Oxygen Consumption in Two Subsurface Wastewater Infiltration Systems under Continuous Operation Mode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Pilot Plants
2.1.1. Pilot Plant with Horizontal Arrangement
2.1.2. Pilot Plant with Vertical Arrangement
2.2. Sampling and Methods
2.3. Dissolved Oxygen Transfer Rate
2.4. Removal Rate Constants
2.4.1. Model 1: First Order Kinetic with Plug Flow Pattern
2.4.2. Model 2: First Order Kinetic with CSTR Flow Pattern
2.5. Comparison of the Two Models and Obtention of Removal Rate Constants
3. Results and Discussion
3.1. Performance of SWIS Pilot Plants
3.2. Oxygen Transfer Rate
3.3. Models Verification Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ayaz, S.Ç. Post-treatment and reuse of tertiary treated wastewater by constructed wetlands. Desalination 2008, 226, 249–255. [Google Scholar] [CrossRef]
- Puigagut, J.; Villaseñor, J.; Salas, J.J.; Bécares, E.; García, J. Subsurface-flow constructed wetlands in Spain for the sanitation of small communities: A comparative study. Ecol. Eng. 2007, 30, 312–319. [Google Scholar] [CrossRef]
- Fahd, K.; Martín, I.; Salas, J.J. The Carrión de los Céspedes Experimental Plant and the Technological Transfer Centre: Urban wastewater treatment experimental platforms for the small rural communities in the Mediterranean area. Desalination 2007, 215, 12–21. [Google Scholar] [CrossRef]
- Morales, G.; López, D.; Vera, I.; Vidal, G. Humedales construidos con plantas ornamentales para el tratamiento de materia orgánica y nutrientes contenidos en aguas servidas/Constructed wetlands with ornamental plants for removal of organic matter and nutrients contained in sewage. Theoria 2013, 22, 33–46. [Google Scholar]
- Ilyas, H.; Masih, I. Intensification of constructed wetlands for land area reduction: A review. Environ. Sci. Pollut. Res. 2017, 24, 12081–12091. [Google Scholar] [CrossRef] [Green Version]
- Njau, K.N.; Minja, R.J.A.; Katima, J.H.Y. Pumice soil: A potential wetland substrate for treatment of domestic wastewater. Water Sci. Technol. 2003, 48, 85–92. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Sun, T.; Wang, X. Study on nitrogen removal enhanced by shunt distributing wastewater in a constructed subsurface infiltration system under intermittent operation mode. J. Hazard. Mater. 2011, 189, 336–341. [Google Scholar] [CrossRef]
- Candela, L.; Fabregat, S.; Josa, A.; Suriol, J.; Vigués, N.; Mas, J. Assessment of soil and groundwater impacts by treated urban wastewater reuse. A case study: Application in a golf course (Girona, Spain). Sci. Total Environ. 2007, 374, 26–35. [Google Scholar] [CrossRef]
- Kadam, A.M.; Nemade, P.D.; Oza, G.H.; Shankar, H.S. Treatment of municipal wastewater using laterite-based constructed soil filter. Ecol. Eng. 2009. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Treatment performance of gravel filter media: Implications for design and application of stormwater infiltration systems. Water Res. 2007, 41, 2513–2524. [Google Scholar] [CrossRef]
- Llorens, M.; Perez-Marin, A.B.; Saez, J.; Aguilar, M.I.; Ortuno, J.F.; Meseguer, V.F.; Ruiz, J.A. Sewage Treatment with a Hybrid Constructed Soil Filter. Int. J. Chem. React. Eng. 2015, 13, 161–168. [Google Scholar] [CrossRef]
- Perez-Marin, A.B.; Llorens, M.; Aguilar, M.L.; Saez, J.; Ortuno, J.F.; Meseguer, V.F.; Lopez-Cabanes, A. An innovative technology for treating wastewater generated at the University of Murcia. Desalin. Water Treat. 2009, 4, 69–75. [Google Scholar] [CrossRef]
- Llorens, M.; Perez-Marin, A.B.; Aguilar, M.I.; Saez, J.; Ortuno, J.F.; Meseguer, V.F. Nitrogen transformation in two subsurface infiltration systems at pilot scale. Ecol. Eng. 2011, 37, 736–743. [Google Scholar] [CrossRef]
- APHA. Standard Methods for Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1995; ISBN 0875530478. [Google Scholar]
- Cooper, P. The performance of vertical flow constructed wetland systems with special reference to the significance of oxygen transfer and hydraulic loading rates. Water Sci. Technol. 2005, 51, 81–90. [Google Scholar] [CrossRef]
- Platzer, C. Design Recommendations for Subsurface Flow Constructed Wetlands for Nitrification and Denitrification. Water Sci. Technol. 1999, 40, 257–263. [Google Scholar] [CrossRef]
- Kantawanichkul, S.; Kladprasert, S.; Brix, H. Treatment of high-strength wastewater in tropical vertical flow constructed wetlands planted with Typha angustifolia and Cyperus involucratus. Ecol. Eng. 2009, 35, 238–247. [Google Scholar] [CrossRef]
- Decezaro, S.T.; Wolff, D.B.; Pelissari, C.; Ramírez, R.J.M.G.; Formentini, T.A.; Goerck, J.; Rodrigues, L.F.; Sezerino, P.H. Influence of hydraulic loading rate and recirculation on oxygen transfer in a vertical flow constructed wetland. Sci. Total Environ. 2019, 668, 988–995. [Google Scholar] [CrossRef]
- Saeed, A.; Iqbal, M. Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum). Water Res. 2003, 37, 3472–3480. [Google Scholar] [CrossRef]
- Sehar, S.; Naeem, S.; Perveen, I.; Ali, N.; Ahmed, S. A comparative study of macrophytes influence on wastewater treatment through subsurface flow hybrid constructed wetland. Ecol. Eng. 2015, 81, 62–69. [Google Scholar] [CrossRef]
- Gajewska, M.; Skrzypiec, K.; Jóźwiakowski, K.; Mucha, Z.; Wójcik, W.; Karczmarczyk, A.; Bugajski, P. Kinetics of pollutants removal in vertical and horizontal flow constructed wetlands in temperate climate. Sci. Total Environ. 2020, 718, 137371. [Google Scholar] [CrossRef]
- Stefanakis, A.I. Constructed Wetlands for Sustainable Wastewater Treatment in Hot and Arid Climates: Opportunities, Challenges and Case Studies in the Middle East. Water 2020, 12, 1665. [Google Scholar] [CrossRef]
- Mucha, Z.; Wójcik, W.; Jóźwiakowski, K.; Gajewska, M. Long-term operation of Kickuth-type constructed wetland applied to municipal wastewater treatment in temperate climate. Environ. Technol. 2018, 39, 1133–1143. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, R.H. The inadequacy of first-order treatment wetland models. Ecol. Eng. 2000, 15, 105–119. [Google Scholar] [CrossRef]
- Zhang, Z.; Lei, Z.; Zhang, Z.; Sugiura, N.; Xu, X.; Yin, D. Organics removal of combined wastewater through shallow soil infiltration treatment: A field and laboratory study. J. Hazard. Mater. 2007, 149, 657–665. [Google Scholar] [CrossRef]
- Nemade, P.D.; Kadam, A.M.; Shankar, H.S. Wastewater renovation using constructed soil filter (CSF): A novel approach. J. Hazard. Mater. 2009, 170, 657–665. [Google Scholar] [CrossRef]
- Foladori, P.; Ortigara, A.R.C.; Ruaben, J.; Andreottola, G. Influence of high organic loads during the summer period on the performance of hybrid constructed wetlands (VSSF + HSSF) treating domestic wastewater in the Alps region. Water Sci. Technol. 2012, 65, 890–897. [Google Scholar] [CrossRef]
- Arias, C.A.; Del Bubba, M.; Brix, H. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Res. 2001, 35, 1159–1168. [Google Scholar] [CrossRef]
- Prochaska, C.A.; Zouboulis, A.I.; Eskridge, K.M. Performance of pilot-scale vertical-flow constructed wetlands, as affected by season, substrate, hydraulic load and frequency of application of simulated urban sewage. Ecol. Eng. 2007, 31, 57–66. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Lavrova, S.; Koumanova, B. Influence of recirculation in a lab-scale vertical flow constructed wetland on the treatment efficiency of landfill leachate. Bioresour. Technol. 2010, 101, 1756–1761. [Google Scholar] [CrossRef]
- Zapater-Pereyra, M.; Ilyas, H.; Lavrnić, S.; van Bruggen, J.J.A.; Lens, P.N.L. Evaluation of the performance and space requirement by three different hybrid constructed wetlands in a stack arrangement. Ecol. Eng. 2015, 82, 290–300. [Google Scholar] [CrossRef]
- Vymazal, J.; Brix, H.; Cooper, P.; Haberl, R.; Perfler, R.; Laber, J. Removal mechanisms and types of constructed wetlands. In Constructed Wetlands for Wastewater Treatment in Europe; Vymazal, J., Brix, H., Cooper, P.F., Green, M.B., Haberl, R., Eds.; Backhuys Publishers: Leiden, The Netherlands, 1998; pp. 17–66. [Google Scholar]
- Cooper, P. A review of the design and performance of vertical-flow and hybrid reed bed treatment systems. Water Sci. Technol. 1999, 40, 1–9. [Google Scholar] [CrossRef]
- Herrera Melián, J.A.; Martín-Rodríguez, A.J.; Araña, J.; Díaz, O.G.; Henríquez, J.J.G. Hybrid constructed wetlands for wastewater treatment and reuse in the Canary Islands. Ecol. Eng. 2010, 36, 891–899. [Google Scholar] [CrossRef]
- Grady, C. Biological Wastewater Treatment, 2nd ed.; Marcel Dekker: New York, NY, USA, 1999; ISBN 9780824789190. [Google Scholar]
- Saeed, T.; Sun, G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Lu, L.; Zheng, X.; Ngo, H.H.; Liang, S.; Guo, W.; Zhang, X. Enhanced nitrogen removal in constructed wetlands: Effects of dissolved oxygen and step-feeding. Bioresour. Technol. 2014, 169, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Frazer-Williams, R.A.D. A Review of the Influence of Design Parameters on the Performance of Constructed Wetlands. J. Chem. Eng. 2010, 25, 29–42. [Google Scholar] [CrossRef] [Green Version]
Parameter | Pretreated Wastewater a | Effluent Horizontal Arrangement a | Effluent Vertical Arrangement a |
---|---|---|---|
OD (mg O2 L−1) | 1.7 ± 1.11 | 8.73 ± 1.57 | 7.90 ± 1.45 |
COD (mg O2 L−1) | 472.92 ± 190.86 | 32.27 ± 17.61 | 96.98 ± 72.06 |
TKN (mg N L−1) | 52.33 ± 16.21 | 5.50 ± 12.13 | 16.10 ± 9.30 |
NH4+-N (mg N L−1) | 43.48 ± 12.79 | 4.13 ± 10.84 | 14.58 ± 8.85 |
Nitrates (mg N L−1) | 0 | 41.63 ± 19.13 | 30.66 ± 17.42 |
Nitrites (mg N L−1) | 0.81 ± 0.36 | 0.55 ± 0.30 | 0.42 ± 0.17 |
1st Stage a | 2nd Stage a | 3rd Stage a | 4th Stage a | Whole Plant b | Total OTR b | ||
---|---|---|---|---|---|---|---|
Horizontal arrangement | Organic matter degradation | 22.72±0.85 | 7.45±6.10 | 2.33±2.12 | 1.43±1.60 | 33.91 | 54.69 |
Nitrification | 3.62±2.91 | 10.04±7.70 | 4.01±3.26 | 3.11±3.08 | 20.78 | ||
Vertical arrangement | Organic matter degradation | 6.35±2.37 | 5.53±3.12 | 3.35±1.63 | 2.35±1.95 | 17.58 | 28.84 |
Nitrification | 0.97±0.80 | 2.91±1.28 | 4.29±2.57 | 3.09±2.00 | 11.26 |
COD | NH4+-N | ||||||||
---|---|---|---|---|---|---|---|---|---|
Plug Flow | CSTR | Plug Flow | CSTR | ||||||
K1, m h−1 | R2 | K2, m h−1 | R2 | K1 ,m h−1 | R2 | K2, m h−1 | R2 | ||
HORIZONTAL | E1 | 0.331 | 0.5024 | 0.072 | 0.5095 | 0.103 | 0.8619 | −0.013 | 0.8970 |
E2 | 0.286 | 0.6445 | −0.027 | 0.3432 | 0.291 | 0.7943 | 0.015 | 0.9571 | |
E3 | 0.068 | 0.9195 | 0.018 | 0.6550 | 0.212 | 0.9441 | −0.007 | 0.6652 | |
E4 | 0.039 | 0.7602 | 0.046 | 0.6006 | 0.185 | 0.4439 | 0.008 | 0.713 | |
VERTICAL | E1 | 0.149 | 0.8988 | 0.005 | 0.8713 | 0.061 | 0.9087 | 0.0001 | 0.8520 |
E2 | 0.115 | 0.7544 | 0.005 | 0.6593 | 0.067 | 0.9574 | 0.007 | 0.6398 | |
E3 | 0.131 | 0.7845 | −0.001 | 0.7052 | 0.156 | 0.8708 | 0.054 | 0.8436 | |
E4 | 0.122 | 0.7337 | −0.027 | 0.6222 | 0.093 | 0.9748 | 0.028 | 0.2548 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lloréns, M.; Pérez-Marín, A.B.; Aguilar, M.I.; Ortuño, J.F.; Meseguer, V.F. Oxygen Consumption in Two Subsurface Wastewater Infiltration Systems under Continuous Operation Mode. Water 2020, 12, 3007. https://doi.org/10.3390/w12113007
Lloréns M, Pérez-Marín AB, Aguilar MI, Ortuño JF, Meseguer VF. Oxygen Consumption in Two Subsurface Wastewater Infiltration Systems under Continuous Operation Mode. Water. 2020; 12(11):3007. https://doi.org/10.3390/w12113007
Chicago/Turabian StyleLloréns, Mercedes, Ana Belén Pérez-Marín, María Isabel Aguilar, Juan Francisco Ortuño, and Víctor Francisco Meseguer. 2020. "Oxygen Consumption in Two Subsurface Wastewater Infiltration Systems under Continuous Operation Mode" Water 12, no. 11: 3007. https://doi.org/10.3390/w12113007
APA StyleLloréns, M., Pérez-Marín, A. B., Aguilar, M. I., Ortuño, J. F., & Meseguer, V. F. (2020). Oxygen Consumption in Two Subsurface Wastewater Infiltration Systems under Continuous Operation Mode. Water, 12(11), 3007. https://doi.org/10.3390/w12113007