Earthquake-Induced Spring Discharge Modifications: The Pescara di Arquata Spring Reaction to the August–October 2016 Central Italy Earthquakes
Abstract
:1. Introduction
2. Geological and Hydrogeological Setting
2.1. Geology
2.2. Hydrogeology
3. Materials and Methods
3.1. Geochemical Investigations
3.2. Time Series Analysis
3.3. Analysis of Spring Hydrograph
3.4. Water Surplus Estimation
3.5. Standardized Precipitation Index (SPI)
4. Results
4.1. Chemical Composition of Water
4.2. Analysis of Spring Hydrograph
4.3. Depletion Coefficients
4.4. Water Surplus Estimation
4.5. SPI and Spring Discharge
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Claesson, L.; Skelton, A.; Graham, C.; Dietl, C.; Mörth, M.; Torssander, P.; Kockum, I. Hydrogeochemical changes before and after a major earthquake. Geology 2004, 32, 641–644. [Google Scholar] [CrossRef]
- Skelton, A.; Andrén, M.; Kristmannsdóttir, H.; Stockmann, G.; Mörth, C.-M.; Sveinbjörnsdóttir, Á.; Jónsson, S.; Sturkell, E.; Guðrúnardóttir, H.R.; Hjartarson, H. Changes in groundwater chemistry before two consecutive earthquakes in Iceland. Nat. Geosci. 2014, 7, 752. [Google Scholar] [CrossRef] [Green Version]
- Muir-Wood, R.; King, G.C.P. Hydrological signatures of earthquake strain. J. Geophys. Res. 1993, 98, 22035–22068. [Google Scholar] [CrossRef]
- Rojstaczer, S.; Wolft, S.; Micheli, R. Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes. Nature 1995, 373, 237–239. [Google Scholar] [CrossRef]
- Manga, M. Origin of postseismic streamflow changes inferred from baseflow recession and magnitude-distance relations. Geophys. Res. Lett. 2001, 28, 2133–2136. [Google Scholar] [CrossRef] [Green Version]
- Manga, M.; Brodsky, E.E.; Boone, M. Response of streamflow to multiple earthquakes: Streamflow and earthquakes. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Montgomery, D.R. Streamflow and water well responses to earthquakes. Science 2003, 300, 2047–2049. [Google Scholar] [CrossRef] [Green Version]
- Manga, M.; Rowland, J.C. Response of Alum Rock springs to the 30 October 2007 Alum Rock earthquake and implications for the origin of increased discharge after earthquakes. Geofluids 2009, 9, 237–250. [Google Scholar] [CrossRef]
- Petitta, M.; Mastrorillo, L.; Preziosi, E.; Banzato, F.; Barberio, M.D.; Billi, A.; Cambi, C.; De Luca, G.; Di Carlo, G.; Di Curzio, D.; et al. Water-table and discharge changes associated with the 2016–2017 seismic sequence in central Italy: Hydrogeological data and a conceptual model for fractured carbonate aquifers. Hydrogeol. J. 2018, 26, 1009–1026. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-Y.; Manga, M. New streams and springs after the 2014 Mw6.0 South Napa earthquake. Nat. Commun. 2015, 6, 7597. [Google Scholar] [CrossRef] [Green Version]
- Valigi, D.; Mastrorillo, L.; Cardellini, C.; Checcucci, R.; Di Matteo, L.; Frondini, F.; Mirabella, F.; Viaroli, S.; Vispi, I. Springs discharge variations induced by strong earthquakes: The Mw 6.5 Norcia event (Italy, 30 October 2016). Rend. Online Soc. Geol. Ital. 2019, 47, 141–146. [Google Scholar] [CrossRef]
- Mohr, C.H.; Manga, M.; Wang, C.-Y.; Korup, O. Regional changes in streamflow after a megathrust earthquake. Earth Planet. Sci. Lett. 2017, 458, 418–428. [Google Scholar] [CrossRef] [Green Version]
- Sibson, R.H. Fluid flow accompanying faulting: Field evidence and models. In Maurice Ewing Series; Simpson, D.W., Richards, P.G., Eds.; American Geophysical Union: Washington, DC, USA, 2013; pp. 593–603. ISBN 978-1-118-66574-9. [Google Scholar]
- Mohr, C.H.; Manga, M.; Wang, C.; Kirchner, J.W.; Bronstert, A. Shaking water out of soil. Geology 2015, 43, 207–210. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Wang, C.-H.; Kuo, C.-H. Temporal change in groundwater level following the 1999 (Mw = 7.5) Chi-Chi earthquake, Taiwan. Geofluids 2004, 4, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Amoruso, A.; Crescentini, L.; Petitta, M.; Rusi, S.; Tallini, M. Impact of the 6 April 2009 L’Aquila earthquake on groundwater flow in the Gran Sasso carbonate aquifer, Central Italy. Hydrol. Process. 2011, 25, 1754–1764. [Google Scholar] [CrossRef]
- Manga, M.; Wang, C.-Y. Earthquake hydrology. In Treatise on Geophysics, 2nd ed.; Schubert, G., Ed.; Elsevier: Oxford, UK, 2015; pp. 305–328. [Google Scholar]
- Hosono, T.; Yamada, C.; Shibata, T.; Tawara, Y.; Wang, C.-Y.; Manga, M.; Rahman, A.T.M.S.; Shimada, J. Coseismic groundwater drawdown along crustal ruptures during the 2016 Mw 7.0 Kumamoto Earthquake. Water Resour. Res. 2019, 55, 5891–5903. [Google Scholar] [CrossRef] [Green Version]
- Esposito, E.; Pece, R.; Porfido, S.; Tranfaglia, G. Hydrological anomalies connected to earthquakes in southern Apennines (Italy). Nat. Hazards Earth Syst. Sci. 2001, 1, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Adinolfi Falcone, R.; Carucci, V.; Falgiani, A.; Manetta, M.; Parisse, B.; Petitta, M.; Rusi, S.; Spizzico, M.; Tallini, M. Changes on groundwater flow and hydrochemistry of the Gran Sasso carbonate aquifer after 2009 L’Aquila earthquake. Ital. J. Geosci. 2012, 131, 459–474. [Google Scholar]
- Mastrorillo, L.; Saroli, M.; Viaroli, S.; Banzato, F.; Valigi, D.; Petitta, M. Sustained post-seismic effects on groundwater flow in fractured carbonate aquifers in central Italy. Hydrol. Process. 2019. [Google Scholar] [CrossRef] [Green Version]
- Di Matteo, L.; Dragoni, W.; Azzaro, S.; Pauselli, C.; Porreca, M.; Bellina, G.; Cardaci, W. Effects of earthquakes on the discharge of groundwater systems: The case of the 2016 seismic sequence in the central Apennines, Italy. J. Hydrol. 2020, 583, 124509. [Google Scholar] [CrossRef]
- Brutsaert, W.; Lopez, J.P. Basin-scale geohydrologic drought flow features of riparian aquifers in the southern great plains. Water Resour. Res. 1998, 34, 233–240. [Google Scholar] [CrossRef]
- Celico, P. Prospezioni Idrogeologiche; Liguori editore: Naples, Italy, 1986. [Google Scholar]
- Checcucci, R.; Mastrorillo, L.; Valigi, D. Acque sotterranee e terremoti: Alcune considerazioni sugli effetti Della sismicità Sulla disponibilità Della risorsa idrica in Valnerina. Acque Sotter. Ital. J. Groundw. 2017, 6, 75–77. [Google Scholar]
- Lavecchia, G. II sovrascorrimento dei Monti Sibillini: Analisi cinematica e strutturale. Boll. Soc. Geol. Ital. 1985, 104, 161–194. [Google Scholar]
- Pierantoni, P.; Deiana, G.; Galdenzi, S. Stratigraphic and structural features of the Sibillini Mountains (Umbria-Marche Apennines, Italy). Ital. J. Geosci. 2013, 132, 497–520. [Google Scholar] [CrossRef]
- Brozzetti, F.; Boncio, P.; Cirillo, D.; Ferrarini, F.; de Nardis, R.; Testa, A.; Liberi, F.; Lavecchia, G. High-resolution field mapping and analysis of the August–October 2016 coseismic surface faulting (central Italy earthquakes): Slip distribution, parameterization, and comparison with global earthquakes. Tectonics 2019, 38, 417–439. [Google Scholar] [CrossRef] [Green Version]
- Boncio, P.; Brozzetti, F.; Ponziani, F.; Barchi, M.; Lavecchia, G.; Pialli, G. Seismicity and extensional tectonics in the northern Umbria-Marche Apennines. Mem. Soc. Geol. Ital. 1998, 52, 55. [Google Scholar]
- Porreca, M.; Minelli, G.; Ercoli, M.; Brobia, A.; Mancinelli, P.; Cruciani, F.; Giorgetti, C.; Carboni, F.; Mirabella, F.; Cavinato, G.; et al. Seismic reflection profiles and subsurface geology of the area interested by the 2016–2017 earthquake sequence (Central Italy). Tectonics 2018, 37, 1116–1137. [Google Scholar] [CrossRef]
- Chiaraluce, L.; Di Stefano, R.; Tinti, E.; Scognamiglio, L.; Michele, M.; Casarotti, E.; Cattaneo, M.; De Gori, P.; Chiarabba, C.; Monachesi, G.; et al. The 2016 central Italy seismic sequence: A first look at the mainshocks, aftershocks, and source models. Seismol. Res. Lett. 2017, 88, 757–771. [Google Scholar] [CrossRef]
- Pucci, S.; De Martini, P.M.; Civico, R.; Villani, F.; Nappi, R.; Ricci, T.; Azzaro, R.; Brunori, C.A.; Caciagli, M.; Cinti, F.R.; et al. Coseismic ruptures of the 24 August 2016, M w 6.0 Amatrice earthquake (central Italy). Geophys. Res. Lett. 2017, 44, 2138–2147. [Google Scholar] [CrossRef]
- Civico, R.; Pucci, S.; Villani, F.; Pizzimenti, L.; De Martini, P.M.; Nappi, R.; Group, O.E.W. Surface ruptures following the 30 October 2016 M w 6.5 Norcia earthquake, central Italy. J. Maps 2018, 14, 151–160. [Google Scholar]
- Iezzi, F.; Mildon, Z.; Walker, J.F.; Roberts, G.; Goodall, H.; Wilkinson, M.; Robertson, J. Coseismic throw variation across along-strike bends on active normal faults: Implications for displacement versus length scaling of earthquake ruptures. J. Geophys. Res. Solid Earth 2018, 123, 9817–9841. [Google Scholar] [CrossRef]
- Villani, F.; Pucci, S.; Civico, R.; De Martini, P.M.; Cinti, F.R.; Pantosti, D. Surface faulting of the 30 October 2016 M w 6.5 central Italy earthquake: Detailed analysis of a complex coseismic rupture. Tectonics 2018, 37, 3378–3410. [Google Scholar] [CrossRef]
- Nanni, T. Caratteri idrogeologici delle Marche. In L’ambiente Fisico delle Marche; S.E.C.L.A. s.r.l.: Florence, Italy, 1991. [Google Scholar]
- Mastrorillo, L.; Baldoni, T. Quantitative hydrogeological analysis of the carbonate domain of the Umbria Region. Ital. J. Eng. Geol. Environ. 2009, 137–155. [Google Scholar]
- Mastrorillo, L.; Petitta, M. Hydrogeological conceptual model of the upper Chienti River Basin aquifers (Umbria-Marche Apennines). Ital. J. Geosci. 2014, 133, 396–408. [Google Scholar] [CrossRef]
- Bense, V.F.; Gleeson, T.; Loveless, S.E.; Bour, O.; Scibek, J. Fault zone hydrogeology. Earth Sci. Rev. 2013, 127, 171–192. [Google Scholar] [CrossRef]
- Dragoni, W.; Speranza, G.; Valigi, D. Impatto delle variazioni climatiche Sui sistemi idrogeologici: II caso della sorgente Pescara di Arquata (Appennino umbro-marchigiano, Italia). Geol. Tec. Ambient. 2003, 3, 27–35. [Google Scholar]
- Celico, P. Studio Idrogeologico per la Redazione dello S.I.A. Necessario per il Rinnovo della Concessione di Derivazione della Sorgente Pescara d’Arquata (Arquata del Tronto—AP); C.I.I.P.: Ascoli Piceno, Italy, 2011. [Google Scholar]
- Boni, C. Hydrogeological study for identification, characterisation and management of groundwater resources in the Sibillini Mountains National Park (central Italy). Ital. J. Eng. Geol. Environ. 2010, 2, 21–39. [Google Scholar]
- Petitta, M. Integrazione della Base Conoscitiva per la Gestione della Risorsa Idrica Sotterranea del Parco Nazionale dei Monti Sibillini; Technical Report for internal use; Parco Nazionale dei Monti Sibillini: Visso, Italy, 2011; p. 101. [Google Scholar]
- Tazioli, A.; Dipartimento SIMAU, Università Politecnica delle Marche, Ancona, Italy. Personal communication, 2019.
- Meinzer, O.E. Outline of Ground-Water Hydrology, with Definitions; USGS: Reston, VA, USA, 1923; Volume 494. [Google Scholar]
- Maillet, E.T. Essais d’Hydraulique Souterraine et Fluviale (Underground and River Hydrology); Hermann: Paris, France, 1905; p. 215. [Google Scholar]
- Thornthwaite, C.W.; Mather, J.R. The water balance. Publ. Climatol. 1955, 8, 104. [Google Scholar]
- Scozzafava, M.; Tallini, M. Net infiltration in the Gran Sasso Massif of central Italy using the Thornthwaite water budget and curve-number method. Hydrogeol. J. 2001, 9, 461–475. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Chiodini, G.; Cardellini, C.; Caliro, S.; Chiarabba, C.; Frondini, F. Advective heat transport associated with regional Earth degassing in central Apennine (Italy). Earth Planet. Sci. Lett. 2013, 373, 65–74. [Google Scholar] [CrossRef]
- Celico, P. Relazioni tra idrodinamica sotterranea e terremoti in Irpinia (Campania). Rend. Soc. Geol. Ital. 1981, 4, 103–108. [Google Scholar]
- Fiorillo, F. The recession of spring hydrographs, focused on karst aquifers. Water Resour. Manag. 2014, 28, 1781–1805. [Google Scholar] [CrossRef]
- Fiorillo, F.; Pagnozzi, M.; Stevanović, Z.; Ventafridda, G. Main hydrological features and recharge analysis the Caposele spring catchment, Southern Italy. Acta Carsologica 2019, 48. [Google Scholar] [CrossRef] [Green Version]
- Casini, S.; Martino, S.; Petitta, M.; Prestininzi, A. A physical analogue model to analyse interactions between tensile stresses and dissolution in carbonate slopes. Hydrogeol. J. 2006, 14, 1387–1402. [Google Scholar] [CrossRef]
- Elkhoury, J.E.; Brodsky, E.E.; Agnew, D.C. Seismic waves increase permeability. Nature 2006, 441, 1135–1138. [Google Scholar] [CrossRef]
- Wang, C.Y.; Manga, M. Earthquakes influenced by water. Lect. Notes Earth Sci. 2010, 114, 125–139. [Google Scholar]
- Galassi, D.M.P.; Lombardo, P.; Fiasca, B.; Di Cioccio, A.; Di Lorenzo, T.; Petitta, M.; Di Carlo, P. Earthquakes trigger the loss of groundwater biodiversity. Sci. Rep. 2015, 4, 6273. [Google Scholar] [CrossRef]
- Gudmundsson, A. Active fault zones and groundwater flow. Geophys. Res. Lett. 2000, 27, 2993–2996. [Google Scholar] [CrossRef]
- Cambi, C.; Valigi, D.; Di Matteo, L. Hydrogeological study of data-scarce limestone massifs: The case of Gualdo Tadino and Monte Cucco structures (central Apennines, Italy). Boll. Geofis. Teor. Appl. 2010, 51, 345–360. [Google Scholar]
- Di Matteo, L.; Valigi, D.; Cambi, C. Climatic characterization and response of water resources to climate change in limestone areas: Considerations on the importance of geological setting. J. Hydrol. Eng. 2013, 18, 773–779. [Google Scholar] [CrossRef] [Green Version]
Station | Time Interval | Coordinates WGS 84 Projection UTM 33N | Elevation (m a.s.l.) | Average Annual Temperature (°C) | Average Annual Rainfall (mm) | |
---|---|---|---|---|---|---|
East | North | |||||
Arquata del Tronto | 1984–2019 | 360659 | 4736980 | 720 | - | 1222 |
Capodacqua | 1984–2019 | 355607 | 4733240 | 842 | - | 1164 |
Montemonaco | 1984–2019 | 363392 | 4751030 | 995 | 11.9 | - |
Condition | Range |
---|---|
Extremely wet | SPI ≥ 2.0 |
Very wet | 1.5 ≤ SPI < 2.0 |
Moderately wet | 1.0 ≤ SPI < 1.5 |
Near normal | −1.0 < SPI < 1.0 |
Moderately dry | −1.5 < SPI ≤ −1.0 |
Severely dry | −2.0 < SPI ≤ −1.5 |
Extremely dry | SPI ≤ −2.0 |
Name | Date | T °C | pH | Eh mV | Cond. µS/cm | Ca mg/L | Mg mg/L | Na mg/L | K mg/L | HCO3 mg/L | Cl mg/L | SO4 mg/L | NO3 mg/L | F mg/L |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pescara | 12 November1998 § | na | 7.6 | na | 254 | 52.36 | 1.11 | 2.97 | 0.64 | 137.47 | 4.63 | 3.87 | 1.80 | na |
Pescara | 13 December 1999 § | na | 7.8 | na | 251 | 48.58 | 0.95 | 1.39 | 0.49 | 114.39 | 4.16 | 3.8 | 1.35 | na |
Pescara | 12 December 2000 § | na | 7.6 | na | 246 | 51.28 | 1.07 | 1.56 | 0.53 | 136.68 | 3.39 | 2.35 | 1.53 | na |
Pescara | 12 November 2001 § | na | 7.7 | na | 238 | 50.93 | 0.96 | 2.51 | 0.34 | 139.34 | 3.22 | 3.18 | 0.93 | na |
Pescara | 3 July 2009 * | 8 | 7.54 | 226 | 265 | 45.00 | 1.42 | 1.25 | 0.38 | 165.50 | 3.44 | 1.53 | 0.92 | 0.02 |
Pescara | 30 August 2016 | 8.1 | 7.84 | na | 247 | 51.10 | 1.12 | 1.97 | 0.82 | 166.07 | 3.60 | 1.59 | 1.82 | 0.05 |
Pescara | 7 October 2016 | 7.9 | 7.73 | 165 | 264 | 49.80 | 0.89 | 1.61 | 0.34 | 168.06 | 4.13 | 1.92 | 1.74 | 0.04 |
Pescara | 15 November 2016 | 8.1 | 7.59 | 204 | 260 | 54.60 | 1.12 | 1.95 | 0.35 | 171.72 | 3.31 | 1.58 | 1.69 | 0.08 |
Pescara | 12 May 2017 | 9.1 | 7.83 | 262 | 260 | 49.88 | 1.03 | 1.91 | 0.29 | 161.04 | 3.63 | 1.90 | 1.47 | 0.11 |
Pescara | 15 September 2017 | 8.3 | 7.71 | 226 | 263 | 48.20 | 1.17 | 2.14 | 0.12 | 153.42 | 4.82 | 1.45 | 2.02 | 0.17 |
Pescara | 2 October 2018 | 8.2 | 7.90 | 210 | 256 | 47.20 | 1.32 | 1.88 | 0.12 | 171.11 | 3.57 | 1.53 | 1.59 | 0.06 |
Pescara | 23 May 2019 | 8.4 | 7.99 | 119 | 265 | 48.40 | 1.42 | 1.97 | 0.47 | 140.00 | 3.66 | 1.69 | 1.45 | 0.03 |
Capodacqua | 3 July 2009 * | 8.5 | 7.66 | 238 | 261 | 48.00 | 3.66 | 1.60 | 0.43 | 173.15 | 4.60 | 3.27 | 0.79 | 0.06 |
Sasso spaccato | 3 July 2009 * | 6.6 | 7.51 | 217 | 242 | 31.60 | 10.63 | 1.08 | 0.26 | 161.22 | 3.17 | 3.14 | 0.84 | 0.04 |
Foce | 3 July 2009 * | 6.7 | 7.72 | 185 | 230 | 34.20 | 10.19 | 0.70 | 0.35 | 144.39 | 2.57 | 21.99 | 1.04 | 0.13 |
Year | Recession Period | Q0 (L/s) | α Maillet (day−1) |
---|---|---|---|
2003 | 5 July–16 December | 270 | 6.28 × 10−3 |
2004 | 4 August–22 November | 402 | 5.57 × 10−3 |
2005 | 2 August–10 November | 401 | 6.88 × 10−3 |
2006–2007 | 4 August 2006–26 January 2007 | 406 | 7.37 × 10−3 |
2007 | 22 June–19 September | 59 | 6.26 × 10−3 |
2008 | 22 August–23 November | 249 | 6.46 × 10−3 |
2009 | 21 June–20 December | 607 | 6.86 × 10−3 |
2010 | 26 September–3 December | 272 | 5.77 × 10−3 |
2011–2012 | 9 December 2011–10 April 2012 | 128 | 5.41 × 10−3 |
2012 | 23 August–30 November | 71 | 4.08 × 10−3 |
2013 | 16 July–26 October | 467 | 7.48 × 10–3 |
2014 | 14 July–25 December | 487 | 7.63 × 10−3 |
2015 | 17 July–4 October | 453 | 8.72 × 10−3 |
2016 | 27 June–10 August | 351 | 4.09 × 10−3 |
2016 | 2 October–29 October | 405 | 6.80 × 10−3 |
2016–2017 | 19 December 2016–6 February 2017 | 322 | 1.10 × 10−2 |
2017 | 24 September–26 October | 72 | 1.46 × 10−2 |
2018 | 10 August–31 December | 312 | 1.47 × 10−2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valigi, D.; Fronzi, D.; Cambi, C.; Beddini, G.; Cardellini, C.; Checcucci, R.; Mastrorillo, L.; Mirabella, F.; Tazioli, A. Earthquake-Induced Spring Discharge Modifications: The Pescara di Arquata Spring Reaction to the August–October 2016 Central Italy Earthquakes. Water 2020, 12, 767. https://doi.org/10.3390/w12030767
Valigi D, Fronzi D, Cambi C, Beddini G, Cardellini C, Checcucci R, Mastrorillo L, Mirabella F, Tazioli A. Earthquake-Induced Spring Discharge Modifications: The Pescara di Arquata Spring Reaction to the August–October 2016 Central Italy Earthquakes. Water. 2020; 12(3):767. https://doi.org/10.3390/w12030767
Chicago/Turabian StyleValigi, Daniela, Davide Fronzi, Costanza Cambi, Giulio Beddini, Carlo Cardellini, Roberto Checcucci, Lucia Mastrorillo, Francesco Mirabella, and Alberto Tazioli. 2020. "Earthquake-Induced Spring Discharge Modifications: The Pescara di Arquata Spring Reaction to the August–October 2016 Central Italy Earthquakes" Water 12, no. 3: 767. https://doi.org/10.3390/w12030767
APA StyleValigi, D., Fronzi, D., Cambi, C., Beddini, G., Cardellini, C., Checcucci, R., Mastrorillo, L., Mirabella, F., & Tazioli, A. (2020). Earthquake-Induced Spring Discharge Modifications: The Pescara di Arquata Spring Reaction to the August–October 2016 Central Italy Earthquakes. Water, 12(3), 767. https://doi.org/10.3390/w12030767