Rainwater Harvesting for Drinking Water Production: A Sustainable and Cost-Effective Solution in The Netherlands?
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Rainwater Quality
3.2. Quantity of Rainwater
3.3. Sustainability and Cost-Effectiveness of Rainwater Harvesting in the Netherlands
- A new city district, being developed in urban Amsterdam, considering all rainwater from paved and built surfaces, in order to also decrease negative effects from heavy showers, like flooding, and overcharge of the sewer system.
- An individual house in the peri-urban area of Amsterdam, assuming that in this case the roof area would be large enough to cover the drinking water demand of the inhabitants.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van den Hurk, B.; Tank, A.K.; Lenderink, G.; Van Ulden, A.; Van Oldenborgh, G.J.; Katsman, C.; Van de Brink, H.; Keller, F.; Bessembinder, J.; Burger, G.; et al. KNMI Climate Change Scenarios 2006 for the Netherlands; Royal Netherlands Meteorological Institute: De Bilt, The Netherlands, 2006. [Google Scholar]
- IPCC WG2. AR6 Climate Change 2021: Impacts, Adaptation and Vulnerability. Available online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ (accessed on 29 December 2018).
- Rovers, V.; Bosch, P.; Albers, R.E. Climate Proof Cities; Final Report; Climate Proof Cities Consortium: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Ringelstein, O. Now we can shower with Rain Water. GWF Wasser-Abwasser 2015, 156, 58–61. [Google Scholar]
- Bellu, A.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Pacheco, F.A.L. A framework model for the dimensioning and allocation of a detention basin system: The case of a flood-prone mountainous watershed. J. Hydrol. 2016, 533, 567–580. [Google Scholar] [CrossRef]
- Terêncio, D.P.S.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Moura, J.P.; Pacheco, F.A.L. Rainwater harvesting in catchments for agro-forestry uses: A study focused on the balance between sustainability values and storage capacity. Sci. Total Environ. 2018, 613, 1079–1092. [Google Scholar] [CrossRef] [PubMed]
- Terêncio, D.P.S.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Pacheco, F.A.L. Improved framework model to allocate optimal rainwater harvesting sites in small watersheds for agro-forestry uses. J. Hydrol. 2017, 550, 318–330. [Google Scholar] [CrossRef]
- Wang, H.; Mei, C.; Liu, J.; Shao, W. A new strategy for integrated urban water management in China: Sponge city. Sci. China Technol. Sci. 2018, 61, 317–329. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, Y.; Xiong, L.; He, S.; Wang, L.; Yu, Z. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China Earth Sci. 2017, 60, 652–658. [Google Scholar] [CrossRef]
- Han, M.Y.; Mun, J.S. Operational data of the Star City rainwater harvesting system and its role as a climate change adaptation and a social influence. Water Sci. Technol. 2011, 63, 2796–2801. [Google Scholar] [CrossRef]
- Sanches Fernandes, L.F.; Terêncio, D.P.S.; Pacheco, F.A.L. Rainwater harvesting systems for low demanding applications. Sci. Total Environ. 2015, 529, 91–100. [Google Scholar] [CrossRef]
- Kim, T.; Lye, D.; Donohue, M.; Mistry, J.H.; Pfaller, S.; Vesper, S.; Kirisits, M.J. Harvested rainwater quality before and after treatment and distribution in residential systems. J. Am. Water Works Assoc. 2016, 108, E571–E584. [Google Scholar] [CrossRef]
- Dallman, S.; Chaudhry, A.M.; Muleta, M.K.; Lee, J. The Value of Rain: Benefit-Cost Analysis of Rainwater Harvesting Systems. Water Resour. Manag. 2016, 30, 4415–4428. [Google Scholar] [CrossRef]
- Mendez, C.B.; Klenzendorf, J.B.; Afshar, B.R.; Simmons, M.T.; Barrett, M.E.; Kinney, K.A.; Kirisits, M.J. The effect of roofing material on the quality of harvested rainwater. Water Res. 2011, 45, 2049–2059. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, K.A.; Ahmed, W.; Toze, S.; Haas, C.N. Human health risks for Legionella and Mycobacterium avium complex (MAC) from potable and non-potable uses of roof-harvested rainwater. Water Res. 2017, 119, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Leong, J.Y.C.; Chong, M.N.; Poh, P.E.; Hermawan, A.; Talei, A. Longitudinal assessment of rainwater quality under tropical climatic conditions in enabling effective rainwater harvesting and reuse schemes. J. Clean. Prod. 2017, 143, 64–75. [Google Scholar] [CrossRef]
- Leong, J.Y.C.; Oh, K.S.; Poh, P.E.; Chong, M.N. Prospects of hybrid rainwater-greywater decentralised system for water recycling and reuse: A review. J. Clean. Prod. 2017, 142, 3014–3027. [Google Scholar] [CrossRef]
- Angrill, S.; Petit-Boix, A.; Morales-Pinzón, T.; Josa, A.; Rieradevall, J.; Gabarrell, X. Urban rainwater runoff quantity and quality—A potential endogenous resource in cities? J. Environ. Manag. 2017, 189, 14–21. [Google Scholar] [CrossRef]
- Angrill, S.; Segura-Castillo, L.; Petit-Boix, A.; Rieradevall, J.; Gabarrell, X.; Josa, A. Environmental performance of rainwater harvesting strategies in Mediterranean buildings. Int. J. Life Cycle Assess. 2017, 22, 398–409. [Google Scholar] [CrossRef]
- Farreny, R.; Morales-Pinzón, T.; Guisasola, A.; Tayà, C.; Rieradevall, J.; Gabarrell, X. Roof selection for rainwater harvesting: Quantity and quality assessments in Spain. Water Res. 2011, 45, 3245–3254. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Bak, G.; Han, M. Quality of roof-harvested rainwater—Comparison of different roofing materials. Environ. Pollut. 2012, 162, 422–429. [Google Scholar] [CrossRef] [PubMed]
- García-Montoya, M.; Sengupta, D.; Nápoles-Rivera, F.; Ponce-Ortega, J.M.; El-Halwagi, M.M. Environmental and economic analysis for the optimal reuse of water in a residential complex. J. Clean. Prod. 2016, 130, 82–91. [Google Scholar] [CrossRef]
- Medema, G.J. Microbiologische Veiligheid van Huishoudwater. voor Toepassing van Toilet, Wassen Kleding en Buitenkraan; Kiwa Water Research: Nieuwegein, The Netherlands, 1999. [Google Scholar]
- Versteegh, J.F.M.; Evers, E.G.; Havelaar, A.H. Gezondheidsrisico’s en Normstelling voor Huishoudwater; Rijksinstituut voor Volksgezondheid en Milieu: Bilthoven, The Netherlands, 1997. [Google Scholar]
- Oesterholt, F. Beleidsonderbouwende Monitoring Huishoudwater; Kiwa Water Research: Nieuwegein, The Netherlands, 2003. [Google Scholar]
- Oesterholt, F.; Sluijs, A.; Mons, M.N.; Medema, G.J. Evaluatie van praktijkervaringen met huishoudwater. In H2O; KNW, 2003; Volume 16, pp. 22–24. Available online: http://library.wur.nl/WebQuery/hydrotheek/1692729 (accessed on 30 December 2018).
- KNMI. Overview of Precipitation and Evaporation in The Netherlands. Available online: https://www.knmi.nl/nederland-nu/klimatologie/gegevens/monv (accessed on 8 August 2018).
- Vewin. Water Supply Statistics 2017. Available online: http://www.vewin.nl/SiteCollectionDocuments/Publicaties/Cijfers/Drinkwaterstatistieken-2017-NL.pdf (accessed on 8 August 2018).
- DHV Water. Handboek Kosten Kleinschalige Waterbehandeling. 2000. Available online: https://www.kostenstandaard.nl/ (accessed on 30 December 2018).
- Loubet, P.; Roux, P.; Loiseau, E.; Bellon-Maurel, V. Life cycle assessments of urban water systems: A comparative analysis of selected peer-reviewed literature. Water Res. 2014, 67, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Garfí, M.; Cadena, E.; Sanchez-Ramos, D.; Ferrer, I. Life cycle assessment of drinking water: Comparing conventional water treatment, reverse osmosis and mineral water in glass and plastic bottles. J. Clean. Prod. 2016, 137, 997–1003. [Google Scholar] [CrossRef]
- Mohapatra, P.K.; Siebel, M.A.; Gijzen, H.J.; Van der Hoek, J.P.; Groot, C.A. Iproving eco-efficiency of Amsterdam water supply: A LCA appraoch. J. Water Supply Res. Technol. Aqua 2002, 51, 217–227. [Google Scholar] [CrossRef]
- Igos, E.; Dalle, A.; Tiruta-Barna, L.; Benetto, E.; Baudin, I.; Mery, Y. Life Cycle Assessment of water treatment: What is the contribution of infrastructure and operation at unit process level? J. Clean. Prod. 2014, 65, 424–431. [Google Scholar] [CrossRef]
- Bonton, A.; Bouchard, C.; Barbeau, B.; Jedrzejak, S. Comparative life cycle assessment of water treatment plants. Desalination 2012, 284, 42–54. [Google Scholar] [CrossRef]
- Barrios, R.; Siebel, M.; van der Helm, A.; Bosklopper, K.; Gijzen, H. Environmental and financial life cycle impact assessment of drinking water production at Waternet. J. Clean. Prod. 2008, 16, 471–476. [Google Scholar] [CrossRef]
- Goedkoop, M.J.; Huijbregts, M.A.J.; Heijungs, R.; Stuijs, J.; van Zelm, R. ReCiPe 2008 a Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level; Report I: Characterisation; Ministerie van Volkshuisvesting, ruimtelijke ordening en milieubeheer: The Hague, The Netherlands, 2009. [Google Scholar]
- Baayen, H. Eco-Indicator 99; Manual for Designers; A Damage Oriented Method for Life Cycle Impact Assessment; Ministry of Housing, Spatial Planning and the Environment: The Hague, The Netherlands, 2000. [Google Scholar]
- UNFCCC. Adoption of the Paris Agreement. Available online: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 30 December 2018).
- Hofman-Caris, C.H.M.; Huiting, H.; Snip, L.; Brand, T.V.D.; Palmen, L. Ontharding 2.0 bij Waternet; Productielocatie Leiduin; KWR Watercycle Research Institute: Nieuwegein, The Netherlands, 2016. [Google Scholar]
- Grömping, A.H.J.; Ostapczuk, P.; Emons, H. Wet depostion in Germany: Long-term trends and the contribution of heavy metals. Chemosphere 1997, 34, 2227–2236. [Google Scholar] [CrossRef]
- Bhaskar, V.V.; Rao, P.S.P. Annual and decadal variation in chemical composition of rain water at all the ten GAW stations in India. J. Atmos. Chem. 2017, 74, 23–53. [Google Scholar] [CrossRef]
- Rao, P.S.P.; Tiwari, S.; Matwale, J.L.; Pervez, S.; Tunved, P.; Safai, P.D.; Srivastava, A.K.; Bisht, D.S.; Singh, S.; Hopke, P.K. Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols. Atmos. Environ. 2016, 146, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Deusdará, K.R.L.; Forti, M.C.; Borma, L.S.; Menezes, R.S.C.; Lima, J.R.S.; Ometto, J.P.H.B. Rainwater chemistry and bulk atmospheric deposition in a tropical semiarid ecosystem: The Brazilian Caatinga. J. Atmos. Chem. 2017, 74, 71–85. [Google Scholar] [CrossRef]
- Beysens, D.; Mongruel, A.; Acker, K. Urban dew and rain in Paris, France: Occurrence and physico-chemical characteristics. Atmos. Res. 2017, 189, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Zobrist, J.; Müller, S.R.; Ammann, A.; Bucheli, T.D.; Mottier, V.; Ochs, M.; Schoenenberger, R.; Eugster, J.; Boller, M. Quality of roof runoff for groundwater infiltration. Water Res. 2000, 34, 1455–1462. [Google Scholar] [CrossRef]
- Vet, R.; Artz, R.S.; Carou, S. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 2014, 93, 3–100. [Google Scholar] [CrossRef] [Green Version]
- Cukurluoglu, S. Sources of trace elements in wet deposition in Pamukkale, Denizli, western Turkey. Environ. Forensics 2017, 18, 83–99. [Google Scholar] [CrossRef]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef] [Green Version]
- Dutch Government. Drinkwaterbesluit. Available online: https://wetten.overheid.nl/BWBR0030111/2018-07-01#BijlageA (accessed on 30 December 2018).
- Förster, J. Variability of roof runoff quality. In Proceedings of the 1998 International Congress on Options for Closed Water Systems—Sustainable Water Management; Elsevier Science Ltd.: Amsterdam, The Netherlands, 1999; Volume 39, pp. 137–144. [Google Scholar]
- Cindoruk, S.S.; Ozturk, E. Atmospheric deposition of organochlorine pesticides by precipitation in a coastal area. Environ. Sci. Pollut. Res. 2016, 23, 24504–24513. [Google Scholar] [CrossRef]
- Göbel, P.; Dierkes, C.; Coldewey, W.G. Storm water runoff concentration matrix for urban areas. J. Contam. Hydrol. 2007, 91, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Lamprea, K.; Ruban, V. Micro pollutants in atmospheric deposition, roof runoff and storm water runoff of a suburban catchment in Nantes, France. In Proceedings of the 11th international conference on urban drainage, Edingburgh, UK, 31 August–5 September 2008; pp. 1–8. [Google Scholar]
- Boogaard, F.C.; Lemmen, G.B. Achtergrondrapport Database Regenwater; 2007-WO09; Stowa: Zwijndrecht, The Netherlands, 2007; ISBN 978.90.5773.378.9. [Google Scholar]
- Yaziz, M.I.; Gunting, H.; Sapari, N.; Ghazali, A.W. Variations in rainwater quality from roof catchments. Water Res. 1989, 23, 761–765. [Google Scholar] [CrossRef]
- Gikas, G.D.; Tsihrintzis, V.A. Assessment of water quality of first-flush roof runoff and harvested rainwater. J. Hydrol. 2012, 466, 115–126. [Google Scholar] [CrossRef]
- Rijksoverheid. Compendium voor de Leefomgeving. Available online: http://www.clo.nl/indicatoren/nl2114-huishoudens (accessed on 30 December 2018).
- Weber, D. Zonnepanelen-Weetjes. Available online: https://www.zonnepanelen-weetjes.nl/blog/afmetingen-van-zonnepanelen/ (accessed on 2 January 2019).
- Amsterdam, M.O. Centrumeiland: Zelfbouw en Duurzaamheid. Available online: https://www.amsterdam.nl/projecten/ijburg/centrumeiland (accessed on 8 August 2018).
- Agudelo-Vera, C.; Blokker, M.; Vreeburg, J.; Vogelaar, H.; Hillegers, S.; Van der Hoek, J.P. Testing the robustness of two water distribution system layouts under changing drinking water demand. J. Water Resour. Plan. Manag. 2016, 142, 05016003. [Google Scholar] [CrossRef]
- Welt. Regensteuer. Available online: https://www.welt.de/print/die_welt/hamburg/article10416092/Regensteuer-tritt-2012-in-Kraft.html (accessed on 8 August 2018).
- Roebuck, R.M.; Oltean-Dumbrava, C.; Tait, S. Whole life cost performance of domestic rainwater harvesting systems in the United Kingdom. Water Environ. J. 2011, 25, 355–365. [Google Scholar] [CrossRef]
- Domènech, L.; Saurí, D. A comparative appraisal of the use of rainwater harvesting in single and multi-family buildings of the Metropolitan Area of Barcelona (Spain): Social experience, drinking water savings and economic costs. J. Clean. Prod. 2011, 19, 598–608. [Google Scholar] [CrossRef]
- Farreny, R.; Gabarrell, X.; Rieradevall, J. Cost-efficiency of rainwater harvesting strategies in dense Mediterranean neighbourhoods. Resour. Conserv. Recycl. 2011, 55, 686–694. [Google Scholar] [CrossRef]
- Morales-Pinzón, T.; Lurueña, R.; Rieradevall, J.; Gasol, C.M.; Gabarrell, X. Financial feasibility and environmental analysis of potential rainwater harvesting systems: A case study in Spain. Resour. Conserv. Recycl. 2012, 69, 130–140. [Google Scholar] [CrossRef]
- Villarreal, E.L.; Dixon, A. Analysis of a rainwater collection system for domestic water supply in Ringdansen, Norrköping, Sweden. Build. Environ. 2005, 40, 1174–1184. [Google Scholar] [CrossRef]
Process Step | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | Scenario 6 |
---|---|---|---|---|---|---|
1 | Collection of rainwater from paved and built surfaces | Collection of rainwater from paved and built surfaces | Roof surface area 235 m2; grid (4) | Roof surface area 235 m2; grid (4) | Roof surface area 140 m2; grid (4) | Roof surface area 140 m2; grid (4) |
2 | Open pond, 14 × 103 m3 concrete (1) | Open pond, 14 × 103 m3 concrete (1) | Closed HDPE(5) tank, 12 m3 | Closed HDPE tank, 12 m3 | 20 m3 open pond, concrete (1) | 20 m3 open pond, concrete (1) |
3 | Pumping (Grundfos CR 15-05) 10 m3/h | Pumping (Grundfos CR 15-05) 10 m3/h | Pumping 1.25 m3/h (Grundfos CR1-7) | Pumping 1.25 m3/h (Grundfos CR1-7) | Pumping 1.25 m3/h (Grundfos CR1-7) | Pumping 1.25 m3/h (Grundfos CR1-7) |
RO, membrane area 400 m2, recovery 90%, 7.3 m3/h | Sand filter height 2 m, 1.3 m2; 3000 kg of sand | RO, Membrane area 40 m2, recovery 90%, influent 1.11 m3/h, | Sand filter height 1.5 m, 0.167 m2; 650 kg of sand | Bag filter, pore size 25 μm | Bag filter (van Borselen X100), pore size 25 μm | |
4 | Conditioning over calcite (2) | UV/H2O2 process (reactor with 4300 W LD UV lamps) 10 mg H2O2/L | Conditioning over calcite (2) | UV/H2O2 process (reactor with 120 W LD UV lamp Hereaus NNI 125-84-XL) 10 mg H2O2/L | RO, 5 μm sediment filter, two 5 μm AC filters; RO recovery 25% | UV/H2O2 Process (reactor with 120 W LD UV lamp Hereaus NNI 125-84-XL) 10 mg H2O2/L |
5 | UV disinfection (reactor with 120 W LD UV lamp Hereaus NNI 125-84-XL) | Activated carbon (CT = 20 min.); height 2 m, 1.65 m2, 1320 kg of carbon | UV disinfection (reactor with 120 W LD UV lamp Hereaus NNI 125-84-XL) | Activated carbon (CT = 20 min.); height 1.5 m, 0.165 m2, 99 kg of carbon | APEC in-line remineralization filter | Activated carbon filtration (6) (van Borselen VB06BE005-090DP) |
6 | Storage, 2 vessels (3), 5000 m3 each, absolute filter. | Conditioning over calcite (2) | Storage, two 20 m3 HDPE vessels with absolute filter. | Conditioning over calcite (2) | UV disinfection (reactor with 120 W LD UV lamp Hereaus NNI 125-84-XL) | Addition of CaCO3 to increase pH |
7 | Treatment and disposal of RO concentrate | UV disinfection | Treatment and disposal of RO concentrate | UV disinfection | Addition of CaCO3 to increase pH | Storage in 2 m3 HDPE tank, absolute filter |
8 | Storage, 2 vessels (3), 5000 m3 each, absolute filter. | Storage, two 40 m3 HDPE vessels with absolute filter. | Storage, 2 vessels (3), 5000 m3 each, absolute filter. | Storage in 2 m3 HDPE tank, absolute filter (van Borselen BorsoPTFE BPF17SP002) | UV disinfection | |
9 | Treatment of RO concentrate |
Location in the Netherlands (City) | % of Rainwater that Could Effectively Be Harvested |
---|---|
Vlissingen | 48 |
De Bilt | 51 |
Maastricht | 49 |
Twente | 48 |
De Kooy | 48 |
Nieuw Beerta | 46 |
Average | 48 |
Scenario | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Building costs (€) | 1.44 × 106 | 1.43 × 106 | 6.02 × 104 | 4.54 × 104 | 1.83 × 104 | 1.83 × 104 |
Investment costs (€) | 1.98 × 106 | 1.97 × 106 | 8.30 × 104 | 6.27 × 104 | 2.52 × 104 | 2.53 × 104 |
Interest & depreciation (€/y) | 1.15 × 105 | 1.15 × 105 | 4837 | 3650 | 1469 | 1473 |
Operation & maintenance (€/y) | 4.95 × 104 | 4.93 × 104 | 2076 | 1567 | 630 | 632 |
Energy (€/y) | 713 | 3.96 × 104 | 3 | 123 | 2 | 123 |
Chemicals (€/y) | 13 | 4355 | 0 | 1189 | 0 | 33 |
Membrane replacement (€/y) | 1200 | 0 | 160 | 0 | 210 | 0 |
Filter (€/y) | 50 | 5050 | 5 | 507 | 76 | 99 |
Lamps (€/y) | 32 | 480 | 3 | 0 | 0 | 0 |
TCO (€/m3) | 2.71 | 3.43 | 85.24 | 84.76 | 38.27 | 38.02 |
Scenario | Production Costs (€/m3) | Analyses Costs (€/m3) | Savings (€/m3) | Net Costs (€/m3) | Impact (mPt/m3) | Impact (kg CO2/m3) |
---|---|---|---|---|---|---|
1 | 2.71 | 0.04 | 1.60 | 1.15 | 14.7 | 0.003 |
2 | 3.43 | 0.04 | 1.60 | 1.87 | 11.8 | 0.004 |
3 | 85.24 | 25.93 | 4.48 | 106.69 | 32.5 | 0.002 |
4 | 84.76 | 25.93 | 4.48 | 106.21 | 24.1 | 0.004 |
5 | 38.27 | 25.93 | 2.69 | 61.51 | 32.5 | 0.002 |
6 | 38.02 | 25.93 | 2.69 | 61.26 | 24.1 | 0.004 |
Centrally treated drinking water | 0 | 1.63 (*) | 36.4 | 0.130 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofman-Caris, R.; Bertelkamp, C.; de Waal, L.; van den Brand, T.; Hofman, J.; van der Aa, R.; van der Hoek, J.P. Rainwater Harvesting for Drinking Water Production: A Sustainable and Cost-Effective Solution in The Netherlands? Water 2019, 11, 511. https://doi.org/10.3390/w11030511
Hofman-Caris R, Bertelkamp C, de Waal L, van den Brand T, Hofman J, van der Aa R, van der Hoek JP. Rainwater Harvesting for Drinking Water Production: A Sustainable and Cost-Effective Solution in The Netherlands? Water. 2019; 11(3):511. https://doi.org/10.3390/w11030511
Chicago/Turabian StyleHofman-Caris, Roberta, Cheryl Bertelkamp, Luuk de Waal, Tessa van den Brand, Jan Hofman, René van der Aa, and Jan Peter van der Hoek. 2019. "Rainwater Harvesting for Drinking Water Production: A Sustainable and Cost-Effective Solution in The Netherlands?" Water 11, no. 3: 511. https://doi.org/10.3390/w11030511
APA StyleHofman-Caris, R., Bertelkamp, C., de Waal, L., van den Brand, T., Hofman, J., van der Aa, R., & van der Hoek, J. P. (2019). Rainwater Harvesting for Drinking Water Production: A Sustainable and Cost-Effective Solution in The Netherlands? Water, 11(3), 511. https://doi.org/10.3390/w11030511