emissions Unlikely to Account for the Missing Source of Atmospheric Carbonyl Sulfide. Atmos. Chem. Phys. 2017, 17, 385–402. [Google Scholar] [CrossRef]
- Ma, J.; Kooijmans, L.M.J.; Glatthor, N.; Montzka, S.A.; Von Hobe, M.; Röckmann, T.; Krol, M.C. Combined Assimilation of NOAA Surface and MIPAS Satellite Observations to Constrain the Global Budget of Carbonyl Sulfide. Atmos. Chem. Phys. 2024, 24, 6047–6070. [Google Scholar] [CrossRef]
- Kooijmans, L.M.J.; Cho, A.; Ma, J.; Kaushik, A.; Haynes, K.D.; Baker, I.; Luijkx, I.T.; Groenink, M.; Peters, W.; Miller, J.B.; et al. Evaluation of Carbonyl Sulfide Biosphere Exchange in the Simple Biosphere Model (SiB4). Biogeosciences 2021, 18, 6547–6565. [Google Scholar] [CrossRef]
- Ren, Y. Is Carbonyl Sulfide a Precursor for Carbon Disulfide in Vegetation and Soil? Interconversion of Carbonyl Sulfide and Carbon Disulfide in Fresh Grain Tissues in Vitro. J. Agric. Food Chem. 1999, 47, 2141–2144. [Google Scholar] [CrossRef] [PubMed]
- Blake, N.J.; Campbell, J.E.; Vay, S.A.; Fuelberg, H.E.; Huey, L.G.; Sachse, G.; Meinardi, S.; Beyersdorf, A.; Baker, A.; Barletta, B.; et al. Carbonyl Sulfide (OCS): Large-scale Distributions over North America during INTEX-NA and Relationship to CO2. J. Geophys. Res. Atmos. 2008, 113, 2007JD009163. [Google Scholar] [CrossRef]
- Karu, E.; Li, M.; Ernle, L.; Brenninkmeijer, C.A.M.; Lelieveld, J.; Williams, J. Carbonyl Sulfide (OCS) in the Upper Troposphere/Lowermost Stratosphere (UT/LMS) Region: Estimates of Lifetimes and Fluxes. Geophys. Res. Lett. 2023, 50, e2023GL105826. [Google Scholar] [CrossRef]
- Brühl, C.; Lelieveld, J.; Crutzen, P.J.; Tost, H. The Role of Carbonyl Sulphide as a Source of Stratospheric Sulphate Aerosol and Its Impact on Climate. Atmos. Chem. Phys. 2012, 12, 1239–1253. [Google Scholar] [CrossRef]
- Martinsson, B.G.; Nguyen, H.N.; Brenninkmeijer, C.A.M.; Zahn, A.; Heintzenberg, J.; Hermann, M.; Van Velthoven, P.F.J. Characteristics and Origin of Lowermost Stratospheric Aerosol at Northern Midlatitudes under Volcanically Quiescent Conditions Based on CARIBIC Observations. J. Geophys. Res. Atmos. 2005, 110, 2004JD005644. [Google Scholar] [CrossRef]
- Crutzen, P.J. The Possible Importance of CSO for the Sulfate Layer of the Stratosphere. Geophys. Res. Lett. 1976, 3, 73–76. [Google Scholar] [CrossRef]
- Quaglia, I.; Visioni, D.; Pitari, G.; Kravitz, B. An Approach to Sulfate Geoengineering with Surface Emissions of Carbonyl Sulfide. Atmos. Chem. Phys. 2022, 22, 5757–5773. [Google Scholar] [CrossRef]
- Taubman, S.J.; Kasting, J.F. Carbonyl Sulfide: No Remedy for Global Warming. Geophys. Res. Lett. 1995, 22, 803–805. [Google Scholar] [CrossRef]
- Crutzen, P.J. Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma? Clim. Chang. 2006, 77, 211. [Google Scholar] [CrossRef]
- Visioni, D.; Bednarz, E.M.; Lee, W.R.; Kravitz, B.; Jones, A.; Haywood, J.M.; MacMartin, D.G. Climate Response to Off-Equatorial Stratospheric Sulfur Injections in Three Earth System Models-Part 1: Experimental Protocols and Surface Changes. Atmos. Chem. Phys. 2023, 23, 663–685. [Google Scholar] [CrossRef]
- Von Hobe, M.; Brühl, C.; Lennartz, S.T.; Whelan, M.E.; Kaushik, A. Comment on “An Approach to Sulfate Geoengineering with Surface Emissions of Carbonyl Sulfide” by Quaglia et al. (2022). Atmos. Chem. Phys. 2023, 23, 6591–6598. [Google Scholar] [CrossRef]
- Pitari, G.; Aquila, V.; Kravitz, B.; Robock, A.; Watanabe, S.; Cionni, I.; De Luca, N.; Di Genova, G.; Mancini, E.; Tilmes, S. Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP). Geophys. Res. Atmos. 2014, 119, 2629–2653. [Google Scholar] [CrossRef]
- Asaf, D.; Rotenberg, E.; Tatarinov, F.; Dicken, U.; Montzka, S.A.; Yakir, D. Ecosystem Photosynthesis Inferred from Measurements of Carbonyl Sulphide Flux. Nat. Geosci. 2013, 6, 186–190. [Google Scholar] [CrossRef]
- Goldan, P.D.; Kuster, W.C.; Albritton, D.L.; Fehsenfeld, F.C. The Measurement of Natural Sulfur Emissions from Soils and Vegetation: Three Sites in the Eastern United States Revisited. J. Atmos. Chem. 1987, 5, 439–467. [Google Scholar] [CrossRef]
- Sandoval-Soto, L.; Stanimirov, M.; Von Hobe, M.; Schmitt, V.; Valdes, J.; Wild, A.; Kesselmeier, J. Global Uptake of Carbonyl Sulfide (COS) by Terrestrial Vegetation: Estimates Corrected by Deposition Velocities Normalized to the Uptake of Carbon Dioxide (CO2). Biogeosciences 2005, 2, 125–132. [Google Scholar] [CrossRef]
- Notni, J.; Schenk, S.; Protoschill-Krebs, G.; Kesselmeier, J.; Anders, E. The Missing Link in COS Metabolism: A Model Study on the Reactivation of Carbonic Anhydrase from Its Hydrosulfide Analogue. Chembiochem 2007, 8, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Protoschill-Krebs, G.; Wilhelm, C.; Kesselmeier, J. Consumption of Carbonyl Sulphide (COS) by Higher Plant Carbonic Anhydrase (CA). Atmos. Environ. 1996, 30, 3151–3156. [Google Scholar] [CrossRef]
- Conrad, R. Soil Microbial Processes and the Cycling of Atmospheric Trace Gases. Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 1995, 351, 219–230. [Google Scholar] [CrossRef]
- Remde, A.; Slemr, F.; Conrad, R. Microbial Production and Uptake of Nitric Oxide in Soil. FEMS Microbiol. Lett. 1989, 62, 221–230. [Google Scholar] [CrossRef]
- Zhu, H.; Xing, X.; Wu, M.; Ju, W.; Jiang, F. Optimizing the Terrestrial Ecosystem Gross Primary Productivity Using Carbonyl Sulfide (COS) within a “Two-Leaf” Modeling Framework. EGUsphere 2024, 2024, 1–34. [Google Scholar] [CrossRef]
- Sun, W.; Maseyk, K.; Lett, C.; Seibt, U. Restricted Internal Diffusion Weakens Transpiration–Photosynthesis Coupling during Heatwaves: Evidence from Leaf Carbonyl Sulphide Exchange. Plant Cell Environ. 2024, 47, 1813–1833. [Google Scholar] [CrossRef] [PubMed]
- Montzka, S.A.; Calvert, P.; Hall, B.D.; Elkins, J.W.; Conway, T.J.; Tans, P.P.; Sweeney, C. On the Global Distribution, Seasonality, and Budget of Atmospheric Carbonyl Sulfide (COS) and Some Similarities to CO2. J. Geophys. Res. 2007, 112, D09302. [Google Scholar] [CrossRef]
- Campbell, J.E.; Berry, J.A.; Seibt, U.; Smith, S.J.; Montzka, S.A.; Launois, T.; Belviso, S.; Bopp, L.; Laine, M. Large Historical Growth in Global Terrestrial Gross Primary Production. Nature 2017, 544, 84–87. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the Separation of Net Ecosystem Exchange into Assimilation and Ecosystem Respiration: Review and Improved Algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Brugnoli, E.; Calfapietra, C. Carbonyl Sulfide: A New Tool for Understanding the Response of the Land Biosphere to Climate Change. New Phytol. 2010, 186, 783–785. [Google Scholar] [CrossRef] [PubMed]
- Davidson, C.; Amrani, A.; Angert, A. Tropospheric Carbonyl Sulfide Mass Balance Based on Direct Measurements of Sulfur Isotopes. Proc. Natl. Acad. Sci. USA 2021, 118, e2020060118. [Google Scholar] [CrossRef] [PubMed]
- Kremser, S.; Jones, N.B.; Palm, M.; Lejeune, B.; Wang, Y.; Smale, D.; Deutscher, N.M. Positive Trends in Southern Hemisphere Carbonyl Sulfide: TRENDS IN SOUTHERN HEMISPHERE OCS. Geophys. Res. Lett. 2015, 42, 9473–9480. [Google Scholar] [CrossRef]
- Lejeune, B.; Mahieu, E.; Vollmer, M.K.; Reimann, S.; Bernath, P.F.; Boone, C.D.; Walker, K.A.; Servais, C. Optimized Approach to Retrieve Information on Atmospheric Carbonyl Sulfide (OCS) above the Jungfraujoch Station and Change in Its Abundance since 1995. J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 81–95. [Google Scholar] [CrossRef]
- Ma, J.; Kooijmans, L.M.J.; Cho, A.; Montzka, S.A.; Glatthor, N.; Worden, J.R.; Kuai, L.; Atlas, E.L.; Krol, M.C. Inverse Modelling of Carbonyl Sulfide: Implementation, Evaluation and Implications for the Global Budget. Atmos. Chem. Phys. 2021, 21, 3507–3529. [Google Scholar] [CrossRef]
- Chin, M.; Davis, D.D. Global Sources and Sinks of OCS and CS 2 and Their Distributions. Glob. Biogeochem. Cycles 1993, 7, 321–337. [Google Scholar] [CrossRef]
- Suntharalingam, P.; Kettle, A.J.; Montzka, S.M.; Jacob, D.J. Global 3-D Model Analysis of the Seasonal Cycle of Atmospheric Carbonyl Sulfide: Implications for Terrestrial Vegetation Uptake. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Berry, J.; Wolf, A.; Campbell, J.E.; Baker, I.; Blake, N.; Blake, D.; Denning, A.S.; Kawa, S.R.; Montzka, S.A.; Seibt, U.; et al. A Coupled Model of the Global Cycles of Carbonyl Sulfide and CO2: A Possible New Window on the Carbon Cycle. J. Geophys. Res. Biogeosci. 2013, 118, 842–852. [Google Scholar] [CrossRef]
- Launois, T.; Peylin, P.; Belviso, S.; Poulter, B. A New Model of the Global Biogeochemical Cycle of Carbonyl Sulfide-Part 2: Use of Carbonyl Sulfide to Constrain Gross Primary Productivity in Current Vegetation Models. Atmos. Chem. Phys. 2015, 15, 9285–9312. [Google Scholar] [CrossRef]
- Watts, S.F. The Mass Budgets of Carbonyl Sulfide, Dimethyl Sulfide, Carbon Disulfide and Hydrogen Sulfide. Atmos. Environ. 2000, 34, 761–779. [Google Scholar] [CrossRef]
- Maseyk, K.; Berry, J.A.; Billesbach, D.; Campbell, J.E.; Torn, M.S.; Zahniser, M.; Seibt, U. Sources and Sinks of Carbonyl Sulfide in an Agricultural Field in the Southern Great Plains. Proc. Natl. Acad. Sci. USA 2014, 111, 9064–9069. [Google Scholar] [CrossRef] [PubMed]
- Goldan, P.D.; Fall, R.; Kuster, W.C.; Fehsenfeld, F.C. Uptake of COS by Growing Vegetation: A Major Tropospheric Sink. J. Geophys. Res. 1988, 93, 14186–14192. [Google Scholar] [CrossRef]
- Kesselmeier, J.; Merk, L. Exchange of Carbonyl Sulfide (COS) between Agricultural Plants and the Atmosphere: Studies on the Deposition of COS to Peas, Corn and Rapeseed. Biogeochemistry 1993, 23, 4759. [Google Scholar] [CrossRef]
- Hu, L.; Montzka, S.A.; Kaushik, A.; Andrews, A.E.; Sweeney, C.; Miller, J.; Baker, I.T.; Denning, S.; Campbell, E.; Shiga, Y.P.; et al. COS-Derived GPP Relationships with Temperature and Light Help Explain High-Latitude Atmospheric CO2 Seasonal Cycle Amplification. Proc. Natl. Acad. Sci. USA 2021, 118, e2103423118. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Bingemer, H.G.; Schmidt, U. The Flux of Carbonyl Sulfide and Carbon Disulfide between the Atmosphere and a Spruce Forest. Atmos. Chem. Phys. 2002, 2, 171–181. [Google Scholar] [CrossRef]
- Geng, C.; Mu, Y. Carbonyl Sulfide and Dimethyl Sulfide Exchange between Trees and the Atmosphere. Atmos. Environ. 2006, 40, 1373–1383. [Google Scholar] [CrossRef]
- Geng, C. Carbonyl Sulfide and Dimethyl Sulfide Exchange between Lawn and the Atmosphere. J. Geophys. Res. 2004, 109, D12302. [Google Scholar] [CrossRef]
- Whelan, M.E.; Rhew, R.C. Reduced Sulfur Trace Gas Exchange between a Seasonally Dry Grassland and the Atmosphere. Biogeochemistry 2016, 128, 267–280. [Google Scholar] [CrossRef]
- Hoover, D.L.; Rogers, B.M. Not All Droughts Are Created Equal: The Impacts of Interannual Drought Pattern and Magnitude on Grassland Carbon Cycling. Glob. Chang. Biol. 2016, 22, 1809–1820. [Google Scholar] [CrossRef]
- Zhao, F.; Hawkesford, M.; McGrath, S. Sulphur Assimilation and Effects on Yield and Quality of Wheat. J. Cereal Sci. 1999, 30, 1–17. [Google Scholar] [CrossRef]
- Brown, K.A.; Kluczewski, S.M.; Bell, J.N.B. Metabolism of [35S]-Carbonyl Sulphide in Perennial Ryegrass (Lolium perenne L.) and Radish (Raphanus sativus L.). Environ. Exp. Bot. 1986, 26, 355–364. [Google Scholar] [CrossRef]
- Yi, Z.; Wang, X.; Sheng, G.; Fu, J. Exchange of Carbonyl Sulfide (OCS) and Dimethyl Sulfide (DMS) between Rice Paddy Fields and the Atmosphere in Subtropical China. Agric. Ecosyst. Environ. 2008, 123, 116–124. [Google Scholar] [CrossRef]
- Nguyen, B.C.; Mihalopoulos, N.; Putaud, J.P. Rice Straw Burning in Southeast Asia as a Source of CO and COS to the Atmosphere. J. Geophys. Res. 1994, 99, 16435–16439. [Google Scholar] [CrossRef]
- Gries, C.; Nash, T.H.; Kesselmeier, J. Exchange of Reduced Sulfur Gases between Lichens and the Atmosphere. Biogeochemistry 1994, 26, 25–39. [Google Scholar] [CrossRef]
- Kuhn, U.; Kesselmeier, J. Environmental Variables Controlling the Uptake of Carbonyl Sulfide by Lichens. J. Geophys. Res. Atmos. 2000, 105, 26783–26792. [Google Scholar] [CrossRef]
- Kuhn, U.; Wolf, A.; Gries, C.; Iii, T.H.N.; Kesselmeier, J. Field Measurements on the Exchange of Carbonyl Sulfide between Lichens and the Atmosphere. Atmos. Environ. 2000, 34, 4867–4878. [Google Scholar] [CrossRef]
- Johnson, J.E.; Bandy, A.R.; Thornton, D.C.; Bates, T.S. Measurements of Atmospheric Carbonyl Sulfide during the NASA Chemical Instrumentation Test and Evaluation Project: Implications for the Global COS Budget. J. Geophys. Res. 1993, 98, 23443. [Google Scholar] [CrossRef]
- Kershaw, K.A. The Role of Lichens in Boreal Tundra Transition Areas. Bryologist 1978, 81, 294–306. [Google Scholar] [CrossRef]
- Fried, A.; Klinger, L.F.; Erickson, D.J. Atmospheric Carbonyl Sulfide Exchange in Bog Microcosms. Geophys. Res. Lett. 1993, 20, 129–132. [Google Scholar] [CrossRef]
- Kuhn, U. Carbonyl Sulfide Exchange on an Ecosystem Scale: Soil Represents a Dominant Sink for Atmospheric COS. Atmos. Environ. 1999, 33, 995–1008. [Google Scholar] [CrossRef]
- Andreae, M.O.; Crutzen, P.J. Atmospheric Aerosols: Biogeochemical Sources and Role in Atmospheric Chemistry. Science 1997, 276, 1052–1058. [Google Scholar] [CrossRef]
- Simmons, J.S.; Klemedtsson, L.; Hultberg, H.; Hines, M.E. Consumption of Atmospheric Carbonyl Sulfide by Coniferous Boreal Forest Soils. J. Geophys. Res. Atmos. 1999, 104, 11569–11576. [Google Scholar] [CrossRef]
- Mellillo, J.M.; Steudler, P.A. The Effect of Nitrogen Fertilization on the COS and CS2 Emissions from Temperature Forest Soils. J. Atmos. Chem. 1989, 9, 411–417. [Google Scholar] [CrossRef]
- Yi, Z.; Wang, X.; Sheng, G.; Zhang, D.; Zhou, G.; Fu, J. Soil Uptake of Carbonyl Sulfide in Subtropical Forests with Different Successional Stages in South China. J. Geophys. Res. 2007, 112, D08302. [Google Scholar] [CrossRef]
- Kitz, F.; Gerdel, K.; Hammerle, A.; Laterza, T.; Spielmann, F.M.; Wohlfahrt, G. In Situ Soil COS Exchange of a Temperate Mountain Grassland under Simulated Drought. Oecologia 2017, 183, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Bunk, R.; Behrendt, T.; Yi, Z.; Andreae, M.O.; Kesselmeier, J. Exchange of Carbonyl Sulfide (OCS) between Soils and Atmosphere under Various CO2 Concentrations. J. Geophys. Res. Biogeosci. 2017, 122, 1343–1358. [Google Scholar] [CrossRef]
- Conrad, R. Soil Microorganisms as Controllers of Atmospheric Trace Gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 1996, 60, 609–640. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Qubaja, R.; Tatarinov, F.; Rotenberg, E.; Yakir, D. Assessing Canopy Performance Using Carbonyl Sulfide Measurements. Glob. Chang. Biol. 2018, 24, 3486–3498. [Google Scholar] [CrossRef]
- Kesselmeier, J.; Teusch, N.; Kuhn, U. Controlling Variables for the Uptake of Atmospheric Carbonyl Sulfide by Soil. J. Geophys. Res. Atmos. 1999, 104, 11577–11584. [Google Scholar] [CrossRef]
- Stimler, K.; Montzka, S.A.; Berry, J.A.; Rudich, Y.; Yakir, D. Relationships between Carbonyl Sulfide (COS) and CO2 during Leaf Gas Exchange. New Phytol. 2010, 186, 869–878. [Google Scholar] [CrossRef]
- Rennenberg, H. The Fate of Excess Sulfur in Higher Plants. Annu. Rev. Plant Physiol. 1984, 35, 121–153. [Google Scholar] [CrossRef]
- Protoschill-Krebs, G.; Kesselmeier, J. Enzymatic Pathways for the Consumption of Carbonyl Sulphide (COS) by Higher Plants. Bot. Acta 1992, 105, 206–212. [Google Scholar] [CrossRef]
- Matsumoto, H.; Hylin, J.W.; Miyahara, A. Methemoglobinemia in Rats Injected with 3-Nitropropanoic Acid, Sodium Nitrite, and Nitroethane. Toxicol. Appl. Pharmacol. 1961, 3, 493–499. [Google Scholar] [CrossRef]
- Lloyd, J.; Farquhar, G.D. 13C Discrimination during CO2 Assimilation by the Terrestrial Biosphere. Oecologia 1994, 99, 201–215. [Google Scholar] [CrossRef]
- Burnell, J.N.; Hatch, M.D. Low Bundle Sheath Carbonic Anhydrase Is Apparently Essential for Effective C4 Pathway Operation. Plant Physiol. 1988, 86, 1252–1256. [Google Scholar] [CrossRef] [PubMed]
- Davidson, C.; Amrani, A.; Angert, A. Carbonyl Sulfide Sulfur Isotope Fractionation During Uptake by C3 and C4 Plants. J. Geophys. Res. Biogeosci. 2022, 127, e2022JG007035. [Google Scholar] [CrossRef]
- Gillon, J.S.; Yakir, D. Naturally Low Carbonic Anhydrase Activity in C4 and C3 Plants Limits Discrimination against C18OO during Photosynthesis. Plant Cell Environ. 2000, 23, 903–915. [Google Scholar] [CrossRef]
- Wehr, R.; Commane, R.; Munger, J.W.; McManus, J.B.; Nelson, D.D.; Zahniser, M.S.; Saleska, S.R.; Wofsy, S.C. Dynamics of Canopy Stomatal Conductance, Transpiration, and Evaporation in a Temperate Deciduous Forest, Validated by Carbonyl Sulfide Uptake. Biogeosciences 2017, 14, 389–401. [Google Scholar] [CrossRef]
- Chengelis, C.P.; Neal, R.A. Studies of Carbonyl Sulfide Toxicity: Metabolism by Carbonic Anhydrase. Toxicol. Appl. Pharmacol. 1980, 55, 198–202. [Google Scholar] [CrossRef]
- Ingham, E.R.; Horton, K.A. Bacterial, Fungal and Protozoan Responses to Chloroform Fumigation in Stored Soil. Soil Biol. Biochem. 1987, 19, 545–550. [Google Scholar] [CrossRef]
- Blankinship, J.C.; Becerra, C.A.; Schaeffer, S.M.; Schimel, J.P. Separating Cellular Metabolism from Exoenzyme Activity in Soil Organic Matter Decomposition. Soil Biol. Biochem. 2014, 71, 68–75. [Google Scholar] [CrossRef]
- Maire, V.; Alvarez, G.; Colombet, J.; Comby, A.; Despinasse, R.; Dubreucq, E.; Joly, M.; Lehours, A.-C.; Perrier, V.; Shahzad, T.; et al. An Unknown Oxidative Metabolism Substantially Contributes to Soil CO2 Emissions. Biogeosciences 2013, 10, 1155–1167. [Google Scholar] [CrossRef]
- Saska, P.; Skuhrovec, J.; Tylová, E.; Platková, H.; Tuan, S.J.; Hsu, Y.T.; Vítámvás, P. Leaf structural traits rather than drought resistance determine aphid performance on spring wheat. J. Pest Sci. 2021, 94, 423–434. [Google Scholar] [CrossRef]
- Bloem, E.; Haneklaus, S.; Kesselmeier, J.; Schnug, E. Sulfur Fertilization and Fungal Infections Affect the Exchange of H2S and COS from Agricultural Crops. J. Agric. Food Chem. 2012, 60, 7588–7596. [Google Scholar] [CrossRef]
- Chen, B.; Wang, P.; Wang, S.; Liu, Z.; Croft, H. Evaluation of Leaf-To-Canopy Upscaling Approaches for Simulating Canopy Carbonyl Sulfide Uptake and Gross Primary Productivity. J. Geophys. Res. Biogeosci. 2024, 129, e2023JG007521. [Google Scholar] [CrossRef]
- Caird, M.A.; Richards, J.H.; Donovan, L.A. Nighttime Stomatal Conductance and Transpiration in C3 and C4 Plants. Plant Physiol. 2007, 143, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.M.; Monnet, F.; Jannaud, D.; Leonhardt, N.; Ksas, B.; Reiter, I.M.; Pantin, F.; Genty, B. OPEN ALL NIGHT LONG: The Dark Side of Stomatal Control. Plant Physiol. 2015, 167, 289–294. [Google Scholar] [CrossRef]
- Liu, J.; Geng, C.; Mu, Y.; Zhang, Y.; Xu, Z.; Wu, H. Exchange of Carbonyl Sulfide (COS) between the Atmosphere and Various Soils in China. Biogeosciences 2010, 7, 753–762. [Google Scholar] [CrossRef]
- Whelan, M.E.; Hilton, T.W.; Berry, J.A.; Berkelhammer, M.; Desai, A.R.; Campbell, J.E. Carbonyl Sulfide Exchange in Soils for Better Estimates of Ecosystem Carbon Uptake. Atmos. Chem. Phys. 2016, 16, 3711–3726. [Google Scholar] [CrossRef]
- Devai, I.; DeLaune, R.D. Trapping Efficiency of Various Solid Adsorbents for Sampling and Quantitative Gas Chromatographic Analysis of Carbonyl Sulfide. Anal. Lett. 1997, 30, 187–198. [Google Scholar] [CrossRef]
- Smith, N.A.; Kelly, D.P. Oxidation of Carbon Disulphide as the Sole Source of Energy for the Autotrophic Growth of Thiobacillus Thioparus Strain TK-m. Microbiology 1988, 134, 3041–3048. [Google Scholar] [CrossRef]
- Van Diest, H.; Kesselmeier, J. Soil Atmosphere Exchange of Carbonyl Sulfide (COS) Regulated by Diffusivity Depending on Water-Filled Pore Space. Biogeosciences 2008, 5, 475–483. [Google Scholar] [CrossRef]
- Drenovsky, R.E.; Vo, D.; Graham, K.J.; Scow, K.M. Soil Water Content and Organic Carbon Availability Are Major Determinants of Soil Microbial Community Composition. Microb. Ecol. 2004, 48, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Schenk, S.; Kesselmeier, J.; Anders, E. How Does the Exchange of One Oxygen Atom with Sulfur Affect the Catalytic Cycle of Carbonic Anhydrase? Chem. Eur. J. 2004, 10, 3091–3105. [Google Scholar] [CrossRef]
- Kitz, F.; Spielmann, F.M.; Hammerle, A.; Kolle, O.; Migliavacca, M.; Moreno, G.; Ibrom, A.; Krasnov, D.; Noe, S.M.; Wohlfahrt, G. Soil COS Exchange: A Comparison of Three European Ecosystems. Glob. Biogeochem. Cycles 2020, 34, e2019GB006202. [Google Scholar] [CrossRef]
- Sauze, J.; Ogée, J.; Maron, P.-A.; Crouzet, O.; Nowak, V.; Wohl, S.; Kaisermann, A.; Jones, S.P.; Wingate, L. The Interaction of Soil Phototrophs and Fungi with pH and Their Impact on Soil CO2, CO18O and OCS Exchange. Soil Biol. Biochem. 2017, 115, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Li, X.S.; Sato, T.; Ooiwa, Y.; Kusumi, A.; Gu, J.-D.; Katayama, Y. Oxidation of Elemental Sulfur by Fusarium Solani Strain THIF01 Harboring Endobacterium Bradyrhizobium sp. Microb. Ecol. 2010, 60, 96–104. [Google Scholar] [CrossRef]
- Ogawa, T.; Kato, H.; Higashide, M.; Nishimiya, M.; Katayama, Y. Degradation of Carbonyl Sulfide by Actinomycetes and Detection of Clade D of β-Class Carbonic Anhydrase. FEMS Microbiol. Lett. 2016, 363, fnw223. [Google Scholar] [CrossRef]
- Masaki, Y.; Ozawa, R.; Kageyama, K.; Katayama, Y. Degradation and Emission of Carbonyl Sulfide, an Atmospheric Trace Gas, by Fungi Isolated from Forest Soil. FEMS Microbiol. Lett. 2016, 363, fnw197. [Google Scholar] [CrossRef]
- Ogawa, T.; Noguchi, K.; Saito, M.; Nagahata, Y.; Kato, H.; Ohtaki, A.; Nakayama, H.; Dohmae, N.; Matsushita, Y.; Odaka, M.; et al. Carbonyl Sulfide Hydrolase from Thiobacillus Thioparus Strain THI115 Is One of the β-Carbonic Anhydrase Family Enzymes. J. Am. Chem. Soc. 2013, 135, 3818–3825. [Google Scholar] [CrossRef]
- Behrendt, T.; Catão, E.C.P.; Bunk, R.; Yi, Z.; Schweer, E.; Kolb, S.; Kesselmeier, J.; Trumbore, S. Microbial Community Responses Determine How Soil–Atmosphere Exchange of Carbonyl Sulfide, Carbon Monoxide, and Nitric Oxide Responds to Soil Moisture. Soil 2019, 5, 121–135. [Google Scholar] [CrossRef]
- Parazoo, N.C.; Barnes, E.; Worden, J.; Harper, A.B.; Bowman, K.B.; Frankenberg, C.; Wolf, S.; Litvak, M.; Keenan, T.F. Influence of ENSO and the NAO on Terrestrial Carbon Uptake in the Texas-Northern Mexico Region. Glob. Biogeochem. Cycles 2015, 29, 1247–1265. [Google Scholar] [CrossRef]
- Piao, S.; Sitch, S.; Ciais, P.; Friedlingstein, P.; Peylin, P.; Wang, X.; Ahlström, A.; Anav, A.; Canadell, J.G.; Cong, N.; et al. Evaluation of Terrestrial Carbon Cycle Models for Their Response to Climate Variability and to CO2 Trends. Glob. Chang. Biol. 2013, 19, 2117–2132. [Google Scholar] [CrossRef]
- McManus, J.B. Application of Quantum Cascade Lasers to High-Precision Atmospheric Trace Gas Measurements. Opt. Eng. 2010, 49, 111124. [Google Scholar] [CrossRef]
- Barkley, M.P.; Palmer, P.I.; Boone, C.D.; Bernath, P.F.; Suntharalingam, P. Global Distributions of Carbonyl Sulfide in the Upper Troposphere and Stratosphere. Geophys. Res. Lett. 2008, 35, 2008GL034270. [Google Scholar] [CrossRef]
- Glatthor, N.; Höpfner, M.; Baker, I.T.; Berry, J.; Campbell, J.E.; Kawa, S.R.; Krysztofiak, G.; Leyser, A.; Sinnhuber, B.-M.; Stiller, G.P.; et al. Tropical Sources and Sinks of Carbonyl Sulfide Observed from Space. Geophys. Res. Lett. 2015, 42, 10082–10090. [Google Scholar] [CrossRef]
- Serio, C.; Montzka, S.A.; Masiello, G.; Carbone, V. Trend and Multi-Frequency Analysis Through Empirical Mode Decomposition: An Application to a 20-Year Record of Atmospheric Carbonyl Sulfide Measurements. J. Geophys. Res. Atmos. 2023, 128, e2022JD038207. [Google Scholar] [CrossRef]
- Remaud, M.; Chevallier, F.; Maignan, F.; Belviso, S.; Berchet, A.; Parouffe, A.; Abadie, C.; Bacour, C.; Lennartz, S.; Peylin, P. Plant Gross Primary Production, Plant Respiration and Carbonyl Sulfide Emissions over the Globe Inferred by Atmospheric Inverse Modelling. Atmos. Chem. Phys. 2022, 22, 2525–2552. [Google Scholar] [CrossRef]
- Haynes, K.D.; Baker, I.T.; Denning, A.S.; Stöckli, R.; Schaefer, K.; Lokupitiya, E.Y.; Haynes, J.M. Representing Grasslands Using Dynamic Prognostic Phenology Based on Biological Growth Stages: 1. Implementation in the Simple Biosphere Model (SiB4). J. Adv. Model. Earth Syst. 2019, 11, 4423–4439. [Google Scholar] [CrossRef]
- Zumkehr, A.; Hilton, T.W.; Whelan, M.; Smith, S.; Kuai, L.; Worden, J.; Campbell, J.E. Global Gridded Anthropogenic Emissions Inventory of Carbonyl Sulfide. Atmos. Environ. 2018, 183, 11–19. [Google Scholar] [CrossRef]
- Vesala, T.; Kohonen, K.-M.; Kooijmans, L.M.J.; Praplan, A.P.; Foltýnová, L.; Kolari, P.; Kulmala, M.; Bäck, J.; Nelson, D.; Yakir, D.; et al. Long-Term Fluxes of Carbonyl Sulfide and Their Seasonality and Interannual Variability in a Boreal Forest. Atmos. Chem. Phys. 2022, 22, 2569–2584. [Google Scholar] [CrossRef]
- Borrell, P.; Borrell, P.M. (Eds.) Transport and Chemical Transformation of Pollutants in the Troposphere: An Overview of the Work of EUROTRAC; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar] [CrossRef]
- Taylor, G.E., Jr.; McLaughlin, S.B., Jr.; Shriner, D.S.; Selvidge, W.J. The Flux of Sulfur-Containing Gases to Vegetation. Atmos. Environ. (1967) 1983, 17, 789–796. [Google Scholar] [CrossRef]
- Spielmann, F.M.; Hammerle, A.; Kitz, F.; Gerdel, K.; Alberti, G.; Peressotti, A.; Delle Vedove, G.; Wohlfahrt, G. On the Variability of the Leaf Relative Uptake Rate of Carbonyl Sulfide Compared to Carbon Dioxide: Insights from a Paired Field Study with Two Soybean Varieties. Agric. For. Meteorol. 2023, 338, 109504. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Shen, L.; Zhang, Y.; Liu, Y.; Wu, J.; Wang, A. Carbonyl Sulfide (COS) in Terrestrial Ecosystem: What We Know and What We Do Not. Atmosphere 2024, 15, 778. https://doi.org/10.3390/atmos15070778
Li J, Shen L, Zhang Y, Liu Y, Wu J, Wang A. Carbonyl Sulfide (COS) in Terrestrial Ecosystem: What We Know and What We Do Not. Atmosphere. 2024; 15(7):778. https://doi.org/10.3390/atmos15070778
Chicago/Turabian StyleLi, Jiaxin, Lidu Shen, Yuan Zhang, Yage Liu, Jiabing Wu, and Anzhi Wang. 2024. "Carbonyl Sulfide (COS) in Terrestrial Ecosystem: What We Know and What We Do Not" Atmosphere 15, no. 7: 778. https://doi.org/10.3390/atmos15070778
APA StyleLi, J., Shen, L., Zhang, Y., Liu, Y., Wu, J., & Wang, A. (2024). Carbonyl Sulfide (COS) in Terrestrial Ecosystem: What We Know and What We Do Not. Atmosphere, 15(7), 778. https://doi.org/10.3390/atmos15070778