Evaluating the Impacts of IWRM Policy Actions on Demand Satisfaction and Downstream Water Availability in the Upper Awash Basin, Ethiopia
Abstract
:1. Introduction
- How would full scale irrigation expansion in the Upper Awash Basin affect water availability within the sub-basin and downstream flows?
- To what extent could the water demand management options as embedded in the national IWRM policy and the corresponding principles offset the impacts of irrigation expansion?
- How would irrigation expansion along with demand management measures in the Upper Awash affect downstream flows?
2. Study Area
3. WEAP21 Model for the Upper Awash Basin
3.1. Hydrology
3.2. Scenario Description and Demand Representation in WEAP
3.2.1. Scenario A: Reference
3.2.2. Scenario B: Irrigation Expansion
3.2.3. Scenarios C & D: Water Management Scenarios
4. Results
4.1. Calibration and Validation
4.2. Reference Scenario
4.2.1. Water Demand
4.2.2. Unmet Water Demand
4.3. Future Scenarios
4.3.1. Scenario B: Irrigation Expansion Scenario
Irrigation Area and Water Demand
Unmet Water Demand under the Expansion Scenario
4.3.2. Scenarios C and D: Expansion Plans in Conjunction with Water Demand Management
Unmet Demand: All Scenarios
Effects on Stream Flow of All Scenarios
5. Discussion
5.1. To What Extent Can Demand Management Based on Users’ Preferences Reduce Unmet Demand?
5.2. Can Comprehensive Demand Management Based on Policy and the IWRM Concept Fully Meet the Requirements?
5.3. Implications for Stream Flow
5.4. Uncertainties Associated with Climate Change
6. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zoumidēs, C.; Zachariadēs, T. Irrigation Water Pricing in Southern Europe and Cyprus: The Effects of the EU Common Agricultural Policy and the Water Framework Directive; University of Cyprus: Nicosia, Cyprus, 2009. [Google Scholar]
- Birol, E.; Karousakis, K.; Koundouri, P. Using economic valuation techniques to inform water resources management: A survey and critical appraisal of available techniques and an application. Sci. Total Environ. 2006, 365, 105–122. [Google Scholar] [CrossRef] [PubMed]
- IUCN. World Conservation Union. 2005. Available online: www.iucn.org (accessed on 15 November 2017).
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johannsen, I.M.; Hengst, J.C.; Goll, A.; Höllermann, B.; Diekkrüger, B. Future of water supply and demand in the middle Draa Valley, Morocco, under climate and land use change. Water 2016, 8, 313. [Google Scholar] [CrossRef]
- Abughlelesha, S.M.; Lateh, H.B. A review and analysis of the impact of population growth on water resources in Libya. World Appl. Sci. J. 2013, 23, 965–971. [Google Scholar]
- Alcamo, J.; Flörke, M.; Märker, M. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol. Sci. J. 2007, 52, 247–275. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global monthly water scarcity: Blue water footprints versus blue water availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef] [PubMed]
- Postel, S.L. Entering an era of water scarcity: The challenges ahead. Ecol. Appl. 2000, 10, 941–948. [Google Scholar] [CrossRef]
- Dey, D. Virtual Water Trade–Real Concerns. 2009. Available online: http://dx.doi.org/10.2139/ssrn.1489827 (accessed on 15 June 2018).
- Postel, S.L. Water for food production: Will there be enough in 2025? BioScience 1998, 48, 629–637. [Google Scholar] [CrossRef]
- El-Fadel, M.; El-Sayegh, Y.; El-Fadl, K.; Khorbotly, D. The Nile River Basin: A Case Study in Surface Water Conflict Resolution. J. Nat. Resour. Life Sci. Educ. 2003, 32, 107. [Google Scholar]
- Karar, E. Integrated water resource management (IWRM): Lessons from implementation in developing countries. Water SA 2008, 34, 661–664. [Google Scholar]
- Benson, D.; Gain, A.; Rouillard, J. Water governance in a comparative perspective: From IWRM to a‘nexus’ approach? Water Altern. 2015, 8, 756–773. [Google Scholar]
- Swatuk, L.A. Political challenges to implementing IWRM in Southern Africa. Phys. Chem. Earth Parts A/B/C 2005, 30, 872–880. [Google Scholar] [CrossRef]
- Molle, F.; Chu, T.H. Implementing Integrated River Basin Management: Lessons from the Red River Basin, Vietnam; Internationa Water Management Institute: Colombo, Sri Lanka, 2009; Volume 131. [Google Scholar]
- Wester, P.; Hoogesteger, J.; Vincent, L. Local IWRM organizations for groundwater regulation: The experiences of the Aquifer Management Councils (COTAS) in Guanajuato, Mexico. U. N. Sustain. Dev. J. 2009, 33, 29–38. [Google Scholar] [CrossRef]
- Adeba, D.; Kansal, M.L.; Sen, S. Assessment of water scarcity and its impacts on sustainable development in Awash basin, Ethiopia. Sustain. Water Resour. Manag. 2015, 1, 71–87. [Google Scholar] [CrossRef] [Green Version]
- WBG. Global Economic Prospects: A Fragile Recovery; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Mersha, A.N.; de Fraiture, C.; Mehari, A.; Masih, I.; Alamirew, T. Integrated Water Resources Management: Contrasting principles, policy, and practice, Awash River Basin, Ethiopia. Water Policy 2016, 18, 335–354. [Google Scholar] [CrossRef]
- GWP. Integrated Water Resources Management; (TAC Background Paper; No. 4); GWP: Stockholm, Sweden, 2000; Available online: http://www.gwpforum.org/gwp/library/Tacno4.pdf (accessed on 4 October 2017).
- Food and Agriculture Organization (FAO). Coping with Water Scarcity-the Role of Agriculture. Developing a Water Audit for Awash River Basin. WithEmphasis on Agricultural Water Management. In Sectoral Water Uses in the Awash Basin; Final Report; FAO: Rome, Italy, 2013. [Google Scholar]
- MoWR. Ethiopian Water Sector Strategy; Ministry of Water Resources: Addis Ababa, Ethiopia, 2001.
- Agyenim, J.B.; Gupta, J. IWRM and developing countries: Implementation challenges in Ghana. Phys. Chem. Earth Parts A/B/C 2012, 47, 46–57. [Google Scholar] [CrossRef]
- Gourbesville, P. Integrated river basin management, ICT and DSS: Challenges and needs. Phys. Chem. Earth Parts A/B/C 2008, 33, 312–321. [Google Scholar] [CrossRef]
- Dungumaro, E.W.; Madulu, N.F. Public participation in integrated water resources management: The case of Tanzania. Phys. Chem. Earth Parts A/B/C 2003, 28, 1009–1014. [Google Scholar] [CrossRef]
- The United Nations Educational, Scientific and Cultural Organization (UNESCO). Introduction to the IWRM Guidelines at River Basin Level; The United Nations Educational, Scientific and Cultural Organization: Paris, France, 2009; ISBN 978-992-973-104133-104134. [Google Scholar]
- MoWE. Awash Basin Description. 2010. Available online: http://www.mowr.gov.et/index.php?pagenum=3.3&pagehgt=1000px (accessed on 20 September 2017).
- Brouwer, C.; Prins, K.; Heibloem, M. Irrigation Water Management: Irrigation Scheduling; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1989; Available online: http://www.fao.org/tempref/agl/AGLW/fwm/Manual4.pdf (accessed on 15 June 2018).
- Assaf, H.; Van Beek, E.; Borden, C.; Gijsbers, P.; Jolma, A.; Kaden, S.; Kaltofen, M.; Labadie, J.; Loucks, D.; Quinn, N. Generic simulation models for facilitating stakeholder involvement in water resources planning and management: A comparison, evaluation, and identification of future needs. Dev. Integr. Environ. Assess. 2008, 3, 229–246. [Google Scholar]
- Sechi, G.M.; Sulis, A. Intercomparison of generic simulation models for water resource systems. In Proceedings of the 5th International Congress on Environmental Modelling and Software, Ottawa, ON, Canada, 1 July 2010; p. 168. [Google Scholar]
- Sieber, J. WEAP Water Evaluation and Planning System. In Proceedings of the 3rd International Congress on Environmental Modelling and Software, Burlington, VT, USA, 9–13 July 2006. [Google Scholar]
- Yates, D.; Sieber, J.; Purkey, D.; Huber-Lee, A. WEAP21—A demand-, priority-, and preference-driven water planning model: Part 1: Model characteristics. Water Int. 2005, 30, 487–500. [Google Scholar] [CrossRef]
- Höllermann, B.; Giertz, S.; Diekkrüger, B. Benin 2025—Balancing future water availability and demand using the WEAP ‘Water Evaluation and Planning’ System. Water Resour. Manag. 2010, 24, 3591–3613. [Google Scholar] [CrossRef]
- Blanco-Gutiérrez, I.; Varela-Ortega, C.; Purkey, D.R. Integrated assessment of policy interventions for promoting sustainable irrigation in semi-arid environments: A hydro-economic modeling approach. J. Environ. Manag. 2013, 128, 144–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Water, Irrigation and Energy (MoWIE). Second National Growth and Transformation Plan for Water Supply and Sanitation Sub-Sector 2015/16–2019/20; Ministry of Water, Irrigation and Energy: Addis Ababa, Ethiopia, 2015. Available online: http://www.cmpethiopia.org/media/english_gtp_2_for_water_sector_final_draft (accessed on 20 September 2017).
- Doornbos, J. Crop water requirements. In FAO Irrigation and Drainage Paper; Food and Agriculture Organization: Rome, Italy, 1986; Volume 24, p. 144. [Google Scholar]
- Haile, G.G.; Kasa, A. Irrigation in Ethiopia: A review. Acad. J. Agric. Res. 2015, 3, 264–269. [Google Scholar]
- WSM. Comprehensive Water Management Scenarios’, WaterStrategyMan, Deliverable No 16 of the project ‘Developing Strategies for Regulating and Managing Water Resources and Demand in Water Deficient Regions’, EU DG Research, EVK1-CT-2001-00098. 2005. Available online: http://environ.chemeng.ntua.gr/wsm (accessed on 10 October 2017).
- Savenije, H.; Van der Zaag, P. Integrated water resources management: Concepts and issues. Phys. Chem. Earth Parts A/B/C 2008, 33, 290–297. [Google Scholar] [CrossRef]
- Manoli, E.; Katsiardi, P.; Arampatzis, G.; Assimacopoulos, D. Comprehensive water management scenarios for strategic planning. Glob. NEST J. 2005, 7, 369–378. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Masih, I. Understanding Hydrological Variability for Improved Water Management in the Semi-Arid Karkheh Basin, Iran: IHE Delft PhD Thesis; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Awulachew, S.B.; Yilma, A.D.; Loulseged, M.; Loiskandl, W.; Ayana, M.; Alamirew, T. Water Resources and Irrigation Development in Ethiopia; International Water Management Institute: Colombo, Sri Lanka, 2007; Volume 123. [Google Scholar]
- Loiskandl, W.; Ruffeis, D.; Schönerklee, M.; Spendlingwimmer, R.; Awulachew, S.B.; Boelee, E. Case study review of investigated irrigation projects in Ethiopia. In Proceedings of the Impact of Irrigation on Poverty and Environment in Ethiopia: Draft Proceedings of the Symposium and Exhibition, Addis Ababa, Ethiopia, 27–29 November 2007. [Google Scholar]
- Ezenwaji, E.E.; Eduputa, B.M.; Ogbuozobe, J.E. Employing Water Demand Management Option for the Improvement of Water Supply and Sanitation in Nigeria. J. Water Resour. Prot. 2015, 7, 624. [Google Scholar] [CrossRef]
- Katz, D. Policies for water demand management in Israel. In Water Policy in Israel; Springer: Berlin, Germany, 2013; pp. 147–163. [Google Scholar]
- Edossa, D.C.; Babel, M.S. Application of ANN-based streamflow forecasting model for agricultural water management in the Awash River Basin, Ethiopia. Water Resour. Manag. 2011, 25, 1759–1773. [Google Scholar] [CrossRef]
- Bates, B.; Kundzewicz, Z.; Wu, S.; Palutikof, J. Climate Change and Water: Technical Paper of the Intergovernmental Panel on Climate Change; IPCC Secretariat: Geneva, Switzerland, 2008. [Google Scholar]
- Gebre, S.; Tadele, K.; Mariam, B. Potential impacts of climate change on the hydrology and water resources availability of Didessa Catchment, Blue Nile River Basin, Ethiopia. J. Geol. Geosci. 2015, 4, 193. [Google Scholar] [CrossRef]
- Daba, M.; Tadele, K.; Shemalis, A. Evaluating Potential Impacts of Climate Change on Surface Water Resource Availability of Upper Awash Sub-Basin, Ethiopia. Open Water J. 2015, 3, 22. [Google Scholar]
- Dile, Y.T.; Berndtsson, R.; Setegn, S.G. Hydrological response to climate change for gilgel abay river, in the lake tana basin-upper blue Nile basin of Ethiopia. PLoS ONE 2013, 8, e79296. [Google Scholar] [CrossRef] [PubMed]
- Setegn, S.G.; Rayner, D.; Melesse, A.M.; Dargahi, B.; Srinivasan, R. Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Daba, M.H. Modelling the Impacts of Climate Change on Surface Runoff in Finchaa Sub-basin, Ethiopia. J. Sci. Food Agric. 2018, 2, 14–29. [Google Scholar]
- Admassu, H.; Getinet, M.; Thomas, T.S.; Waithaka, M.; Kyotalimye, M. Ethiopia. In East African Agriculture and Climate Change; Waithaka, M., Nelson, G.C., Kyotalimye, T.S.T.M., Eds.; IFPRI: Washington, DC, USA, 2013. [Google Scholar]
- Molle, F.; Wester, P.; Hirsch, P.; Jensen, J.R.; Murray-Rust, H.; Paranjpye, V.; Pollard, S.; Van der Zaag, P. River Basin Development and Management. In Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Molden, D., Ed.; International Water Management Institute: Colombo, Sri Lanka, 2007; pp. 585–625. [Google Scholar]
Irrigation Scheme | Existing (ha) | Planned (ha) | Expansion % | |
---|---|---|---|---|
Small_scale schemes (Upstream to downstream) | Kunture | 4949 | 1614 | 33 |
USKoka | 6581 | 290 | 4 | |
Akaki | 3559 | 1178 | 33 | |
Mojo | 6361 | 191 | 3 | |
Keleta | 4913 | 561 | 11 | |
Arba | 2915 | 2629 | 90 | |
Awash | 8525 | 1245 | 15 | |
Kobo | 0 | 5600 | ||
Large_scale schemes (Upstream to downstream) | Wonji | 8728 | 12,000 | 137 |
Tibila | 923 | 6077 | 658 | |
Fentale | 5880 | 12,120 | 206 | |
NuraEra | 3672 | 0 | 0 | |
Methara | 10,224 | 3000 | 29 | |
Total | 67,230 | 46,506 | 69 |
Catchment | Drainage Area (106 m2) | P | E | Q | GW | Water Balance |
---|---|---|---|---|---|---|
P-E-GW-Q = ∆S | ||||||
Kunture | 45,634.6 | 5.31 | 1.96 | 0.93 | 2.40 | 0.03 |
Akaki | 1634.0 | 1.71 | 0.71 | 0.32 | 0.67 | 0.01 |
Mojo | 2075.6 | 1.80 | 0.67 | 0.20 | 0.90 | 0.03 |
Keleta | 1794.0 | 1.84 | 0.71 | 0.24 | 0.86 | 0.02 |
US Koka | 3194.0 | 1.97 | 1.37 | 0.14 | 0.46 | 0.00 |
Arba | 3155.3 | 1.85 | 0.97 | 0.19 | 0.67 | 0.02 |
Awash | 8467.4 | 6.55 | 3.33 | 1.78 | 1.48 | -0.05 |
Water Demand (106 m3) | 2016 | 2020 | 2025 | 2030 | 2035 | 2040 | % Growth (2016–2040) |
---|---|---|---|---|---|---|---|
Domestic (including human and livestock consumption) | 54 | 68 | 92 | 127 | 177 | 249 | 361 |
Irrigation | 1166 | 1187 | 1214 | 1243 | 1273 | 1304 | 12 |
Total Demand | 1220 | 1255 | 1306 | 1370 | 1450 | 1553 | 27 |
Share of irrigation (%) | 95.0 | 94.6 | 92.9 | 90.7 | 87.8 | 84.0 | - |
Indicators | 2016 | 2040 | |||
---|---|---|---|---|---|
Reference | Reference | Expansion | Users’ Preference | Comprehensive Management | |
Irrigation area (ha) | 67,230 | 80,676 | 141,183 | 141,183 | 141,183 |
Water demand (106 m3) | 1221 | 1531 | 2560 | 2560 | 2211 |
Supply Requirement (106 m3) | 1221 | 1531 | 2560 | 2368 | 1975 |
Supply delivered (106 m3) | 1194 | 1434 | 2354 | 2190 | 1810 |
Unmet demand (106 m3) | 27 | 97 | 206 | 178 | 165 |
Demand Sites (Irrigation) | Demand-Site Coverage (%) 1 | Reliability (%) 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Year 2016 | Year 2040 | |||||||||
All Scenarios | Ref | Exp | SH Pref | CompM | Ref | Exp | SHs’ pref | CompM | ||
Small-scale schemes (from upstream to downstream) | Kunture | 62 | 58 | 40 | 42 | 44 | 74 | 64 | 65 | 66 |
USKoka | 62 | 58 | 40 | 42 | 44 | 74 | 64 | 65 | 66 | |
Akaki | 62 | 58 | 40 | 42 | 44 | 74 | 64 | 65 | 66 | |
Mojo | 58 | 58 | 39 | 42 | 43 | 55 | 53 | 57 | 57 | |
Keleta | 100 | 86 | 60 | 64 | 66 | 93 | 78 | 82 | 84 | |
Arba | 100 | 100 | 99 | 100 | 100 | 98 | 93 | 97 | 98 | |
Awash | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Kobo | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Large-scale schemes (from upstream to downstream) | Wonji | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Tibila | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Fentale | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
NuraEra | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Methara | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mersha, A.N.; Masih, I.; De Fraiture, C.; Wenninger, J.; Alamirew, T. Evaluating the Impacts of IWRM Policy Actions on Demand Satisfaction and Downstream Water Availability in the Upper Awash Basin, Ethiopia. Water 2018, 10, 892. https://doi.org/10.3390/w10070892
Mersha AN, Masih I, De Fraiture C, Wenninger J, Alamirew T. Evaluating the Impacts of IWRM Policy Actions on Demand Satisfaction and Downstream Water Availability in the Upper Awash Basin, Ethiopia. Water. 2018; 10(7):892. https://doi.org/10.3390/w10070892
Chicago/Turabian StyleMersha, Adey Nigatu, Ilyas Masih, Charlotte De Fraiture, Jochen Wenninger, and Tena Alamirew. 2018. "Evaluating the Impacts of IWRM Policy Actions on Demand Satisfaction and Downstream Water Availability in the Upper Awash Basin, Ethiopia" Water 10, no. 7: 892. https://doi.org/10.3390/w10070892