Modeling Long-Term Temporal Variation of Dew Formation in Jordan and Its Link to Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling of Dew Formation
2.2. Case Study Description—Jordan
2.2.1. Climate Types
2.2.2. Fresh Water Resources
3. Results
3.1. Spatial Variation of the Cumulative Dew Yield
3.2. Temporal Variation of the Cumulative Dew Yield
- -
- Pattern-I: high values (exceeding 100 mL/m2) for the daily cumulative dew yield during the cold period of the year (November–March) and very minimal (almost vanishing) dew during the warm period of the year (June–August).
- -
- Pattern-II: considerable amounts of daily cumulative dew yield exceeding 100 mL/m2 throughout the year with values exceeding 200 mL/m2 during the winter (December–February).
- -
- Pattern-III: rather constant daily cumulative dew yield (about 200 mL/m2) during the winter and spring (December–May) and increased values during the summer and autumn (namely peak value ~350 mL/m2 in August).
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Model Description
Term | Unit | Description |
---|---|---|
dTc/dt | K s−1 | Change rate of the condenser temperature |
Tc | K | Temperature of the condenser |
T | s | Time. Here the time step in the model was 10 s |
Cc | J kg−1 K−1 | Specific heat capacity of the condenser. For low-density polyethylene (LDPE) and polymethylmethacrylate (PMMA) it is 2300 J kg−1 k−1 |
Ci | J kg−1 K−1 | Specific heat capacity of ice (2110 J kg−1 k−1) |
Cw | J kg−1 K−1 | Specific heat capacity of water (4181.3 J kg−1 k−1) |
mc | kg | Mass of the condenser given by mc = ρcScδc where ρc, Sc, and δc are the density (here it is 920 kg m−3), surface area (here it is 1 m2), and thickness of the condenser (here it is 0.39 mm) |
mi | kg | Mass of ice |
mv | kg | Mass of water, representing the cumulative mass of water that has |
Prad | W | Heat exchange due to incoming and outgoing radiation Prad = (1 − a)ScRsw + εcScRlw − ScεcσTc4 where a is the condenser short-wave albedo (here it is 0.84), Sc is the condenser surface area (here it is 1 m2), εc is the emissivity of the condenser (here it is 0.94), σ is Stephan-Boltzmann constant (5.67 × 10−8 W m−2 K−4), Tc [K] is the temperature of the condenser, and Rsw and Rlw [W m−2] are the incoming short-wave radiation (i.e., surface solar radiation downwards) and incoming long-wave radiation (i.e., surface thermal radiation downwards) |
Pcond | W | Conductive heat exchange between the condenser surface and the ground. For simplicity, we assumed that the condenser is perfectly insulated from the ground; i.e., Pcond = 0 |
Pconv | W | Convective heat exchange Pconv = Sc (Ta − Tc) h where Sc is the condenser surface area (here it is 1 m2), Ta [K] is the ambient temperature at 2 m from the ground, Tc [K] is the temperature of the condenser, and h [W m−2 K−1] is the heat transfer coefficient that is estimated based on a semi-empirical equation [37] h = 5.9 + 4.1 WS (511 + 294)/(511 + Ta) and here WS [m s−1] is the prevailing horizontal wind speed at 2 m from the ground. |
Plat | W | Latent heat released by the condensation or desublimation of water where Lvw [J kg−1] is the specific latent heat of water vaporization and Lvi [J kg−1] is specific latent heat of water desublimation. Here, dmw/dt is the change rate of water whereas dmi/dt is the change rate of ice |
Parameter | Unit | Description |
---|---|---|
α | Albedo of condenser sheet | |
Ca | J kg−1 K−1 | Specific heat capacity of air |
Cc | J kg−1 K−1 | Specific heat capacity of the condenser |
Ci | J kg−1 K−1 | Specific heat capacity of ice |
Cw | J kg−1 K−1 | Specific heat capacity of water |
DP | K | Dew point temperature |
h | W K−1 m−2 | Heat transfer coefficient |
k | Per s−1 | Mass transfer coefficient |
Lvi | J kg−1 | Specific latent heat of desublimation for water |
Lvw | J kg−1 | Specific latent heat of vaporization for water |
Lwi | J kg−1 | Latent heat of fusion |
mc | kg | Mass of the condenser |
mi | kg | Mass of ice |
mw | kg | Mass of water |
p | Pa | Atmospheric air pressure |
pc | Pa | Vapour pressure over condenser |
psat | Pa | Saturation pressure of water |
Pcond | W | Conductive heat exchange between the condenser surface and the ground |
Pconv | W | Convective heat exchange |
Plat | W | Latent heat released by the condensation or desublimation of water |
Prad | W | Heat exchange due to incoming and outgoing radiation |
Rlw | W m2 | Surface thermal radiation downwards |
Rsw | W m2 | Surface solar radiation downwards |
Sc | m2 | Surface area of condenser |
Ta | K | Ambient temperature at 2 m |
Tc | K | Temperature of the condenser |
U10 | m s−1 | Horizontal wind speed component at 10 m |
V10 | m s−1 | Horizontal wind speed component at 10 m |
WS | m s−1 | Prevailing horizontal wind speed at 2 m |
z0 | m | Surface roughness |
mm | Condenser sheet thickness | |
Emissivity of condenser sheet | ||
Pa K−1 | Psychrometric constant | |
W m−2 k−4 | Stefan–Boltzmann constant |
Appendix A.2. Meteorological Input Data
Appendix A.3. Example of a Detailed Model Simulation Output
References
- Lindblom, J.; Nordell, B. Water production by underground condensation of humid air. Desalination 2006, 189, 248–260. [Google Scholar] [CrossRef]
- Lekouch, I.; Muselli, M.; Kabbachi, B.; Ouazzani, J.; MelnytchoukMilimouk, I.; Beysens, D. Dew, fog, and rain as supplementary sources of water in southwestern Morocco. Energy 2011, 36, 2257–2265. [Google Scholar] [CrossRef] [Green Version]
- Khalil, B.; Adamowski, J.; Shabbir, A.; Jang, C.; Rojas, M.; Reilly, K.; OzgaZielinski, B. A review: Dew water collection from radiative passive collectors to recent developments of active collectors, Sustain. Water Resourc Manag. 2016, 2, 71–86. [Google Scholar] [CrossRef] [Green Version]
- MaestreValero, J.F.; MartinezAlvarez, V.; Baille, A.; MartínGórriz, B.; GallegoElvira, B. Comparative analysis of two polyethylene foil materials for dew harvesting in a semiarid climate. J. Hydrol. 2011, 410, 84–91. [Google Scholar] [CrossRef]
- Mileta, M.; Beysens, D.; Nikolayev, V.; Milimouk, I.; Clus, O.; Muselli, M. Fog and Dew Collection Projects in Croatia. Available online: https://arxiv.org/ftp/arxiv/papers/0707/0707.2931.pdf (accessed on 22 November 2019).
- Agam, N.; Berliner, P.R. Dew formation and water vapor adsorption in semiarid environments—A review. J. Arid Environ. 2006, 65, 572–590. [Google Scholar] [CrossRef]
- Kidron, G.J.; Herrnstadt, I.; Barzilay, E. The role of dew as a moisture source for sand microbiotic crusts in the Negev Desert, Israel. J. Arid Environ. 2002, 52, 517–533. [Google Scholar] [CrossRef]
- Nikolayev, V.S.; Beysens, D.; Gioda, A.; Milimouka, I.; Katiushin, E.; Morel, J.P. Water recovery from dew. J. Hydrol. 1996, 182, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, T.M.J.; Vargas, W.E.; Niklasson, G.A.; Granqvist, C.G. Condensation of water by radiative cooling. Ren. Energy 1994, 5, 310–317. [Google Scholar] [CrossRef]
- Rajvanshi, A.K. Large scale dew collection as a source of fresh water supply. Desalination 1981, 36, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Jumikis, A.R. Aerial wells: Secondary source of water. Soil Sci. 1965, 100, 83–95. [Google Scholar] [CrossRef]
- Hamed, A.M.; Kabeel, A.E.; Zeidan, E.S.B.; Aly, A.A. A technical review on the extraction of water from atmospheric air in arid zones. Int. J. Heat Mass Trans. 2010, 4, 213–228. [Google Scholar]
- Beysens, D.; Milimouk, I.; Nikolayev, V.; Muselli, M.; Marcillat, J. Using radiative cooling to condense atmospheric vapor: A study to improve water yield. J. Hydrol. 2003, 276, 111. [Google Scholar] [CrossRef]
- Beysens, D.; Muselli, M.; Nikolayev, V.; Narhe, R.; Milimouk, I. Measurement and modelling of dew in island, coastal and alpine areas. Atmos. Res. 2005, 73, 122. [Google Scholar] [CrossRef] [Green Version]
- Beysens, D. The formation of dew. Atmos. Res. 1995, 39, 215–237. [Google Scholar] [CrossRef]
- Muselli, M.; Beysens, D.; Marcillat, J.; Milimouk, I.; Nilsson, T.; Louche, A. Dew water collector for potable water in Ajaccio (Corsica Island, France). Atmos. Res. 2002, 64, 297–312. [Google Scholar] [CrossRef]
- Raman, C.R.V.; Venkatraman, S.; Krishnamurthy, V. Dew ver India and Its Contribution to Winter-Crop Water Balance. Agric. For. Meteorol. 1973, 11, 17–35. [Google Scholar] [CrossRef]
- Beysens, D.; Muselli, M.; Milimouk, I.; Ohayone, C.; Berkowicz, S.M.; Soyeuxg, E.; Mileta, M.; Ortega, P. Application of passive radiative cooling for dew condensation. Energy 2006, 31, 1967–1979. [Google Scholar] [CrossRef]
- Beysens, D. Dew nucleation and growth. C. R. Phys. 2006, 7, 1082–1100. [Google Scholar] [CrossRef]
- Alnaser, W.E.; Barakat, A. Use of condensed water vapour from the atmosphere for irrigation in Bahrain. Appl. Energy 2000, 65, 318. [Google Scholar] [CrossRef]
- Beysens, D.; Ohayon, C.; Muselli, M.; Clus, O. Chemical and biological characteristics of dew and rain water in an urban coastal area (Bordeaux, France). Atmos. Environ. 2006, 40, 3710–3723. [Google Scholar] [CrossRef]
- Beysens, D.; Clus, O.; Mileta, M.; Milimouk, I.; Muselli, M.; Nikolayev, V.S. Collecting dew as a water source on small islands: The dew equipment for water project in (Croatia). Energy 2007, 32, 1032–1037. [Google Scholar] [CrossRef]
- Galek, G.; Sobik, M.; Blas, M.; Polkowska, Z.; Cichala-Kamrowska, K. Dew formation and chemistry near a motorway in Poland. Pure Appl. Geophys. 2012, 169, 1053–1066. [Google Scholar] [CrossRef] [Green Version]
- Gałek, G.; Sobik, M.; Błaś, M.; Polkowska, Ż.; Cichała-Kamrowska, K.; Wałaszek, K. Dew and hoarfrost frequency, formation efficiency and chemistry in Wroclaw, Poland. Atmos. Res. 2015, 151, 120–129. [Google Scholar] [CrossRef]
- Jiries, A. Chemical composition of dew in Amman, Jordan. Atmos. Res. 2001, 57, 261–268. [Google Scholar] [CrossRef]
- Lekouch, I.; Mileta, M.; Muselli, M.; Milimouk-Melnytchouk, I.; Šojat, V.; Kabbachi, B.; Beysens, D. Comparative chemical analysis of dew and rain water. Atmos. Res. 2010, 95, 224–234. [Google Scholar] [CrossRef]
- Muselli, M.; Beysens, D.; Milimouk, I. A comparative study of two large radiative dew water condensers. J. Arid Environ. 2006, 64, 54–76. [Google Scholar] [CrossRef]
- Odeh, I.; Arar, S.; Al-Hunaiti, A.; Sa’aydeh, H.; Hammad, G.; Duplissy, J.; Vuollekoski, H.; Korpela, A.; Petäjä, T.; Kulmala, M.; et al. Chemical investigation and quality of urban dew collection with dust precipitation. Environ. Sci. Pollut. Res. 2017, 24, 12312–12318. [Google Scholar] [CrossRef] [Green Version]
- Okochi, H.; Kataniwa, M.; Sugimoto, D.; Igawa, M. Enhanced dissolution of volatile organic compounds into urban dew water collected in Yokohama, Japan. Atmos. Environ. 2005, 39, 6027–6036. [Google Scholar] [CrossRef]
- Polkowska, Ż.; Błaś, M.; Klimaszewska, K.; Sobik, M.; Małek, S.; Namieśnik, J. Chemical characterization of dew water collected in different geographic regions of Poland. Sensors 2008, 8, 4006–4032. [Google Scholar] [CrossRef] [Green Version]
- Shachak, M.; Leeper, A.; Degen, A.A. Effect of population density on water influx and distribution in the desert snail Trochoidea seetzenii. Ecoscience 2002, 9, 287–292. [Google Scholar] [CrossRef]
- Zangvil, A. Six years of dew observations in the Negev Desert, Israel. J. Arid Environ. 1996, 32, 361–371. [Google Scholar] [CrossRef]
- Clus, O.; Ortega, P.; Muselli, M.; Milimouk, I.; Beysens, D. Study of dew water collection in humid tropical islands. J. Hydrol. 2008, 361, 159–171. [Google Scholar] [CrossRef]
- Kidron, G.J. Altitude dependent dew and fog in the Negev Desert, Israel. Agric. For. Meteorol. 1999, 96, 1–8. [Google Scholar] [CrossRef]
- Leopold, L.B. Dew as a source of plant moisture. Pac. Sci. 1952, 6, 259–261. [Google Scholar]
- Muselli, M.; Beysens, D.; Mileta, M.; Milimouk, I. Dew and rain water collection in the Dalmatian Coast, Croatia. Atmos. Res. 2009, 92, 455–463. [Google Scholar] [CrossRef]
- Richards, K. Observation and simulation of dew in rural and urban environments. Prog. Phys. Geogr. 2004, 28, 76–94. [Google Scholar] [CrossRef]
- Sharan, G. Dew Yield from Passive Condensers in a Coastal Arid Area: Kutch. Available online: http://vslir.iima.ac.in:8080/jspui/bitstream/11718/6362/1/2005-01-05gsharan.pdf (accessed on 22 November 2019).
- Sharan, G.; Shah, R.; Millimouk-Melnythouk, I.; Beysens, D. Roofs as Dew Collectors: Corrugated Galvanized Iron Roofs in Kothara and Suthari (NW India). In Proceedings of the Fourth International Conference on Fog, Fog Collection and Dew, La Serena, Chile, 22–27 July 2007. [Google Scholar]
- Ye, Y.; Zhou, K.; Song, L.; Jin, J.; Peng, S. Dew amount and its correlation with meteorological factors in urban landscapes of Guangzhou, China. Atmos. Res. 2007, 86, 21–29. [Google Scholar] [CrossRef]
- Vuollekoski, H.; Vogt, M.; Sinclair, V.A.; Duplissy, J.; Järvinen, H.; Kyrö, E.; Makkonen, R.; Petäjä, T.; Prisle, N.L.; Räisänen, P.; et al. Estimates of global dew collection potential on artificial surfaces. Hydrol. Earth Syst. Sci. 2015, 19, 601–613. [Google Scholar] [CrossRef] [Green Version]
- Tomaszkiewicz, M.; Abou Najm, M.; Beysens, D.; Alameddine, I.; El-Fadel, M. Dew as a sustainable non-conventional water resource: A critical review. Environ. Rev. 2015, 23, 425–442. [Google Scholar] [CrossRef]
- Monteith, J.L. Dew. Q. J. R. Meteorol. Soc. 1957, 83, 322–341. [Google Scholar] [CrossRef]
- Beysens, D. Estimating dew yield worldwide from a few meteo data. Atmos. Res. 2016, 167, 146–155. [Google Scholar] [CrossRef]
- Gandhisan, P.; Abualhamayel, H.I. Modelling and testing of a dew collection system. Desalination 2005, 18, 47–51. [Google Scholar] [CrossRef]
- Pedro, M.J., Jr.; Gillespie, T.J. Estimating dew duration. I. Utilizing micrometeorological data. Agric. Meteorol. 1981, 25, 283–296. [Google Scholar] [CrossRef]
- Nilsson, T. Initial experiments on dew collection in Sweden and Tanzania. Sol. Energy Mater. Sol. Cells 1996, 40, 23–32. [Google Scholar] [CrossRef]
- Tomaszkiewicz, M.; Abou Najm, M.; Beysens, D.; Alameddine, I.; Zeid, E.B.; El-Fadel, M. Projected climate change impacts upon dew yield in the Mediterranean basin. Sci. Total Environ. 2016, 566, 1339–1348. [Google Scholar] [CrossRef]
- Nikolayev, V.S.; Beysens, D.; Muselli, M. A computer model for assessing dew/frost surface deposition. In Proceedings of the Second International Conference on Fog and Fog Collection, St John’s, NL, Canada, 15–20 July 2001; pp. 333–336. [Google Scholar]
- Jacobs, A.F.G.; Heusinkveld, B.G.; Berkowicz, S.M. Passive dew collection in a grassland area, The Netherlands. Atmos. Res. 2008, 87, 377–385. [Google Scholar] [CrossRef]
- Jorge Ernesto, A.T.; Jose Jasson, F.P. Winter dew harvest in Mexico City. Atmosphere 2016, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Abdulla, F. 21st Century Climate Change Projections of Precipitation and Temperature in Jordan. 1st International Conference on Optimization-Driven Architectural Design (OPTARCH 2019). Proced. Manuf. 2020, 44, 197–204. [Google Scholar] [CrossRef]
- Freiwan, M.; Kadioglub, M. Climate variability in Jordan. Int. J. Climatol. 2008, 28, 69–89. [Google Scholar] [CrossRef]
- Hamdy, A.; Lacirignola, C. Mediterranean water resources: Major challenges towards the 21st century. In Proceedings of the International Seminar on Mediterranean Water Resources: Major Challenges Towards the 21st Century, Egypt, Cairo, 1–5 March 1999. [Google Scholar]
- Hadadin, N. Dams in Jordan current and future perspective. Can. J. Pure Appl. Sci. 2015, 9, 3279–3290. [Google Scholar]
- Notaro, M.; Yu, Y.; Kalashnikova, O.V. Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought. J. Geophys. Res. Atmos. 2015, 10, 229. [Google Scholar] [CrossRef]
- Rezazadeh, M.; Irannejad, P.; Shao, Y. Climatology of the Middle East dust events. Aeol. Res. 2013, 10, 103–109. [Google Scholar] [CrossRef]
- Pohlert, T. Non-Parametric Trend Tests and Change-Point Detection; Creative Commons—CC BY-ND 4: Mountain View, CA, USA, 2016; pp. 2–17. [Google Scholar]
- Satheesh, S.K.; Deepshikha, S.; Srinivasan, J. Impact of dust aerosols on Earth–atmosphere clear-sky albedo and its short wave radiative forcing over African and Arabian regions. Int. J. Remote Sens. 2006, 27, 1691–1706. [Google Scholar] [CrossRef] [Green Version]
- Givati, A.; Rosenfeld, D. Possible impacts of anthropogenic aerosols on water resources of the Jordan River and the Sea of Galilee. Water Ressour. Res. 2007, 43, W10419. [Google Scholar] [CrossRef]
- Berrisford, P.; Dee, D.; Poli, P.; Brugge, R.; Fielding, K.; Fuentes, M.; Kallberg, P.; Kobayashi, S.; Uppala, S.; Simmons, A. ERA report series. In The ERA-Interim Archive; ECMWF—European Centre for Medium-Range Weather Forecasts: Shinfield Park, Reading, UK, 2011; Volume 2. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Tampkins, A. A Brief. Introduction1 to Retrieving ERA Interim via the Web and Webapi; ECMWF—European Centre for Medium-Range Weather Forecasts: Shinfield Park, Reading, UK, 2017. [Google Scholar]
Station Number | Elevation (m.a.s.l) | Region and Area Type | Location | Ta (°C) Mean (Min–Max) | DP (°C) | RH % | Dew Yield (mm/y) |
---|---|---|---|---|---|---|---|
1 | 530 | Mountain, agriculture | Irbid | 18 (11–24) | 10 (8–13) | 66 (40–84) | 89 |
2 | 780 | Arid, rural | Mafraq | 19 (12–26) | 4 (0–7) | 43 (25–60) | 21 |
3 | 730 | Mountain, urban | Amman | 19 (12–25) | 9 (6–12) | 60 (34–81) | 56 |
4 | 720 | Mountain, agriculture | Madaba | 20 (13–26) | 9 (6–12) | 58 (33–79) | 58 |
5 | 630 | Badia, rural | Azraq | 20 (13–26) | 6 (2–9) | 49 (27–68) | 23 |
6 | −400 | Valley, agriculture | Dead Sea | 20 (13–26) | 9 (6–12) | 58 (32–79) | 63 |
7 | 790 | Mountain, agriculture | Karak | 19 (12–26) | 8 (4–11) | 55 (29–76) | 47 |
8 | 770 | Mountain, Arid | Petra | 20 (12–27) | 7 (3–10) | 49 (26–70) | 42 |
9 | 890 | Badia, rural | Ma’an | 20 (12–27) | 4 (0–8) | 43 (22–62) | 20 |
10 | 110 | Costal, arid | Aqaba | 20 (13–27) | 6 (2–9) | 48 (25–68) | 29 |
Site Number | Site Name | Water | Hoarfrost | Water + Hoarfrost |
---|---|---|---|---|
1 | Irbid | 88 ± 7 (75–104) | 1 ± 0.8 (0–3) | 89 ± 6 (75–105) |
2 | Mafraq | 19 ± 4 (11–30) | 2 ± 1 (0–4) | 21 ± 4 (12–30) |
3 | Amman | 55 ± 6 (41–65) | 1 ± 0.7 (0–3) | 56 ± 6 (42–66) |
4 | Madaba | 57 ± 6 (42–67) | 1 ± 0.7 (0–2.5) | 58 ± 6 (43–67) |
5 | Azraq | 22 ± 4 (14–29) | 1 ± 0.6 (0–2.5) | 23 ± 4 (15–29) |
6 | Dead Sea | 63 ± 7 (46–73) | 1 ± 0.5 (0–2) | 63 ± 7 (46–74) |
7 | Karak | 46 ± 6 (33–56) | 1 ± 0.7 (0–3) | 47 ± 6 (33–57) |
8 | Perta | 40 ± 6 (29–52) | 1 ± 0.7 (0–3) | 42 ± 6 (30–53) |
9 | Ma’an | 19 ± 3 (12–26) | 1 ± 0.8 (0–4) | 20 ± 3 (13–27) |
10 | Aqaba | 28 ± 5 (18–38) | 1 ± 0.6 (0–3) | 29 ± 5 (19–39) |
Site Number | Site Name | Slope (Per Year) | Slope (Per Decade) |
---|---|---|---|
1 | Irbid | −0.08 | −0.8 |
2 | Mafraq | −0.07 | −0.7 |
3 | Amman | −0.2 * | −2 |
4 | Madaba | −0.3 * | −3 |
5 | Azraq | −0.1 * | −1 |
6 | Dead Sea | −0.4 * | −4 |
7 | Karak | −0.3 * | −3 |
8 | Perta | −0.3 * | −3 |
9 | Ma’an | −0.1 * | −1 |
Site Number | Site Name | Slope | R2 | Slope (Min) | Slope (Max) |
---|---|---|---|---|---|
1 | Irbid | 0.04 * | 0.52 | 0.03 * | 0.4 * |
2 | Mafraq | 0.04 * | 0.39 | 0.03 * | 0.3 * |
3 | Amman | 0.04 * | 0.55 | 0.03 * | 0.4 * |
4 | Madaba | 0.04 * | 0.57 | 0.03 * | 0.5 * |
5 | Azraq | 0.04 * | 0.5 | 0.03 * | 0.4 * |
6 | Dead Sea | 0.04 * | 0.59 | 0.4 * | 0.5 * |
7 | Karak | 0.04 * | 0.57 | 0.03 * | 0.5 * |
8 | Perta | 0.04 * | 0.57 | 0.03 * | 0.4 * |
9 | Ma’an | 0.04 * | 0.5 | 0.03 * | 0.4 * |
10 | Aqaba | 0.04 * | 0.58 | 0.04 * | 0.4 * |
Site Number | Site Name | Slope (per Year) | Slope (per Decade) | R2 |
---|---|---|---|---|
1 | Irbid | −0.1 * | −1 | 0.57 |
2 | Mafraq | −0.09 * | −0.9 | 0.16 |
3 | Amman | −0.2 * | −2 | 0.6 |
4 | Madaba | −0.1 * | −1 | 0.47 |
5 | Azraq | −0.2 * | −2 | 0.66 |
6 | Dead Sea | −0.2 * | −2 | 0.66 |
7 | Karak | −0.1 * | −1 | 0.59 |
8 | Perta | −0.1 * | −1 | 0.44 |
9 | Ma’an | −0.09 * | −0.9 | 0.31 |
10 | Aqaba | −0.1 * | −1 | 0.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atashi, N.; Rahimi, D.; Al Kuisi, M.; Jiries, A.; Vuollekoski, H.; Kulmala, M.; Vesala, T.; Hussein, T. Modeling Long-Term Temporal Variation of Dew Formation in Jordan and Its Link to Climate Change. Water 2020, 12, 2186. https://doi.org/10.3390/w12082186
Atashi N, Rahimi D, Al Kuisi M, Jiries A, Vuollekoski H, Kulmala M, Vesala T, Hussein T. Modeling Long-Term Temporal Variation of Dew Formation in Jordan and Its Link to Climate Change. Water. 2020; 12(8):2186. https://doi.org/10.3390/w12082186
Chicago/Turabian StyleAtashi, Nahid, Dariush Rahimi, Mustafa Al Kuisi, Anwar Jiries, Henri Vuollekoski, Markku Kulmala, Timo Vesala, and Tareq Hussein. 2020. "Modeling Long-Term Temporal Variation of Dew Formation in Jordan and Its Link to Climate Change" Water 12, no. 8: 2186. https://doi.org/10.3390/w12082186
APA StyleAtashi, N., Rahimi, D., Al Kuisi, M., Jiries, A., Vuollekoski, H., Kulmala, M., Vesala, T., & Hussein, T. (2020). Modeling Long-Term Temporal Variation of Dew Formation in Jordan and Its Link to Climate Change. Water, 12(8), 2186. https://doi.org/10.3390/w12082186