Characteristics of Underwater Topography, Geomorphology and Sediment Source in Qinzhou Bay
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Underwater Topographic Survey and Sample Collection
3.2. Bathymetric Data Processing and Sample Analysis
4. Results
4.1. Zoning of Underwater Topography and Associated Features
4.2. Division of Geomorphological Units and Their Features
4.3. Sediment Types
5. Discussion
5.1. Genesis Analysis of Landforms and Geomorphology
5.2. Sediment Sources
5.3. Influence of Human Activities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, F.; Cao, C.; Zhou, X.; Wu, Z. China Offshore Ocean-Submarine Topography and Geomorphology; China Ocean Press: Beijing, China, 2013; pp. 1–5. [Google Scholar]
- Anthony, E.J.; Gardel, A.; Dollique, F.; Brunier, G.; Péron, C. Mud banks, sand flux, and beach morphodynamics: Montjoly Lagoon beach, French Guiana. In Coastal Sediment Fluxes, Coastal Research Library; Robin, M., Maanan, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 75–90. [Google Scholar]
- Anthony, E.; Gardel, A.; Gratiot, N.; Proisy, C.; Allison, M.; Dolique, F.; Fromard, F. The Amazon-influenced muddy coast of South America: A review of mud-bank-shoreline interactions. Earth Sci. Rev. 2010, 103, 99–121. [Google Scholar] [CrossRef]
- Tamura, T.; Horaguchi, K.; Saito, Y.; Nguyen, V.; Tateishi, M.; Ta, T.K.O.; Nanayama, F.; Watanabe, K. Monsoon-influenced variations in morphology and sediment of a mesotidal beach on the Mekong river delta coast. Geomorphology 2010, 116, 11–23. [Google Scholar] [CrossRef]
- Chang, T.; Ha, H.; Hong, S. Mud deposition on a macrotidal beach: Dasari coastal dune, west coast of Korea. J. Coast Res. 2016, 75, 1312–1316. [Google Scholar] [CrossRef]
- Chang, T.; Hong, S.; Chun, S.; Choi, J.H. Age and morphodynamics of a sandy beach fronted by a macrotidal mud flat along the west coast of Korea: A lateral headland bypass model for beach-dune formation. Geo. Mar. Lett. 2017, 37, 361–371. [Google Scholar] [CrossRef]
- Morio, O.; Sedrati, M.; Goubert, E.; Floc’h, F.; Furgerot, L.; Garlan, T. Morphodynamic of a sandy-muddy macrotidal estuarine beach under contrasted energy conditions (Vilaine estuary, France). J. Coast Res. 2016, 75, 258–262. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas, M.; Pekel, J.F.; Voukouvalas, E.; Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 2018, 8, 12876. [Google Scholar] [CrossRef] [Green Version]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef]
- Vousdoukas, M.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Stronge, W. Economic value of beaches. In Encyclopedia of Coastal Science. Encyclopedia of Earth Science Series; Schwartz, M.L., Ed.; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Houston, J. The economic value of beaches e a 2013 update. Shore Beach. 2013, 81, 3–11. [Google Scholar]
- Zhao, R.; Hynes, S.; He, G.S. Defining and quantifying China’s ocean economy. Mar. Pol. 2014, 43, 164–173. [Google Scholar] [CrossRef]
- Zhao, S.H.; Cai, F.; Qi, H.S.; Zhu, J.; Zhou, X.; Lei, G.; Zheng, J.X. Contrasting sandy-muddy transition migrations in estuarine and bay beaches and their potential morphological responses. Geomorphology 2020, 365, 107243. [Google Scholar] [CrossRef]
- Zhao, S.H.; Liu, Z.F.; Colin, C.; Zhao, Y.L.; Wang, X.X.; Jian, Z.M. Responses of the East Asian summer monsoon in the low-latitude South China Sea to high-latitude millennial-scale climatic changes during the last glaciation: Evidence from a high-resolution clay mineralogical record. Palaeoceanogr. Palaeoclimatol. 2018, 33, 745–765. [Google Scholar] [CrossRef]
- Cao, C.; Jiang, D.; Pan, X.; Chen, Q.; Wu, J.; Liu, M.; Song, Z.; Liu, Z. Study on distribution of sulfate and methane interface in mangrove wetland sediments and its influencing factors. J. Appl. Oceanogr. 2018, 37, 203–210. [Google Scholar]
- Wright, L.; Short, A. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Short, A. The role of wave height, period, slope, tide range and embaymentisation in beach classifications a review. Rev. Chil. Hist. Nat. 1996, 69, 589–604. [Google Scholar]
- Greenwood, B.; Davis, R.A. Hydrodynamics and sedimentation in wave-dominated coastal environments. Mar. Geol. 1984, 60, R7. [Google Scholar]
- Aagaard, T.; Greenwood, B.; Hughes, M. Sediment transport on dissipative, intermediate and reflective beaches. Earth Sci. Rev. 2013, 124, 32–50. [Google Scholar] [CrossRef]
- Komar, P. Beach Processes and Sedimentation, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 1998; pp. 315–326. [Google Scholar]
- Xu, K.H.; Milliman, J.; Li, A.C.; Liu, J.-P.; Kao, S.-J.; Wan, S.M. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea. Cont. Shelf Res. 2009, 29, 2240–2256. [Google Scholar] [CrossRef]
- Xu, X.; Se, X.J.; Mao, N.; Zhang, L.; Chui, Z. Research on Artificial Beach; China Ocean Press: Beijing, China, 2012; pp. 38–40. [Google Scholar]
- Amos, G.L.; King, E.L. Bedforms of the Canadian Eastern seaboard: A comparison with global occurrences. Mar. Geol. 1984, 57, 167–208. [Google Scholar] [CrossRef]
- Liu, Z.; Trentesaux, A.; Steven, C.C.; Christophe, C.; Wang, P.; Huang, B.; Sébastien, B. Quaternary clay minerals at ODP Station 1146, North China Sea: Records of ocean current transport and East Asian monsoon evolution. Sci. China Earth Sci. 2003, 33, 271–280. [Google Scholar]
- Wang, Z.; Yang, S.; Li, P.; Li, C.; Cai, J. Detrital mineral composition of the Changjiang River sediments and their tracing implications. Acta Sedimentol. Sin. 2006, 24, 570–578. [Google Scholar]
- Park, S.C.; Lee, S.D. Depositional patterns of sand ridges in tide-dominated shallow water environments: Yellow sea coast and south sea of Korea. Mar. Geol. 1994, 120, 407–419. [Google Scholar] [CrossRef]
- Fogarin, S.; Madricardo, F.; Zaggia, L.; Sigovini, M.; Montereale-Gavazzi, G.; Kruss, A.; Lorenzetti, G.; Manfé, G.; Petrizzo, A.; Molinaroli, E.; et al. Tidal inlets in the Anthropocene: Geomorphology and benthic habitats of the Chioggia inlet, Venice Lagoon (Italy). Earth Surf. Process. Landf. 2019, 44, 2297–2315. [Google Scholar] [CrossRef]
- Huang, S.C.; Yao, W.W.; Liu, X.; Wu, C.S. Profile characteristics of the beaches adjacent to muddy seabed in the Headland Bays. Coast. Eng. 2016, 35, 1–9. [Google Scholar]
- Fu, B.X.; Liu, L. Beach mudding comprehensive regulation of Nantaiwu in Zhangzhou. Port Waterw. Eng. 2016, 10, 50–56. [Google Scholar]
- China Gulf Chronicle Commission. China Gulf Chronicle; China Ocean Press: Beijing, China, 1993; Volume 12, p. 167. [Google Scholar]
- Li, P. High-Resolution Organic Geochemical Record in the Beibu Gulf; Guangxi University Press: Nanning, China, 2014; pp. 10–12. [Google Scholar]
- Chen, B.; Qiu, S.; Ge, W.; Shi, M. Numerical calculation about the tidal currents in the main bays of Guangxi. Guangxi Sci. 2001, 8, 295–300. [Google Scholar]
- Lu, K. Geological environment characteristics and disaster formation mechanism of siltation in Qinzhou Bay, Guangxi. Ground Water 2008, 30, 122–124. [Google Scholar]
- Cao, C.; Cai, F.; Zheng, Y.; Wu, C.; Lu, H.; Bao, J.; Xu, Y. Topography characteristics and profile type of China offshore submarine. J. Cent. S. Univ. (Sci. Technol.) 2014, 45, 483–494. [Google Scholar]
- Janowski, L.; Kubacka, M.; Pydyn, A.; Popek, M.; Gajewski, L. From acoustics to underwater archaeology: Deep investigation of a shallow lake using high-resolution hydroacoustics-The case of Lake Lednica, Poland. Archaeometry 2021, 12663. [Google Scholar] [CrossRef]
- Watson, S.J.; Neil, H.; Ribó, M.; Lamarche, G.; Strachan, L.J.; MacKay, K.; Wilcox, S.; Kane, T.; Orpin, A.; Nodder, S.; et al. What we do in the shallows: Natural and anthropogenic seafloor geomorphologies in a drowned River Valley, New Zealand. Front. Mar. Sci. 2020, 7. [Google Scholar] [CrossRef]
- 908 Project office of State Oceanic Administration. Specification for Submarine Topography and Geomorphology Survey; China Ocean Press: Beijing, China, 2006; p. 5. [Google Scholar]
- Fan, M.; Lu, H.Q.; Xing, Z.; Jin, J.Y. Analysis of void filling interpolation methods for multibeam DEM data. Hydrogr. Surv. Charting 2015, 35, 11–13, 17. [Google Scholar]
- Gao, Y.Q.; Zhao, M.; Wang, P.; Zhang, H.G. An underwater terrain construction method based on moving-Kriging interpolation algorithm. J. Nav. Univ. Eng. 2019, 31, 53–57. [Google Scholar]
- Wu, J.X. Reviews on sediment dynamics and depositional systems in the modern Delta, with a particular emphasis on the Pearl River Delta. Clim. Chang. Res. Lett. 2012, 1, 113–120. [Google Scholar] [CrossRef]
- McManus, J. Grain size determination and interpretation. In Techniques in Sedimentology; Tucker, M., Ed.; Blackwell: Oxford, UK, 1988; pp. 63–85. [Google Scholar]
- Gao, J.H.; Shi, Y.; Sheng, H.; Kettner, A.; Yang, Y.; Jia, J.J.; Wang, Y.P.; Li, J.; Chen, Y.N.; Zou, X.Q.; et al. Rapid response of the Changjiang (Yangtze) River and East China Sea source-to-sink conveying system to human induced catchment perturbations. Mar. Geol. 2019, 414, 1–17. [Google Scholar] [CrossRef]
- Xiang, R.; Yang, Z.S.; Saito, Y.; Guo, Z.G.; Fan, D.J.; Li, Y.H.; Xiao, S.B.; Shi, X.F.; Chen, M.H. East Asia winter monsoon changes inferred from environmentally sensitive grainsize component records during the last 2300 years in mud area southwest off Cheju Island, ECS. Sci. China Ser. D 2006, 49, 604–614. [Google Scholar] [CrossRef]
- Zhang, C.; Cheng, Y.; Liu, Y.; Li, F.; Liu, J.; Zhang, L. Sedimentary records of heavy mineral representing influence of human activities on riverbed evolution in Yalu River Estuary in recent 100 years. J. East. Liaoning Univ. (Nat. Sci.) 2011, 19, 189–193. [Google Scholar]
- Liu, Z.F.; Tuo, S.T.; Colin, C.; Liu, J.T.; Huang, C.-Y.; Selvaraj, K.; Chen, C.-T.A.; Zhao, Y.L.; Siringan, F.P.; Boulay, S.; et al. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Mar. Geol. 2008, 255, 149–155. [Google Scholar] [CrossRef]
- Biscaye, P. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Am. Bull. 1965, 76, 803–832. [Google Scholar] [CrossRef]
- Liu, S. Sedimentation and paleoenvironmental evolution of mud area in the inner continental shelf of East China Sea since the Holocene. Cont. Shelf Res. 2009, 89–92. [Google Scholar] [CrossRef]
- Fang, J.; Chen, J.; Liu, Z.; Li, Y.; Li, D.; Zhu, Y. Types and distribution of the components of settling particulate matter in Jiulongjiang River Estuary in spring of 2009. J. Appl. Oceanogr. 2013, 32, 316–323. [Google Scholar]
- Xu, Y.; Chen, J.; Wang, A.; LI, Y.; Wang, W.; Zhang, X.; Lai, Z. Clay minerals in surface sediments of the Taiwan strait and their provenance. Acta Sedimentol. Sin. 2013, 31, 120–129. [Google Scholar]
- Yan, X.; Liu, G. Study on deposition characteristics and channel siltation in offshore zone of Qinzhou Bay. J. Waterw. Harbour. 2006, 27, 79–83. [Google Scholar]
- Miao, W.; Ma, H.; Zhang, X.; Zhang, Y.; Li, Y. Clay Mineral Characteristics of salt sequence in drill hole SHK4 of the Mengyejing potassium deposit of Jiangcheng, Lanping-Simao Basin, Yunnan Province, and their sylvite-forming significance. Acta Geosci. Sin. 2013, 34, 537–546. [Google Scholar]
- 908 Project office of State Oceanic Administration. Classification Code and Schematic Illustration Rules for the Elements of China’s Offshore Comprehensive Marine Survey; China Ocean Press: Beijing, China, 2008; p. 16. [Google Scholar]
- Yang, Z. Marine Geology; Shandong Education Press: Jinan, China, 2004; pp. 59–62. [Google Scholar]
- Zhao, J. Geochemical spatial structure characteristics of elements in surface sediments of Beibu Gulf. Adv. Earth Sci. 2012, 27, 526–527. [Google Scholar]
- Chen, L.; Zhang, X. Mineral assemblage and distribution characteristics in Beibu Gulf sediments. Acta Oceanol. Sin. 1986, 8, 340–346. [Google Scholar]
- Cui, Z.; Gan, H.; Liu, W.; Zhang, L. Geochemical characteristics of major elements and provenance implication of surface sediments in the eastern Beibu Gulf. Comput. Tech. Geophys. Geochem. Explor. 2015, 37, 522–531. [Google Scholar]
- Xia, Z.; Lin, J.; Liang, K.; Zhang, S.; Pan, Y.; Shi, Y.; Huang, X.; Chen, T. Distribution and provenance significance of detrital minerals in surface sediments under typical coastal water areas, Guangxi. Geol. Surv. China 2017, 4, 66–72. [Google Scholar]
- Xu, D.; Li, J.; Chu, F.; Long, J.; Ye, L.; Han, X. The response of sedimentary records in Eastern Beibu Gulf to the last postglacial transgression and circulation. Earth Sci. J. China Univ. Geosci. 2013, 48, 70–82. [Google Scholar]
- Xu, Z.; Wang, Y.; Li, Y.; Ma, F.; Zhang, F.; Ye, C. Sediment transport patterns in the eastern Beibu Gulf based on grain-size multivariate statistics and provenance analysis. Acta Oceanol. Sin. 2010, 32, 67–78. [Google Scholar]
- Huang, X.; Xia, Z.; Liang, K.; Zhang, S.; Cui, Z.; Pan, Y. Clay distribution and accumulation in sediments of main estuary along Guangxi Coast since Holocene. Guangxi Sci. 2014, 21, 411–418. [Google Scholar]
- Yang, S.L.; Xu, K.H.; Milliman, J.; Yang, H.F.; Wu, C.S. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes. Sci. Rep. 2015, 5, 12581. [Google Scholar] [CrossRef]
- Elbanna, M.M.; Frihy, O.E. Human-induced changes in the geomorphology of the northeastern coast of the Nile delta, Egypt. Geomorphology 2009, 107, 72–78. [Google Scholar] [CrossRef]
- Blum, M.D.; Roberts, H.H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2009, 2, 488–491. [Google Scholar] [CrossRef]
- Albert, J.K.; Syvitski, J.P.M. Predicting Discharge and Sediment Flux of the Po River, Italy Since the Last Glacial Maximum; Wiley-Blackwell: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bohannon, J. The Nile Delta’s sinking future. Science 2010, 327, 1444–1447. [Google Scholar] [CrossRef]
- Dai, Z.J.; Liu, J.T.; Wen, W. Morphological evolution of the South Passage in the Changjiang (Yangtze River) estuary, China. Quat. Int. 2015, 380, 314–326. [Google Scholar] [CrossRef] [Green Version]
- Ericson, J.P.; Vorosmarty, C.J.; Dingman, S.L.; Ward, L.G.; Meybeck, M. Effective sea-level rise and deltas: Causes of change and human dimension implications. Glob. Planet. Chang. 2006, 50, 63–82. [Google Scholar] [CrossRef]
- Fanos, A.M. The impact of human activities on the erosion and accretion of the Nile Delta Coast. J. Coast. Res. 1995, 11, 821–833. [Google Scholar]
- Chen, J.Y.; Chen, S.L. Estuarine and coastal challenges in China. Mar. Geol. Lett. 2002, 18, 1–5. [Google Scholar]
- Day, J.W.; Boesch, D.F.; Clairain, E.J.; Kemp, G.P.; Laska, S.B.; Mitsch, W.J.; Orth, K.; Mashriqui, H.; Reed, D.J.; Shabman, L.; et al. Restoration of the Mississippi Delta: Lessons from hurricanes Katrina and Rita. Science 2007, 315, 1679–1684. [Google Scholar] [CrossRef] [Green Version]
- Milliman, J.D. Delivery and fate of fluvial water and sediment to the sea: A marine geologist’s view of European rivers. Sci. Mar. 2001, 65, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Milliman, J.D.; Farnsworth, K.L.; Jones, P.D.; Xu, K.H.; Smith, L.C. Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Glob. Planet. Chang. 2008, 62, 187–194. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Shi, X. Offshore China-Marine Sediments; China Ocean Press: Beijing, China, 2012; pp. 399–405. [Google Scholar]
- Liu, Z.; Christophe, C.; Huang, W.; Chen, Z.; Trentesaux, A.; Chen, J. Clay minerals from surface sediments in the Pearl river basin and their contributions to sediments in the South China Sea. Chin. Sci. Bull. 2007, 52, 448–456. [Google Scholar]
- Cao, C.; Cai, F.; Zheng, Y.; Wu, C.; Lu, H.; Bao, J.; Sun, Q. Temporal and spatial characteristics of sediment sources on the southern Yangtze shoal over the Holocene. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Nittrouer, J.A.; Viparelli, E. Sand as a stable and sustainable resource for nourishing the Mississippi River delta. Nat. Geosci. 2014, 7, 350–354. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vorosmarty, C.; Saito, Y.; Giosan, L. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Tessler, Z.D.; Vorosmarty, C.J.; Grossberg, M.; Gladkova, I.; Aizenman, H.; Syvitski, J.P.; Foufoula-Georgiou, E. Profiling risk and sustainability in coastal deltas of the world. Science 2015, 349, 638–643. [Google Scholar] [CrossRef] [Green Version]
- Tornqvist, T.E.; Wallace, D.J.; Storms, J.E.A.; Wallinga, J.; VanDam, R.L.; Blaauw, M.; Derksen, M.S.; Klerks, C.J.W.; Meijneken, C.; Snijders, E.M.A. Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nat. Geosci. 2008, 1, 173–176. [Google Scholar] [CrossRef]
- Wilkinson, B.H. Humans as geologic agents: A deep-time perspective. Geology 2005, 33, 161–164. [Google Scholar] [CrossRef]
- Bi, X.L.; Liu, F.Q.; Pan, X.B. Coastal projects in China: From reclamation to restoration. Environ. Sci. Technol. 2012, 46, 4691–4692. [Google Scholar] [CrossRef]
- Chen, J.Y. The Yangtze River Estuary in the 21st Century; China Ocean Press: Beijing, China, 2009. [Google Scholar]
- Dai, S.B.; Yang, S.L.; Gao, A.; Liu, Z.; Li, P.; Li, M. Trend of sediment flux of main rivers in China in the past 50 years. J. Sediment Res. 2007, 2, 49–58. [Google Scholar]
No. | Longitude | Latitude | Length of Core/cm | Water Depth/m | Sediment Type |
---|---|---|---|---|---|
z1 | 108°33′52″ | 21°43′26″ | 32 | 3 | Clay sand |
z2 | 108°41′48″ | 21°41′32″ | 15 | 1 | Fine sand |
z3 | 108°48′50″ | 21°35′42″ | 48 | 2 | Silty sand |
z4 | 108°44′32″ | 21°35′45″ | 55 | 2 | Fine sand |
z5 | 108°44′33″ | 21°35′14″ | 26 | 2 | Fine sand |
z6 | 108°33′21″ | 21°35′34″ | 70 | 5 | Clay sand |
b1 | 108°41′46″ | 21°35′17″ | — | 10 | Silty sand |
b2 | 108°37′4″ | 21°39′35″ | — | 6 | Fine sand |
b3 | 108°35′5″ | 21°38′46″ | — | 4 | Clay sand |
b4 | 108°38′46″ | 21°37′22″ | — | 7 | Silty sand |
b5 | 108°37′37″ | 21°34′57″ | — | 8 | Sandy silt |
b6 | 108°42′12″ | 21°39′1″ | — | 1 | Clay sand |
b7 | 108°42′48″ | 21°36′42″ | — | 4 | Clay sand |
b8 | 108°40′1″ | 21°34′16″ | — | 6 | Clay sand |
b9 | 108°45′21″ | 21°45′29″ | — | 1 | Fine sand |
b10 | 108°45′38″ | 21°36′45″ | — | 3 | Sandy silt |
Source | Percent by Volume/% | Quantity | |||
---|---|---|---|---|---|
Quartz | Potash Feldspar | Albite | Rock Detrital Minerals | ||
Research zone (range) | 75–85 | 4–7 | 7–10 | 3–15 | 16 |
Research zone (average value) | 83.10 | 4.27 | 7.35 | 5.28 | 16 |
Qinjiang river (average value) | 82.01 | 7.18 | 6.69 | 4.12 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, C.; Cai, F.; Qi, H.; Zheng, Y.; Lu, H. Characteristics of Underwater Topography, Geomorphology and Sediment Source in Qinzhou Bay. Water 2021, 13, 1392. https://doi.org/10.3390/w13101392
Cao C, Cai F, Qi H, Zheng Y, Lu H. Characteristics of Underwater Topography, Geomorphology and Sediment Source in Qinzhou Bay. Water. 2021; 13(10):1392. https://doi.org/10.3390/w13101392
Chicago/Turabian StyleCao, Chao, Feng Cai, Hongshuai Qi, Yongling Zheng, and Huiquan Lu. 2021. "Characteristics of Underwater Topography, Geomorphology and Sediment Source in Qinzhou Bay" Water 13, no. 10: 1392. https://doi.org/10.3390/w13101392
APA StyleCao, C., Cai, F., Qi, H., Zheng, Y., & Lu, H. (2021). Characteristics of Underwater Topography, Geomorphology and Sediment Source in Qinzhou Bay. Water, 13(10), 1392. https://doi.org/10.3390/w13101392