HEM Impoundment—A Numerical Prediction Tool for the Water Framework Directive Assessment of Impounded River Reaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.1.1. River Erlauf: Case Study 1 (C.1)
2.1.2. River Alm: Case Study 2 (C.2)
2.1.3. River Schwarza: Case Study 3 (C.3)
2.2. Hydrodynamic Model
2.3. Habitat Evaluation Model HEM
2.4. HEM Impoundment
3. Results
3.1. Bed Sediments
3.2. Hydrodynamics
3.3. Impoundment Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Newson, M.D.; Large, A.R.G. ‘Natural’ rivers, ‘hydromorphological quality’ and river restoration: A challenging new agenda for applied fluvial geomorphology. Earth Surf. Process. Landf. 2006, 31, 1606–1624. [Google Scholar] [CrossRef]
- Shearer, K.; Hayes, J.; Jowett, I.; Olsen, D. Habitat suitability curves for benthic macroinvertebrates from a small New Zealand river. N. Z. J. Mar. Freshw. Res. 2015, 49, 178–191. [Google Scholar] [CrossRef]
- Graf, W.; Leitner, P.; Hanetseder, I.; Ittner, L.D.; Dossi, F.; Hauer, C. Ecological degradation of a meandering river by local channelization effects: A case study in an Austrian lowland river. Hydrobiologia 2016, 772, 145–160. [Google Scholar] [CrossRef]
- Quinn, J.M.; Davies-Colley, R.J.; Hickey, C.W.; Vickers, M.L.; Ryan, P.A. Effects of clay discharges on streams: 2. Benthic invertebrates. Hydrobiologia 1992, 248, 235–247. [Google Scholar] [CrossRef]
- Buddensiek, V. The culture of juvenile freshwater pearl mussels Margaritifera margaritifera L. in cages: A contribution to conservation programmes and the knowledge of habitat requirements. Biol. Conserv. 1995, 74, 33–40. [Google Scholar] [CrossRef]
- Evans, E.; Wilcox, A.C. Fine sediment infiltration dynamics in a gravel-bed river following a sediment pulse. River Res. Appl. 2014, 30, 372–384. [Google Scholar] [CrossRef]
- Rabení, C.F.; Doisy, K.E.; Zweig, L.D. Stream invertebrate community functional responses to deposited sediment. Aquat. Sci. 2005, 67, 395–402. [Google Scholar] [CrossRef]
- Leitner, P.; Hauer, C.; Ofenböck, T.; Pletterbauer, F.; Schmidt-Kloiber, A.; Graf, W. Fine sediment deposition affects biodiversity and density of benthic macroinvertebrates: A case study in the freshwater pearl mussel river Waldaist (Upper Austria). Limnologica 2015, 50, 54–57. [Google Scholar] [CrossRef]
- Crosa, G.; Castelli, E.; Gentili, G.; Espa, P. Effects of suspended sediments from reservoir flushing on fish and macroinvertebrates in an alpine stream. Aquat. Sci. 2010, 72, 85–95. [Google Scholar] [CrossRef]
- Gray, L.J.; Ward, J.V. Effects of sediment releases from a reservoir on stream macroinvertebrates. Hydrobiologia 1982, 96, 177–184. [Google Scholar] [CrossRef]
- Kaller, M.D.; Hartman, K.J. Evidence of a threshold level of fine sediment accumulation for altering benthic macroinvertebrate communities. Hydrobiologia 2004, 518, 95–104. [Google Scholar] [CrossRef]
- Bovee, K.D. Development and Evaluation of Habitat Suitability Criteria for Use in the Instream Flow Incremental Methodology; USDI Fish and Wildlife Service: Washington, DC, USA, 1986. [Google Scholar]
- Shirvell, C.S. Ability of phabsim to predict chinook salmon spawning habitat. Regul. Rivers Res. Manag. 1989, 3, 277–289. [Google Scholar] [CrossRef]
- Jowett, I.G.; Richardson, J.; Biggs, B.J.F.; Hickey, C.W.; Quinn, J.M. Microhabitat preferences of benthic invertebrates and the development of generalised Deleatidium spp. habitat suitability curves, applied to four New Zealand rivers. N. Z. J. Mar. Freshw. Res. 1991, 25, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Gore, J.A.; Crawford, D.J.; Addison, D.S. An analysis of artificial riffles and enhancement of benthic community diversity by physical habitat simulation (PHABSIM) and direct observation. Regul. Rivers Res. Manag. 1998, 14, 69–77. [Google Scholar] [CrossRef]
- Jerves-Cobo, R.; Everaert, G.; Iñiguez-Vela, X.; Córdova-Vela, G.; Díaz-Granda, C.; Cisneros, F.; Nopens, I.; Goethals, P. A Methodology to Model Environmental Preferences of EPT Taxa in the Machangara River Basin (Ecuador). Water 2017, 9, 195. [Google Scholar] [CrossRef] [Green Version]
- Jerves-Cobo, R.; Córdova-Vela, G.; Iñiguez-Vela, X.; Díaz-Granda, C.; Van Echelpoel, W.; Cisneros, F.; Nopens, I.; Goethals, P. Model-Based Analysis of the Potential of Macroinvertebrates as Indicators for Microbial Pathogens in Rivers. Water 2018, 10, 375. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; He, C.; Zhuang, J.; Zhang, Z.; Xiang, H.; Wang, Z.; Yang, H.; Sheng, L. Long-Term Changes in the Water Quality and Macroinvertebrate Communities of a Subtropical River in South China. Water 2014, 7, 63–80. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Cai, Q.; Fu, X.; Liu, J. Construction of habitat suitability models (HSMs) for benthic macroinvertebrate and their applications to instream environmental flows: A case study in Xiangxi River of Three Gorges Reservior region, China. Prog. Nat. Sci. 2009, 19, 359–367. [Google Scholar] [CrossRef]
- Smith, M.J.; Kay, W.R.; Edward, D.H.D.; Papas, P.J.; Richardson, K.S.J.; Simpson, J.C.; Pinder, A.M.; Cale, D.J.; Horwitz, P.H.J.; Davis, J.A.; et al. AusRivAS: Using macroinvertebrates to assess ecological condition of rivers in Western Australia. Freshw. Biol. 1999, 41, 269–282. [Google Scholar] [CrossRef]
- Meixler, M.S.; Bain, M.B. Modeling Aquatic Macroinvertebrate Richness Using Landscape Attributes. Int. J. Ecol. 2015, 2015, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Chon, T.-S.; Kwak, G.-S.; Lee, S.-B.; Park, Y.-S. Effects of Land Use Types on Community Structure Patterns of Benthic Macroinvertebrates in Streams of Urban Areas in the South of the Korea Peninsula. Water 2016, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Hauer, C.; Mandlburger, G.; Habersack, H. Hydraulically related hydro-morphological units: Description based on a new conceptual mesohabitat evaluation model (MEM) using LiDAR data as geometric input. River Res. Appl. 2009, 25, 29–47. [Google Scholar] [CrossRef]
- Habersack, H.; Tritthart, M.; Liedermann, M.; Hauer, C. Efficiency and uncertainties in micro- and mesoscale habitat modelling in large rivers. Hydrobiologia 2014, 729, 33–48. [Google Scholar] [CrossRef]
- Hauer, C.; Unfer, G.; Graf, W.; Leitner, P.; Zeiringer, B.; Habersack, H. Hydro-morphologically related variance in benthic drift and its importance for numerical habitat modelling. Hydrobiologia 2012, 683, 83–108. [Google Scholar] [CrossRef]
- Theodoropoulos, C.; Skoulikidis, N.; Stamou, A.; Dimitriou, E. Spatiotemporal Variation in Benthic-Invertebrates-Based Physical Habitat Modelling: Can We Use Generic Instead of Local and Season-Specific Habitat Suitability Criteria? Water 2018, 10, 1508. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. CCHE2D – User’s Manual – Version 2.210; National Center for Computational Hydroscience and Engineering: Oxford, MS, USA, 2006. [Google Scholar]
- DHI Water & Environment. MIKE 21 Flow Model & MIKE 21 FloodScreening Tool: Hydrodynamic Module-Scientific Documentation; DHI: Hørsholm, Denmark, 2017. [Google Scholar]
- Steffler, P.; Blackburn, J. River2D-Two-Dimensional Depth Averaged Model of River Hydrodynamics and Fish Habitat: Introduction to Depth Averaged Modeling and User’s Manual; University of Alberta: Edmonton, AB, Canada, 2002. [Google Scholar]
- Nujic, M. Praktischer Einsatz eines hochgenauen Verfahrens für die Berechnung von tiefengemittelten Strömungen; Mitteilungen des Institutes der Bundeswehr München: Munich, Germany, 1999. [Google Scholar]
- Tritthart, M.; Liedermann, M.; Schober, B.; Habersack, H. Non-uniformity and layering in sediment transport modelling 2: River application. J. Hydraul. Res. 2011, 49, 335–344. [Google Scholar] [CrossRef]
- Ofenböck, T.; Graf, W.; Hartmann, A.; Huber, T.; Leitner, P.; Stubauer, I.; Moog, O. Abschätzung des ökologischen Zustandes von Stauen auf Basis von Milieufaktoren; Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft: Vienna, Austria, 2011. [Google Scholar]
- BMLFUW. Qualitätszielverordnung Ökologie Oberflächengewässer-Vorgaben zur Beurteilung des ökologischen Zustands von Oberflächengewässern; Austrian Federal Ministry for Agriculture, Forestry, Environment and Water Management (BMLFUW): Vienna, Austria, 2010. [Google Scholar]
- Zelinka, M.; Marvan, P. Zur Präzisierung der biologischen Klassifikation der Reinheit fließender Gewässer. Arch Hydrobiol 1961, 57, 384–407. [Google Scholar]
- Leitner, P.; Hauer, C.; Graf, W. Habitat use and tolerance levels of macroinvertebrates concerning hydraulic stress in hydropeaking rivers — A case study at the Ziller River in Austria. Sci. Total Environ. 2017, 575, 112–118. [Google Scholar] [CrossRef]
- Holzapfel, P.; Leitner, P.; Habersack, H.; Graf, W.; Hauer, C. Evaluation of hydropeaking impacts on the food web in alpine streams based on modelling of fish- and macroinvertebrate habitats. Sci. Total Environ. 2017, 575, 1489–1502. [Google Scholar] [CrossRef]
- Diplas, P.; Kuhnle, R.; Gray, J.; Glysson, D.; Edwards, T. Sediment Transport Measurements. In Sedimentation Engineering: Processes, Measurements, Modeling, and Practice; American Society of Civil Engineers: Reston, VA, USA, 2008; pp. 305–351. ISBN 978-0-7844-0814-8. [Google Scholar]
- Pironneau, O. Finite Element Methods for Fluids; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Tritthart, M.; Hauer, C.; Liedermann, M.; Habersack, H. Computer-aided mesohabitat evaluation, part II – model development and application in the restoration of a large river. In International Conference on Fluvial Hydraulics, River Flow 2008; KUBABA Congress Department and Travel Services: Izmir, Turkey, 2008; pp. 1885–1893. [Google Scholar]
- Hauer, C.; Unfer, G.; Tritthart, M.; Formann, E.; Habersack, H. Variability of mesohabitat characteristics in riffle-pool reaches: Testing an integrative evaluation concept (FGC) for MEM-application. River Res. Appl. 2011, 27, 403–430. [Google Scholar] [CrossRef]
- Hauer, C.; Unfer, G.; Schmutz, S.; Habersack, H. Morphodynamic Effects on the Habitat of Juvenile Cyprinids (Chondrostoma nasus) in a Restored Austrian Lowland River. Environ. Manage. 2008, 42, 279–296. [Google Scholar] [CrossRef] [PubMed]
- Dewson, Z.S.; James, A.B.W.; Death, R.G. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. J. N. Am. Benthol. Soc. 2007, 26, 401–415. [Google Scholar] [CrossRef]
- Monk, W.A.; Wood, P.J.; Hannah, D.M.; Wilson, D.A.; Extence, C.A.; Chadd, R.P. Flow variability and macroinvertebrate community response within riverine systems. River Res. Appl. 2006, 22, 595–615. [Google Scholar] [CrossRef] [Green Version]
- Lamouroux, N.; Doledec, S.; Gayraud, S. Biological traits of stream macroinvertebrate communities: Effects of microhabitat, reach, and basin filters. J. N. Am. Benthol. Soc. 2004, 23, 449–466. [Google Scholar] [CrossRef]
- Dolédec, S.; Lamouroux, N.; Fuchs, U.; Mérigoux, S. Modelling the hydraulic preferences of benthic macroinvertebrates in small European streams. Freshw. Biol. 2007, 52, 145–164. [Google Scholar] [CrossRef]
- Ofenböck, T.; Moog, O.; Hartmann, A.; Stubauer, I. Leitfaden zur Erhebung der Biologischen Qualitätselemente: Teil A2-Makrozoobenthos; Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft: Vienna, Austria, 2010. [Google Scholar]
- Hauer, C.; Wagner, B.; Aigner, J.; Holzapfel, P.; Flödl, P.; Liedermann, M.; Tritthart, M.; Sindelar, C.; Pulg, U.; Klösch, M.; et al. State of the art, shortcomings and future challenges for a sustainable sediment management in hydropower: A review. Renew. Sustain. Energy Rev. 2018, 98, 40–55. [Google Scholar] [CrossRef]
- Todorova, Y.; Lincheva, S.; Yotinov, I.; Topalova, Y. Contamination and Ecological Risk Assessment of Long-Term Polluted Sediments with Heavy Metals in Small Hydropower Cascade. Water Resour. Manag. 2016, 30, 4171–4184. [Google Scholar] [CrossRef]
- Sindelar, C.; Schobesberger, J.; Habersack, H. Effects of weir height and reservoir widening on sediment continuity at run-of-river hydropower plants in gravel bed rivers. Geomorphology 2017, 291, 106–115. [Google Scholar] [CrossRef]
- Anagnostopoulos, J.S.; Papantonis, D.E. Optimal sizing of a run-of-river small hydropower plant. Energy Convers. Manag. 2007, 48, 2663–2670. [Google Scholar] [CrossRef]
- Thorne, C.R. Geomorphic analysis of large alluvial rivers. Geomorphology 2002, 44, 203–219. [Google Scholar] [CrossRef]
- Leopold, L.; Wolman, M.G.; Miller, J.P. Fluvial Processes in Geomorphology; Freeman: San Francisco, CA, USA, 1964; ISBN 978-0-7167-0221-4. [Google Scholar]
- Jones, J.I.; Murphy, J.F.; Collins, A.L.; Sear, D.A.; Naden, P.S.; Armitage, P.D. The Impact of Fine Sediment on Macro-Invertebrates. River Res. Appl. 2012, 28, 1055–1071. [Google Scholar] [CrossRef]
- Obruca, W.; Hauer, C. Abiotic Characterization of Brown Trout (Salmo trutta f. fario) and Rainbow Trout (Oncorhynchus mykiss) Spawning Redds Affected by Small Hydropower Plants—Case Studies from Austria. River Res. Appl. 2016, 32, 1989–1995. [Google Scholar] [CrossRef]
- Papanicolaou, A.N.; Elhakeem, M.; Krallis, G.; Prakash, S.; Edinger, J. Sediment transport modeling review-Current and future developments. J. Hydraul. Eng. 2008, 134, 1–14. [Google Scholar] [CrossRef]
- Tritthart, M.; Haimann, M.; Habersack, H.; Hauer, C. Spatio-temporal variability of suspended sediments in rivers and ecological implications of reservoir flushing operations. River Res. Appl. 2019, 35, 918–931. [Google Scholar] [CrossRef] [Green Version]
- Parasiewicz, P. MesoHABSIM: A concept for application of instream flow models in river restoration planning. Fisheries 2001, 26, 6–13. [Google Scholar] [CrossRef]
- Moog, O. Auswirkungen Anthropogener Eingriffe auf Aquatische Ökosysteme; Habilitationsschrift; Univ. f. Bodenkultur: Vienna, Austria, May 1990. [Google Scholar]
- Moog, O.; Jungwirth, M. Wasserkraft-Nutzung und Restwassermengen mit besonderer Berücksichtigung ökologischer Gesichtspunkte. Tagungsberichte 17. Flußbautagung 28.9.-2.10.1992; ÖWWV: Bregenz, Austria, 1992. [Google Scholar]
- Dolédec, S.; Dessaix, J.; Tachet, H. Changes within the Upper Rhône River macrobenthic communities after the completion of three hydroelectric schemes: Anthropogenic effects or natural change? Arch. Hydrobiol. 1996, 136, 19–40. [Google Scholar]
- Horeau, V.; Richard, S.; Vigouroux, R.; Guillemet, L.; Cerdan, P. The Petit Saut hydroelectric dam (French Guiana): Temporal and spatial variability of the water quality and pelagic invertebrates. Rev. Sci. Eau 2005, 18, 109–126. [Google Scholar]
- Li, J.; Herlihy, A.; Gerth, W.; Kaufmann, P.; Gregory, S.; Urquhart, S.; Larsen, D.P. Variability in stream macroinvertebrates at multiple spatial scales. Freshw. Biol. 2001, 46, 87–97. [Google Scholar] [CrossRef]
Case Study | River | Catchment Size (km²) | 1 QL (m³ s−1) | 2 QM (m³ s−1) | 3 QH (m³ s−1) | 4 Water Body Type | 5 Ecological Status |
---|---|---|---|---|---|---|---|
C.1 | Erlauf | 604.9 | 4.43 | 14.70 | 215.00 | HMWB | Moderate |
C.2 | Alm | 181.9 | 2.43 | 9.18 | 105.00 | Natural | Moderate |
C.3 | Schwarza | 252.3 | 1.58 | 5.19 | 65.20 | Natural | Good |
Grain Size Group | Diameter (cm) | Ecological Status |
---|---|---|
Mesolithal (cobble) | 6.3–20 | Potentially good |
Microlithal (pebble) | 2.0–6.3 | Potentially good |
Akal (gravel) | 0.2–2.0 | Potentially good |
Psammal (sand) | 0.063–0.2 | Likely bad |
Pelal (silt) | <0.063 | Likely bad |
Flow Velocity (m s−1) | Ecological Status |
---|---|
>0.35 | Good |
0.25–0.35 | Moderate |
0.15–0.25 | Poor |
<0.15 | Bad |
Flow Velocity (m s−1) | Ecological Status |
---|---|
>0.20 | Good |
0.10–0.20 | Moderate |
<0.10 | Poor |
Water Depth (m) | Flow Velocity (m s−1) | ||||||
---|---|---|---|---|---|---|---|
QL | QM | QH | QL | QM | QH | ||
River Erlauf (C.1) | () | 1.08 | 1.18 | 2.43 | 0.33 | 0.58 | 1.76 |
(σ) | 0.77 | 0.78 | 1.15 | 0.48 | 0.67 | 1.30 | |
River Alm (C.2) | () | 0.68 | 0.73 | 1.90 | 0.26 | 0.53 | 1.62 |
(σ) | 0.38 | 0.37 | 0.55 | 0.23 | 0.25 | 0.48 | |
River Schwarza (C.3) | () | 0.61 | 0.64 | 1.36 | 0.21 | 0.37 | 1.39 |
(σ) | 0.34 | 0.33 | 0.54 | 0.19 | 0.25 | 0.50 |
Case Study | Discharge | Predicted Impoundment Length | Impoundment Length in National Water Management Plan |
---|---|---|---|
C.1 | QL | 460 | 502 |
QM | 420 | ||
QH | 0 | ||
C.2 | QL | 130 | 300 |
QM | 15 | ||
QH | 0 | ||
C.3 | QL | 421 | 421 |
QM | 115 | ||
QH | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tritthart, M.; Flödl, P.; Habersack, H.; Hauer, C. HEM Impoundment—A Numerical Prediction Tool for the Water Framework Directive Assessment of Impounded River Reaches. Water 2020, 12, 1045. https://doi.org/10.3390/w12041045
Tritthart M, Flödl P, Habersack H, Hauer C. HEM Impoundment—A Numerical Prediction Tool for the Water Framework Directive Assessment of Impounded River Reaches. Water. 2020; 12(4):1045. https://doi.org/10.3390/w12041045
Chicago/Turabian StyleTritthart, Michael, Peter Flödl, Helmut Habersack, and Christoph Hauer. 2020. "HEM Impoundment—A Numerical Prediction Tool for the Water Framework Directive Assessment of Impounded River Reaches" Water 12, no. 4: 1045. https://doi.org/10.3390/w12041045
APA StyleTritthart, M., Flödl, P., Habersack, H., & Hauer, C. (2020). HEM Impoundment—A Numerical Prediction Tool for the Water Framework Directive Assessment of Impounded River Reaches. Water, 12(4), 1045. https://doi.org/10.3390/w12041045