Susceptibility Prediction of Groundwater Hardness Using Ensemble Machine Learning Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.2.1. Hardness Data
2.2.2. Environmental Factors
2.3. Groundwater Hardness Susceptibility Modeling
2.3.1. Modeling Procedure
2.3.2. Model Description
2.3.3. Performance Evaluation
3. Results
3.1. Modeling Results
3.2. Spatial Prediction of Groundwater Hardness Susceptibility
3.3. Variable Importance Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Conti, K.I.; Velis, M.; Antoniou, A.; Nijsten, G. Groundwater in the Context of the Sustainable Development Goals: Fundamental Policy Considerations. Br. GSDR 2016, 5, 111–133. [Google Scholar]
- Ahmed, I.; Tariq, N.; Al Muhery, A. Hydrochemical characterization of groundwater to align with sustainable development goals in the Emirate of Dubai, UAE. Environ. Earth Sci. 2019, 78, 44. [Google Scholar] [CrossRef]
- Mukherjee, A.; Duttagupta, S.; Chattopadhyay, S.; Bhanja, S.N.; Bhattacharya, A.; Chakraborty, S.; Sarkar, S.; Ghosh, T.; Bhattacharya, J.; Sahu, S. Impact of sanitation and socio-economy on groundwater fecal pollution and human health towards achieving sustainable development goals across India from ground-observations and satellite-derived nightlight. Sci. Rep. 2019, 9, 15193. [Google Scholar] [CrossRef] [Green Version]
- Kut, K.M.K.; Sarswat, A.; Bundschuh, J.; Mohan, D. Water as key to the sustainable development goals of South Sudan—A water quality assessment of Eastern Equatoria State. Groundw. Sustain. Dev. 2019, 8, 255–270. [Google Scholar] [CrossRef]
- Foster, S. Is UN Sustainable Development Goal 15 relevant to governing the intimate land-use/groundwater linkage? Hydrogeol. J. 2018, 26, 979–982. [Google Scholar] [CrossRef]
- Misi, A.; Gumindoga, W.; Hoko, Z. An assessment of groundwater potential and vulnerability in the Upper Manyame Sub-Catchment of Zimbabwe. Phys. Chem. Earth 2018, 105, 72–83. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Martins, L.M.O.; Quininha, M.; Oliveira, A.S.; Sanches Fernandes, L.F. Modification to the DRASTIC framework to assess groundwater contaminant risk in rural mountainous catchments. J. Hydrol. 2018, 566, 175–191. [Google Scholar] [CrossRef]
- Rizeei, H.M.; Azeez, O.S.; Pradhan, B.; Khamees, H.H. Assessment of groundwater nitrate contamination hazard in a semi-arid region by using integrated parametric IPNOA and data-driven logistic regression models. Environ. Monit. Assess. 2018, 190, 633. [Google Scholar] [CrossRef] [PubMed]
- Ameli, A.A.; Creed, I.F. Groundwaters at Risk: Wetland Loss Changes Sources, Lengthens Pathways, and Decelerates Rejuvenation of Groundwater Resources. J. Am. Water Resour. Assoc. 2019, 55, 294–306. [Google Scholar] [CrossRef]
- Garcia, V.; Cooter, E.; Crooks, J.; Hinckley, B.; Murphy, M.; Xing, X. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system. Sci. Total Environ. 2017, 586, 16–24. [Google Scholar] [CrossRef]
- Hossain, M.; Patra, P.K. Contamination zoning and health risk assessment of trace elements in groundwater through geostatistical modelling. Ecotoxicol. Environ. Saf. 2020, 189, 110038. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.R.; Close, M.E.; Abraham, P.; Sarris, T.S.; Banasiak, L.; Stenger, R.; Hadfield, J. Achieving unbiased predictions of national-scale groundwater redox conditions via data oversampling and statistical learning. Sci. Total Environ. 2020, 705, 135877. [Google Scholar] [CrossRef] [PubMed]
- Duarte, L.; Marques, J.E.; Teodoro, A.C. An open source GIS-based application for the assessment of groundwater vulnerability to pollution. Environment 2019, 6, 86. [Google Scholar] [CrossRef] [Green Version]
- Neshat, A.; Pradhan, B. Evaluation of groundwater vulnerability to pollution using DRASTIC framework and GIS. Arab. J. Geosci. 2017, 10, 501. [Google Scholar] [CrossRef]
- Shrestha, A.; Luo, W. Assessment of groundwater nitrate pollution potential in Central Valley aquifer using Geodetector-Based Frequency Ratio (GFR) and optimized-DRASTIC methods. ISPRS Int. J. Geo-Inf. 2018, 7, 211. [Google Scholar] [CrossRef] [Green Version]
- Singha, S.S.; Pasupuleti, S.; Singha, S.; Singh, R.; Venkatesh, A.S. A GIS-based modified DRASTIC approach for geospatial modeling of groundwater vulnerability and pollution risk mapping in Korba district, Central India. Environ. Earth Sci. 2019, 78, 628. [Google Scholar] [CrossRef]
- Zamanirad, M.; Sarraf, A.; Sedghi, H.; Saremi, A.; Rezaee, P. Modeling the Influence of Groundwater Exploitation on Land Subsidence Susceptibility Using Machine Learning Algorithms. Nat. Resour. Res. 2020, 29, 1127–1141. [Google Scholar] [CrossRef]
- Zhang, Y.; Weissmann, G.S.; Fogg, G.E.; Lu, B.; Sun, H.; Zheng, C. Assessment of groundwater susceptibility to non-point source contaminants using three-dimensional transient indexes. Int. J. Environ. Res. Public Health 2018, 15, 1177. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Wu, J. Relationships of groundwater quality and associated health risks with land use/land cover patterns: A case study in a loess area, Northwest China. Hum. Ecol. Risk Assess. 2019, 25, 354–373. [Google Scholar] [CrossRef]
- He, S.; Li, P.; Wu, J.; Elumalai, V.; Adimalla, N. Groundwater quality under land use/land cover changes: A temporal study from 2005 to 2015 in Xi’an, Northwest China. Hum. Ecol. Risk Assess. 2019. [Google Scholar] [CrossRef]
- Darwishe, H.; El Khattabi, J.; Chaaban, F.; Louche, B.; Masson, E.; Carlier, E. Prediction and control of nitrate concentrations in groundwater by implementing a model based on GIS and artificial neural networks (ANN). Environ. Earth Sci. 2017, 76, 649. [Google Scholar] [CrossRef]
- El Hamidi, M.J.; Larabi, A.; Faouzi, M.; Souissi, M. Spatial distribution of regionalized variables on reservoirs and groundwater resources based on geostatistical analysis using GIS: Case of Rmel-Oulad Ogbane aquifers (Larache, NW Morocco). Arab. J. Geosci. 2018, 11, 104. [Google Scholar] [CrossRef]
- Azimi, S.; Azhdary Moghaddam, M.; Hashemi Monfared, S.A. Prediction of annual drinking water quality reduction based on Groundwater Resource Index using the artificial neural network and fuzzy clustering. J. Contam. Hydrol. 2019, 220, 6–17. [Google Scholar] [CrossRef]
- Güner, E.D.; Kuvvetli, Y. Analysis of groundwater quality for drinking purposes using combined artificial neural networks and fuzzy logic approaches. Desalin. Water Treat. 2020, 174, 143–151. [Google Scholar] [CrossRef]
- Heidarzadeh, N. A practical low-cost model for prediction of the groundwater quality using artificial neural networks Nima Heidarzadeh. J. Water Supply Res. Technol.—AQUA 2017, 66, 86–95. [Google Scholar] [CrossRef]
- Qaderi, F.; Babanezhad, E. Prediction of the groundwater remediation costs for drinking use based on quality of water resource, using artificial neural network. J. Clean. Prod. 2017, 161, 840–849. [Google Scholar] [CrossRef]
- Sunayana; Kalawapudi, K.; Dube, O.; Sharma, R. Use of neural networks and spatial interpolation to predict groundwater quality. Environ. Dev. Sustain. 2020, 22, 2801–2816. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, J.; Hou, Z.; Lei, X.; Tai, W.; Chen, W.; Chen, T. Shallow groundwater quality assessment: Use of the improved Nemerow pollution index, wavelet transform and neural networks. J. Hydroinform. 2017, 19, 784–794. [Google Scholar] [CrossRef]
- Isazadeh, M.; Biazar, S.M.; Ashrafzadeh, A. Support vector machines and feed-forward neural networks for spatial modeling of groundwater qualitative parameters. Environ. Earth Sci. 2017, 76, 610. [Google Scholar] [CrossRef]
- Fabbrocino, S.; Rainieri, C.; Paduano, P.; Ricciardi, A. Cluster analysis for groundwater classification in multi-aquifer systems based on a novel correlation index. J. Geochem. Explor. 2019, 204, 90–111. [Google Scholar] [CrossRef]
- Nadiri, A.A.; Norouzi, H.; Khatibi, R.; Gharekhani, M. Groundwater DRASTIC vulnerability mapping by unsupervised and supervised techniques using a modelling strategy in two levels. J. Hydrol. 2019, 574, 744–759. [Google Scholar] [CrossRef]
- Messier, K.P.; Wheeler, D.C.; Flory, A.R.; Jones, R.R.; Patel, D.; Nolan, B.T.; Ward, M.H. Modeling groundwater nitrate exposure in private wells of North Carolina for the Agricultural Health Study. Sci. Total Environ. 2019, 655, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Avand, M.; Janizadeh, S.; Tien Bui, D.; Pham, V.H.; Ngo, P.T.T.; Nhu, V.H. A tree-based intelligence ensemble approach for spatial prediction of potential groundwater. Int. J. Digit. Earth 2020. [Google Scholar] [CrossRef]
- Kisi, O.; Azad, A.; Kashi, H.; Saeedian, A.; Hashemi, S.A.A.; Ghorbani, S. Modeling Groundwater Quality Parameters Using Hybrid Neuro-Fuzzy Methods. Water Resour. Manag. 2019, 33, 847–861. [Google Scholar] [CrossRef]
- Maroufpoor, S.; Fakheri-Fard, A.; Shiri, J. Study of the spatial distribution of groundwater quality using soft computing and geostatistical models. ISH J. Hydraul. Eng. 2019, 25, 232–238. [Google Scholar] [CrossRef]
- Aryafar, A.; Khosravi, V.; Zarepourfard, H.; Rooki, R. Evolving genetic programming and other AI-based models for estimating groundwater quality parameters of the Khezri plain, Eastern Iran. Environ. Earth Sci. 2019, 78, 69. [Google Scholar] [CrossRef]
- Liu, D.; Liu, C.; Fu, Q.; Li, T.; Imran, K.M.; Cui, S.; Abrar, F.M. ELM evaluation model of regional groundwater quality based on the crow search algorithm. Ecol. Indic. 2017, 81, 302–314. [Google Scholar] [CrossRef]
- Jafari, R.; Hassani, A.H.; Torabian, A.; Ghorbani, M.A.; Mirbagheri, S.A. Prediction of groundwater quality parameter in the Tabriz plain, Iran using soft computing methods. J. Water Supply Res. Technol.—AQUA 2019, 68, 573–584. [Google Scholar] [CrossRef]
- Rahmati, O.; Choubin, B.; Fathabadi, A.; Coulon, F.; Soltani, E.; Shahabi, H.; Mollaefar, E.; Tiefenbacher, J.; Cipullo, S.; Ahmad, B.; et al. Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and UNEEC methods. Sci. Total Environ. 2019, 688, 855–866. [Google Scholar] [CrossRef]
- Nadiri, A.A.; Gharekhani, M.; Khatibi, R.; Sadeghfam, S.; Moghaddam, A.A. Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM). Sci. Total Environ. 2017, 574, 691–706. [Google Scholar] [CrossRef]
- Mosavi, A.; Ozturk, P.; Chau, K.W. Flood prediction using machine learning models: Literature review. Water 2018, 10, 1536. [Google Scholar] [CrossRef] [Green Version]
- Sajedi-Hosseini, F.; Malekian, A.; Choubin, B.; Rahmati, O.; Cipullo, S.; Coulon, F.; Pradhan, B. A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci. Total Environ. 2018, 644, 954–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papacharalampous, G.; Koutsoyiannis, D.; Montanari, A. Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: Methodology development and investigation using toy models. Adv. Water Resour. 2020, 136, 103471. [Google Scholar] [CrossRef] [Green Version]
- Adimalla, N.; Taloor, A.K. Hydrogeochemical investigation of groundwater quality in the hard rock terrain of South India using Geographic Information System (GIS) and groundwater quality index (GWQI) techniques. Groundw. Sustain. Dev. 2020, 10, 100288. [Google Scholar] [CrossRef]
- Ismail, E.; El-Rawy, M. Assessment of groundwater quality in west sohag, egypt. Desalin. Water Treat. 2018, 123, 101–108. [Google Scholar] [CrossRef]
- Nematollahi, M.J.; Clark, M.J.R.; Ebrahimi, P.; Ebrahimi, M. Preliminary assessment of groundwater hydrogeochemistry within Gilan, a northern province of Iran. Environ. Monit. Assess. 2018, 190, 242. [Google Scholar] [CrossRef]
- Amarasooriya, A.A.G.D.; Kawakami, T. Removal of fluoride, hardness and alkalinity from groundwater by electrolysis. Groundw. Sustain. Dev. 2019, 9, 100231. [Google Scholar] [CrossRef]
- Haddad, M.; Barbeau, B. Hybrid hollow fiber nanofiltration–calcite contactor: A novel point-of-entry treatment for removal of dissolved Mn, Fe, NOM and hardness from domestic groundwater supplies. Membranes 2019, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Singh, R.P.; Jothivel, S.; Fu, D. Evaluation of groundwater hardness removal using activated clinoptilolite. Environ. Sci. Pollut. Res. 2019, 27, 17541–17549. [Google Scholar] [CrossRef]
- Balkaya, N.; Kurtulus Ozcan, H.; Nuri Ucan, O. Determination of relationship between hardness and groundwater quality parameters by neural networks. Desalin. Water Treat. 2009, 11, 258–263. [Google Scholar] [CrossRef] [Green Version]
- Vaghefi, S.A.; Keykhai, M.; Jahanbakhshi, F.; Sheikholeslami, J.; Ahmadi, A.; Yang, H.; Abbaspour, K.C. The future of extreme climate in Iran. Sci. Rep. 2019, 9, 1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholami, V.; Yousefi, Z.; Rostami, H.Z. Modeling of ground water salinity on the Caspian Southern Coasts. Water Resour. Manag. 2010, 24, 1415–1424. [Google Scholar] [CrossRef]
- Moghimi, H. The Study of Processes Affecting Groundwater Hydrochemistry by Multivariate Statistical Analysis (Case Study: Coastal Aquifer of Ghaemshahr, NE-Iran). Open J. Geol. 2017, 7, 830–846. [Google Scholar] [CrossRef] [Green Version]
- WHO. World Health Organization Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Saraf, A.K.; Choudhury, P.R. Integrated remote sensing and gis for groundwater exploration and identification of artificial recharge sites. Int. J. Remote Sens. 1998, 19, 1825–1841. [Google Scholar] [CrossRef]
- Manap, M.A.; Sulaiman, W.N.A.; Ramli, M.F.; Pradhan, B.; Surip, N. A knowledge-driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia. Arab. J. Geosci. 2013, 6, 1621–1637. [Google Scholar] [CrossRef]
- Aniya, M. Landslide-Susceptibility Mapping in the Amahata River Basin, Japan. Ann. Assoc. Am. Geogr. 1985, 75, 102–114. [Google Scholar] [CrossRef]
- Hong, H.; Pourghasemi, H.R.; Pourtaghi, Z.S. Landslide susceptibility assessment in Lianhua County (China): A comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology 2016, 259, 105–118. [Google Scholar] [CrossRef]
- Oh, H.J.; Kim, Y.S.; Choi, J.K.; Park, E.; Lee, S. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J. Hydrol. 2011, 399, 158–172. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Ahmadi, K.; Daneshi, A. Application of Support Vector Machine, Random Forest, and Genetic Algorithm Optimized Random Forest Models in Groundwater Potential Mapping. Water Resour. Manag. 2017, 31, 2761–2775. [Google Scholar] [CrossRef]
- Hanson, P.J.; Edwards, N.T.; Garten, C.T.; Andrews, J.A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 2000, 48, 115–146. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, L.; Ma, H.; Yu, K.; Martín, J.D. Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China. Environ. Pollut. 2016, 216, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Fernández, D.S.; Lutz, M.A. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Eng. Geol. 2010, 111, 90–98. [Google Scholar] [CrossRef]
- Allen, D.M.; Suchy, M. Geochemical evolution of groundwater on Saturna Island, British Columbia. Can. J. Earth Sci. 2001, 38, 1059–1080. [Google Scholar] [CrossRef]
- Shankar, M.N.R.; Mohan, G. Assessment of the groundwater potential and quality in Bhatsa and Kalu river basins of Thane district, western Deccan Volcanic Province of India. Environ. Geol. 2006, 49, 990–998. [Google Scholar] [CrossRef]
- Palamuleni, L.G.; Ndomba, P.M.; Annegarn, H.J. Evaluating land cover change and its impact on hydrological regime in Upper Shire river catchment, Malawi. Reg. Environ. Chang. 2011, 11, 845–855. [Google Scholar] [CrossRef]
- Arabameri, A.; Rezaei, K.; Cerda, A.; Lombardo, L.; Rodrigo-Comino, J. GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Sci. Total Environ. 2019, 658, 160–177. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, A. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J. Hydrol. 2011, 405, 123–136. [Google Scholar] [CrossRef]
- Yuce, G.; Ugurluoglu, D.; Dilaver, A.T.; Eser, T.; Sayin, M.; Donmez, M.; Ozcelik, S.; Aydin, F. The effects of lithology on water pollution: Natural radioactivity and trace elements in water resources of Eskisehir Region (Turkey). Water Air. Soil Pollut. 2009, 202, 69–89. [Google Scholar] [CrossRef]
- Hair, J.; Black, W.; Babin, B.; Anderson, R. Multivariate Data Analysis: A Global Perspective; Elsevier: New York, NY, USA, 2010; Volume 7, pp. 88–122. [Google Scholar]
- Rafiei Sardooi, E.; Azareh, A.; Choubin, B.; Barkhori, S.; Singh, V.P.; Shamshirband, S. Applying the remotely sensed data to identify homogeneous regions of watersheds using a pixel-based classification approach. Appl. Geogr. 2019, 111, 102071. [Google Scholar] [CrossRef]
- Wang, G.; Jia, R.; Liu, J.; Zhang, H. A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning. Renew. Energy 2020, 145, 2426–2434. [Google Scholar] [CrossRef]
- Hosseini, F.S.; Choubin, B.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Darabi, H.; Haghighi, A.T. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method. Sci. Total Environ. 2020, 711, 135161. [Google Scholar] [CrossRef] [PubMed]
- Freund, Y.; Schapire, R.E. Experiments with a New Boosting Algorithm. In Proceedings of the 13th International Conference on Machine Learning, Bari, Italy, 3–6 July 1996. [Google Scholar]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Schapire, R.E. The Boosting Approach to Machine Learning: An Overview. In Nonlinear Estimation and Classification; Springer: New York, NY, USA, 2003; pp. 149–171. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Aertsen, W.; Kint, V.; Van Orshoven, J.; Muys, B. Evaluation of Modelling Techniques for Forest Site Productivity Prediction in Contrasting Ecoregions Using Stochastic Multicriteria Acceptability Analysis (SMAA). Environ. Model. Softw. 2011, 26, 929–937. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis; Pearson Education, Inc.: Jersey City, NJ, USA, 1998. [Google Scholar]
- Shin, P.K.S.; Fong, K.Y.S. Multiple discriminant analysis of marine sediment data. Mar. Pollut. Bull. 1999, 39, 285–294. [Google Scholar] [CrossRef]
- Hepelwa, A.S. Environmental and Socioeconomic Factors Influencing Crop Cultivation. An Application of Multivariate Discriminant Analysis (MDA) model in Sigi catchment, Tanzania; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Negnevitsky, M. Artificial Intelligence—A Guide to Intelligent Systems. J. Chir. 2002, 110, 439–444. [Google Scholar]
- Efron, B.; Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1986, 1, 54–75. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the quality of landslide susceptibility models. Geomorphology 2006, 81, 166–184. [Google Scholar] [CrossRef]
- Miraki, S.; Zanganeh, S.H.; Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Pham, B.T. Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach. Water Resour. Manag. 2019, 33, 281–302. [Google Scholar] [CrossRef]
- Choubin, B.; Mosavi, A.; Alamdarloo, E.H.; Hosseini, F.S.; Shamshirband, S.; Dashtekian, K.; Ghamisi, P. Earth fissure hazard prediction using machine learning models. Environ. Res. 2019, 179, 108700. [Google Scholar] [CrossRef] [PubMed]
- Choubin, B.; Abdolshahnejad, M.; Moradi, E.; Querol, X.; Mosavi, A.; Shamshirband, S.; Ghamisi, P. Spatial hazard assessment of the PM10 using machine learning models in Barcelona, Spain. Sci. Total Environ. 2020, 701, 134474. [Google Scholar] [CrossRef] [PubMed]
- Knoll, L.; Breuer, L.; Bach, M. Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning. Sci. Total Environ. 2019, 668, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Aertsen, W.; Kint, V.; van Orshoven, J.; Özkan, K.; Muys, B. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol. Modell. 2010, 221, 1119–1130. [Google Scholar] [CrossRef]
Factor | Range/Class |
---|---|
Elevation | −61 to 3877 m |
Curvature | −26 to 26 |
Distance From Sea (DFS) | 0 to 116197 m |
Distance From River (DFR) | 0 to 7738 m |
Precipitation (PCP) | 770 to 824 mm |
Evaporation (E) | 360 to 1184 mm |
Depth to Groundwater (DTGW) | 0 to 35 m |
Groundwater Level (GWL) | −44 to 63 m |
pH | 6.5 to 8.6 |
Landuse | Agriculture, Dry farming, Forest, Orchard, Rangeland, Urban |
Lithology | Cb, Czl, Db-sh, E1l, E1m, Ek, Jd, Jk, Jl, K1bvt, K2l1, K2l2, Ktzl, Ku, Mc, Mm,s,l, Mur, Olc,s, Pgkc, Plc, Pr, Pz, Qft1, Qft2, Qm, TRJs, TRe |
Variable | VIF | Variable | VIF |
---|---|---|---|
Distance From Sea (DFS) | 9.09 | Landuse | 1.64 |
Elevation | 5.76 | Distance from river (DFR) | 1.29 |
Depth to Groundwater (DTGW) | 4.37 | PH | 1.86 |
Precipitation (PCP) | 2.82 | Evaporation (E) | 1.32 |
Groundwater Level (GWL) | 2.08 | Curvature | 1.01 |
Lithology | 2.14 | − | − |
Model | BRT | RF | MDA |
---|---|---|---|
AUC | 0.92 | 0.90 | 0.81 |
Accuracy | 0.78 | 0.83 | 0.83 |
TSS | 0.71 | 0.73 | 0.59 |
Class | BRT | RF | MDA |
---|---|---|---|
Low | 2474.14 | 1924.30 | 2403.51 |
Moderate | 443.34 | 1022.22 | 518.07 |
High | 379.21 | 350.17 | 375.11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosavi, A.; Hosseini, F.S.; Choubin, B.; Abdolshahnejad, M.; Gharechaee, H.; Lahijanzadeh, A.; Dineva, A.A. Susceptibility Prediction of Groundwater Hardness Using Ensemble Machine Learning Models. Water 2020, 12, 2770. https://doi.org/10.3390/w12102770
Mosavi A, Hosseini FS, Choubin B, Abdolshahnejad M, Gharechaee H, Lahijanzadeh A, Dineva AA. Susceptibility Prediction of Groundwater Hardness Using Ensemble Machine Learning Models. Water. 2020; 12(10):2770. https://doi.org/10.3390/w12102770
Chicago/Turabian StyleMosavi, Amirhosein, Farzaneh Sajedi Hosseini, Bahram Choubin, Mahsa Abdolshahnejad, Hamidreza Gharechaee, Ahmadreza Lahijanzadeh, and Adrienn A. Dineva. 2020. "Susceptibility Prediction of Groundwater Hardness Using Ensemble Machine Learning Models" Water 12, no. 10: 2770. https://doi.org/10.3390/w12102770
APA StyleMosavi, A., Hosseini, F. S., Choubin, B., Abdolshahnejad, M., Gharechaee, H., Lahijanzadeh, A., & Dineva, A. A. (2020). Susceptibility Prediction of Groundwater Hardness Using Ensemble Machine Learning Models. Water, 12(10), 2770. https://doi.org/10.3390/w12102770