Tire Wear Emissions by Highways: Impact of Season and Surface Type
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Sampling Site Selection
2.2. Sampling
2.2.1. Flare Testing
2.2.2. Highway Sample Collection
2.2.3. Highway Sampling Setup
2.2.4. Tire Characterization
2.3. Sample Preparation
2.4. Sample Analysis
2.4.1. Chemicals and Materials
2.4.2. Organics Analysis
2.4.3. Metals Analysis
2.5. Emission Factor Calculation
2.6. MOVES Modeling
3. Results and Discussion
3.1. Flare Testing Results
3.2. Tire Composition Results
3.3. Sampling Sites Environmental Results
3.4. Tire Wear Emission Factors for Different Highway Surfaces
3.5. Tire Wear Emission Factors for Different Seasons
3.6. MOVES Simulated Emission Factors Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roca-Puigròs, M.; Marmy, C.; Wäger, P.; Beat Müller, D. Modeling the Transition toward a Zero Emission Car Fleet: Integrating Electrification, Shared Mobility, and Automation. Transp. Res. Part D Transp. Environ. 2023, 115, 103576. [Google Scholar] [CrossRef]
- Oroumiyeh, F.; Zhu, Y. Brake and Tire Particles Measured from On-Road Vehicles: Effects of Vehicle Mass and Braking Intensity. Atmos. Environ. X 2021, 12, 100121. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the Contribution of Road Traffic Emissions to Particulate Matter Concentrations from Field Measurements: A Review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Piscitello, A.; Bianco, C.; Casasso, A.; Sethi, R. Non-Exhaust Traffic Emissions: Sources, Characterization, and Mitigation Measures. Sci. Total Environ. 2021, 766, 144440. [Google Scholar] [CrossRef]
- Gustafsson, M.; Blomqvist, G.; Gudmundsson, A.; Dahl, A.; Jonsson, P.; Swietlicki, E. Factors Influencing PM10 Emissions from Road Pavement Wear. Atmos. Environ. 2009, 43, 4699–4702. [Google Scholar] [CrossRef]
- Kole, P.J.; Löhr, A.J.; Van Belleghem, F.G.A.J.; Ragas, A.M.J. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef] [PubMed]
- Kreider, M.L.; Panko, J.M.; McAtee, B.L.; Sweet, L.I.; Finley, B.L. Physical and Chemical Characterization of Tire-Related Particles: Comparison of Particles Generated Using Different Methodologies. Sci. Total Environ. 2010, 408, 652–659. [Google Scholar] [CrossRef]
- Reddy, C.M.; Quinn, J.G. Environmental Chemistry of Benzothiazoles Derived from Rubber. Environ. Sci. Technol. 1997, 31, 2847–2853. [Google Scholar] [CrossRef]
- Tian, Z.; Zhao, H.; Peter, K.T.; Gonzalez, M.; Wetzel, J.; Wu, C.; Hu, X.; Prat, J.; Mudrock, E.; Hettinger, R.; et al. A Ubiquitous Tire Rubber–Derived Chemical Induces Acute Mortality in Coho Salmon. Science 2021, 371, 185–189. [Google Scholar] [CrossRef]
- Wagner, S.; Hüffer, T.; Klöckner, P.; Wehrhahn, M.; Hofmann, T.; Reemtsma, T. Tire Wear Particles in the Aquatic Environment—A Review on Generation, Analysis, Occurrence, Fate and Effects. Water Res. 2018, 139, 83–100. [Google Scholar] [CrossRef]
- Cadle, S.H.; Williams, R.L. Gas and Particle Emissions from Automobile Tires in Laboratory and Field Studies. J. Air Pollut. Control Assoc. 1978, 28, 502–507. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Kim, M.G.; Whang, K.-J. Simultaneous Determination of Natural and Styrene-Butadiene Rubber Tire Tread Particles in Atmospheric Dusts by Pyrolysis-Gas Chromatography. J. Anal. Appl. Pyrolysis 1989, 16, 49–55. [Google Scholar] [CrossRef]
- Saito, T. Determination of Styrene-Butadiene and Isoprene Tire Tread Rubbers in Piled Particulate Matter. J. Anal. Appl. Pyrolysis 1989, 15, 227–235. [Google Scholar] [CrossRef]
- Unice, K.M.; Kreider, M.L.; Panko, J.M. Use of a Deuterated Internal Standard with Pyrolysis-GC/MS Dimeric Marker Analysis to Quantify Tire Tread Particles in the Environment. Int. J. Environ. Res. Public Health 2012, 9, 4033–4055. [Google Scholar] [CrossRef] [PubMed]
- Panko, J.M.; Chu, J.; Kreider, M.L.; Unice, K.M. Measurement of Airborne Concentrations of Tire and Road Wear Particles in Urban and Rural Areas of France, Japan, and the United States. Atmos. Environ. 2013, 72, 192–199. [Google Scholar] [CrossRef]
- Panko, J.M.; Hitchcock, K.M.; Fuller, G.W.; Green, D. Evaluation of Tire Wear Contribution to PM2.5 in Urban Environments. Atmosphere 2019, 10, 99. [Google Scholar] [CrossRef]
- Wei, P.; Sun, L.; Anand, A.; Zhang, Q.; Huixin, Z.; Deng, Z.; Wang, Y.; Ning, Z. Development and Evaluation of a Robust Temperature Sensitive Algorithm for Long Term NO2 Gas Sensor Network Data Correction. Atmos. Environ. 2020, 230, 117509. [Google Scholar] [CrossRef]
- Councell, T.B.; Duckenfield, K.U.; Landa, E.R.; Callender, E. Tire-Wear Particles as a Source of Zinc to the Environment. Environ. Sci. Technol. 2004, 38, 4206–4214. [Google Scholar] [CrossRef]
- Fauser, P.; Tjell, J.C.; Mosbaek, H.; Pilegaard, K. Quantification of Tire-Tread Particles Using Extractable Organic Zinc as Tracer. Rubber Chem. Technol. 1999, 72, 969–977. [Google Scholar] [CrossRef]
- Rhodes, E.P.; Ren, Z.; Mays, D.C. Zinc Leaching from Tire Crumb Rubber. Environ. Sci. Technol. 2012, 46, 12856–12863. [Google Scholar] [CrossRef]
- Wik, A.; Dave, G. Occurrence and Effects of Tire Wear Particles in the Environment—A Critical Review and an Initial Risk Assessment. Environ. Pollut. 2009, 157, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.G.; Yagawa, K.; Inoue, H.; Lee, Y.K.; Shirai, T. Measurement of Tire Tread in Urban Air by Pyrolysis-Gas Chromatography with Flame Photometric Detection. Atmos. Environ. Part A Gen. Top. 1990, 24, 1417–1422. [Google Scholar] [CrossRef]
- Kumata, H.; Takada, H.; Ogura, N. Determination of 2-(4-Morpholinyl)Benzothiazole in Environmental Samples by a Gas Chromatograph Equipped with a Flame Photometric Detector. Anal. Chem. 1996, 68, 1976–1981. [Google Scholar] [CrossRef]
- Kumata, H.; Yamada, J.; Masuda, K.; Takada, H.; Sato, Y.; Sakurai, T.; Fujiwara, K. Benzothiazolamines as Tire-Derived Molecular Markers: Sorptive Behavior in Street Runoff and Application to Source Apportioning. Environ. Sci. Technol. 2002, 36, 702–708. [Google Scholar] [CrossRef]
- Alexandrova, O.; Kaloush, K.E.; Allen, J.O. Impact of Asphalt Rubber Friction Course Overlays on Tire Wear Emissions and Air Quality Models for Phoenix, Arizona, Airshed. J. Transp. Res. Board 2007, 2011, 98–106. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Brake and Tire Wear Emissions from Onroad Vehicles in MOVES3; Assessment and Standards Division, Office of Transportation and Air Quality, U.S. Environmental Protection Agency: Washington, DC, USA, 2020.
- Kota, S.H.; Zhang, H.; Chen, G.; Schade, G.W.; Ying, Q. Evaluation of On-Road Vehicle CO and NOx National Emission Inventories Using an Urban-Scale Source-Oriented Air Quality Model. Atmos. Environ. 2014, 85, 99–108. [Google Scholar] [CrossRef]
- Sentoff, K.M.; Aultman-Hall, L.; Holmén, B.A. Implications of Driving Style and Road Grade for Accurate Vehicle Activity Data and Emissions Estimates. Transp. Res. Part D Transp. Environ. 2015, 35, 175–188. [Google Scholar] [CrossRef]
- Aatmeeyata; Kaul, D.S.; Sharma, M. Traffic Generated Non-Exhaust Particulate Emissions from Concrete Pavement: A Mass and Particle Size Study for Two-Wheelers and Small Cars. Atmos. Environ. 2009, 43, 5691–5697. [Google Scholar] [CrossRef]
- Alves, C.A.; Vicente, A.M.P.; Calvo, A.I.; Baumgardner, D.; Amato, F.; Querol, X.; Pio, C.; Gustafsson, M. Physical and Chemical Properties of Non-Exhaust Particles Generated from Wear between Pavements and Tyres. Atmos. Environ. 2020, 224, 117252. [Google Scholar] [CrossRef]
- Dahl, A.; Gharibi, A.; Swietlicki, E.; Gudmundsson, A.; Bohgard, M.; Ljungman, A.; Blomqvist, G.; Gustafsson, M. Traffic-Generated Emissions of Ultrafine Particles from Pavement–Tire Interface. Atmos. Environ. 2006, 40, 1314–1323. [Google Scholar] [CrossRef]
- Kupiainen, K.J.; Tervahattu, H.; Räisänen, M.; Mäkelä, T.; Aurela, M.; Hillamo, R. Size and Composition of Airborne Particles from Pavement Wear, Tires, and Traction Sanding. Environ. Sci. Technol. 2005, 39, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Amato, F.; Alastuey, A.; de la Rosa, J.; Gonzalez Castanedo, Y.; Sánchez de la Campa, A.M.; Pandolfi, M.; Lozano, A.; Contreras González, J.; Querol, X. Trends of Road Dust Emissions Contributions on Ambient Air Particulate Levels at Rural, Urban and Industrial Sites in Southern Spain. Atmos. Chem. Phys. 2014, 14, 3533–3544. [Google Scholar] [CrossRef]
- Wang, X.; Gronstal, S.; Lopez, B.; Jung, H.; Chen, L.-W.A.; Wu, G.; Ho, S.S.H.; Chow, J.C.; Watson, J.G.; Yao, Q.; et al. Evidence of Non-Tailpipe Emission Contributions to PM2.5 and PM10 near Southern California Highways. Environ. Pollut. 2023, 317, 120691. [Google Scholar] [CrossRef] [PubMed]
- Weckwerth, G. Verification of Traffic Emitted Aerosol Components in the Ambient Air of Cologne (Germany). Atmos. Environ. 2001, 35, 5525–5536. [Google Scholar] [CrossRef]
- Sjödin, Å.; Ferm, M.; Björk, A.; Rahmberg, M.; Gudmundsson, A.; Swietlicki, E.; Johansson, C.; Gustafsson, M.; Blomqvist, G. Wear Particles from Road Traffic—A Field, Laboratory and Modelling Study. Final Report; IVL Swedish Environmental Research Institute: Göteborg, Sweden, 2010. [Google Scholar]
- Dietz, R.N.; Cote, E.A. Tracing Atmospheric Pollutants by Gas Chromatographic Determination of Sulfur Hexafluoride. Environ. Sci. Technol. 1973, 7, 338–342. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Glover, D.W. Technique for Elevated Release of Sulfur Hexafluoride Tracer. J. Air Pollut. Control Assoc. 1983, 33, 772–774. [Google Scholar] [CrossRef]
- Cahill, T.A.; Barnes, D.E.; Wuest, L.; Gribble, D.; Buscho, D.; Miller, R.S.; De la Croix, C. Artificial Ultra-Fine Aerosol Tracers for Highway Transect Studies. Atmos. Environ. 2016, 136, 31–42. [Google Scholar] [CrossRef]
- Luhana, L.; Sokhi, R.; Warner, L.; Mao, H.; Boulter, P.; McCrae, I.; Wright, J.; Osborn, D. Non-Exhaust Particulate Measurements: Results. In Deliverable 8 of the European Commission DG TrEn, 5th Framework PARTICULATES Project, Contract No. 2000-RD.11091; European Commissions, Directorate General Transport and Environment: Brussel, Belgium, 2004; p. 96. [Google Scholar]
- Mazurek, M.A.; Simoneit, B.R.T.; Cass, G.R.; Gray, H.A. Quantitative High-Resolution Gas Chromatography and High-Resolution Gas Chromatography/Mass Spectrometry Analyses of Carbonaceous Fine Aerosol Particles. Int. J. Environ. Anal. Chem. 1987, 29, 119–139. [Google Scholar] [CrossRef]
- Rogge, W.F.; Mazurek, M.A.; Hildemann, L.M.; Cass, G.R.; Simoneit, B.R.T. Quantification of Urban Organic Aerosols at a Molecular Level: Identification, Abundance and Seasonal Variation. Atmos. Environ. Part A Gen. Top. 1993, 27, 1309–1330. [Google Scholar] [CrossRef]
- Knight, L.J.; Parker-Jurd, F.N.F.; Al-Sid-Cheikh, M.; Thompson, R.C. Tyre Wear Particles: An Abundant yet Widely Unreported Microplastic? Environ. Sci. Pollut. Res. Int. 2020, 27, 18345–18354. [Google Scholar] [CrossRef]
- Hicks, W.; Beevers, S.; Tremper, A.H.; Stewart, G.; Priestman, M.; Kelly, F.J.; Lanoisellé, M.; Lowry, D.; Green, D.C. Quantification of Non-Exhaust Particulate Matter Traffic Emissions and the Impact of COVID-19 Lockdown at London Marylebone Road. Atmosphere 2021, 12, 190. [Google Scholar] [CrossRef]
- Ntziachristos, L.; Boulter, P. Road Vehicle Tyre and Brake Wear. In EMEP/EEA Emission Inventory Guidebook 2013; European Environment Agency: Copenhagen, Denmark, 2013. [Google Scholar]
- Ejsmont, J.; Taryma, S.; Ronowski, G.; Swieczko-Zurek, B. Influence of Temperature on the Tyre Rolling Resistance. Int. J. Automot. Technol. 2018, 19, 45–54. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Overview of EPA’s MOtor Vehicle Emission Simulator (MOVES4); Assessment and Standards Division, Office of Transportation and Air Quality, U.S. Environmental Protection Agency: Washington, DC, USA, 2023.
Sample # | Highway and Overpass | Surface | Date and Time Sampled |
---|---|---|---|
1.1 | SR 101L & E Sweetwater Ave | AR | 15 July 2022 08:59–10:18 |
1.2 | SR 101L & E Sweetwater Ave | AR | 15 July 2022 10:29–11:54 |
2.1 | SR 101L & E Victory Dr | DG | 10 August 2022 09:14–10:17 |
2.2 | SR 101L & E Victory Dr | DG | 10 August 2022 10:31–11:35 |
3.1 | I-17 & W Rose Garden Ln | AR | 17 August 2022 08:28–09:32 |
3.2 | I-17 & W Rose Garden Ln | AR | 17 August 2022 09:43–10:51 |
4.1 | I-17 & W Utopia Rd | AR | 24 August 2022 08:29–09:30 |
4.2 | I-17 & W Utopia Rd | AR | 24 August 2022 09:40–10:42 |
5.1 | SR 101L & N 15th Ave | DG | 31 August 2022 08:32–09:38 |
5.2 | SR 101L & N 15th Ave | DG | 31 August 2022 09:48–10:56 |
6.1 | SR 101L & N 64th St | DG | 07 September 2022 08:40–09:52 |
6.2 | SR 101L & N 64th St | DG | 07 September 2022 10:01–11:11 |
7.1 | US 60 & S Longmore | AR | 13 September 2022 08:31–09:43 |
7.2 | US 60 & S Longmore | AR | 13 September 2022 09:53–11:07 |
8.1 | SR 202L & S McClintock Dr | DG | 14 September 2022 08:27–09:38 |
8.2 | SR 202L & S McClintock Dr | DG | 14 September 2022 09:47–11:00 |
9.1 | SR 101L & E Thomas Rd | AR | 27 September 2022 08:51–10:05 |
9.2 | SR 101L & E Thomas Rd | AR | 27 September 2022 10:14–11:26 |
10.1 | SR 101L & W Galveston St | DG | 28 September 2022 08:37–09:46 |
10.2 | SR 101L & W Galveston St | DG | 28 September 2022 09:57–11:13 |
11.1 | US 60 & S Extension Rd | AR | 11 October 2022 08:55–10:06 |
11.2 | US 60 & S Extension Rd | AR | 11 October 2022 10:17–11:28 |
12.1 | SR 101L & W Canal Path | DG | 12 October 2022 09:36–10:45 |
12.2 | SR 101L & W Canal Path | DG | 12 October 2022 10:53–12:13 |
W1 | SR 101L & N 15th Ave | DG | 18 January 2023 09:20–11:34 |
W2 | SR 101L & E Sweetwater Ave | AR | 20 January 2023 08:43–10:45 |
W3 | SR 101L & W Galveston St | DG | 24 January 2023 08:50–10:59 |
W4 | SR 101L & N 64th St | DG | 25 January 2023 08:35–10:43 |
W5 | SR 101L & E Thomas Rd | AR | 15 February 2023 08:38–10:41 |
W6 | SR 101L & E Thomas Rd | AR | 16 February 2023 08:21–10:18 |
Tire Sample | %2PB | %NCBA | %BT | %6PPD | %6PPDQ |
---|---|---|---|---|---|
1 | 0.0007 | 0.0025 | 0.0087 | 0.052 | 0.0079 |
2 | 0.0012 | 0.0056 | 0.019 | 0.016 | 0.0091 |
3 | ND 1 | 0.017 | 0.0046 | 0.18 | 0.053 |
4 | ND 1 | 0.015 | 0.013 | 0.20 | 0.021 |
5 | 0.0030 | 0.0105 | 0.017 | 0.29 | 0.081 |
6 | 0.0010 | 0.0023 | 0.0016 | 0.0087 | ND 1 |
7 | 0.0037 | 0.0085 | 0.0094 | 0.30 | 0.092 |
8 | 0.0068 | 0.018 | 0.0022 | 0.15 | 0.011 |
10 | ND 1 | ND 1 | 0.0096 | 0.79 | 0.048 |
11 | 0.0043 | ND 1 | 0.024 | 0.53 | 0.022 |
12 | 0.020 | 0.0067 | 0.0093 | 0.077 | 0.0091 |
13 | 0.056 | 0.0009 | 0.014 | 0.048 | 0.0434 |
14 | 0.0014 | 0.0009 | 0.014 | 0.32 | 0.11 |
15 | 0.0024 | 0.0008 | 0.035 | 0.41 | 0.084 |
16 | 0.0026 | 0.013 | 0.0057 | 0.012 | ND 1 |
17 | 0.043 | 0.041 | 0.015 | 0.16 | 0.11 |
Sample | Surface | Tire Wear Emission Factor (mg km−1 veh−1) |
---|---|---|
2.1 | DG | 1.3 ± 0.3 × 10−1 |
2.2 | DG | 2.0 ± 0.5 × 10−1 |
3.1 | AR | 4 ± 1 × 10−2 |
3.2 | AR | 2 ± 0.5 × 10−2 |
4.1 | AR | 2.2 ± 0.5 × 10−1 |
4.2 | AR | 1.6 ± 0.4 × 10−1 |
5.1 | DG | 4 ± 1 × 10−2 |
5.2 | DG | 6 ± 1 × 10−2 |
6.1 | DG | 2 ± 0.5 × 10−2 |
6.2 | DG | 2 ± 0.5 × 10−2 |
7.1 | AR | 4 ± 1 × 10−2 |
7.2 | AR | 3 ± 0.8 × 10−2 |
8.1 | DG | 1.2 ± 0.3 × 10−1 |
8.2 | DG | 1.8 ± 0.4 × 10−1 |
10.2 | DG | 4 ± 1 × 10−2 |
11.1 | AR | 3 ± 0.6 × 10−2 |
11.2 | AR | 5 ± 1 × 10−2 |
12.1 | DG | 4 ± 0.9 × 10−2 |
12.2 | DG | 5 ± 1 × 10−2 |
W1 | DG | 3 ± 0.6 × 10−2 |
W2 | AR | 1 ± 0.2 × 10−2 |
W3 | DG | 5 ± 1 × 10−3 |
W4 | DG | 6 ± 1 × 10−3 |
W5 | AR | 3 ± 0.6 × 10−2 |
W6 | AR | 3 ± 0.7 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miech, J.A.; Aker, S.; Zhang, Z.; Ozer, H.; Fraser, M.P.; Herckes, P. Tire Wear Emissions by Highways: Impact of Season and Surface Type. Atmosphere 2024, 15, 1122. https://doi.org/10.3390/atmos15091122
Miech JA, Aker S, Zhang Z, Ozer H, Fraser MP, Herckes P. Tire Wear Emissions by Highways: Impact of Season and Surface Type. Atmosphere. 2024; 15(9):1122. https://doi.org/10.3390/atmos15091122
Chicago/Turabian StyleMiech, Jason A., Saed Aker, Zhaobo Zhang, Hasan Ozer, Matthew P. Fraser, and Pierre Herckes. 2024. "Tire Wear Emissions by Highways: Impact of Season and Surface Type" Atmosphere 15, no. 9: 1122. https://doi.org/10.3390/atmos15091122
APA StyleMiech, J. A., Aker, S., Zhang, Z., Ozer, H., Fraser, M. P., & Herckes, P. (2024). Tire Wear Emissions by Highways: Impact of Season and Surface Type. Atmosphere, 15(9), 1122. https://doi.org/10.3390/atmos15091122