Spatial-Temporal Change of Land Use and Its Impact on Water Quality of East-Liao River Basin from 2000 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
3. Results
3.1. Temporal-Spatial Variation of Land Use
3.1.1. Temporal Variation of Land Use
3.1.2. Spatial Variation of Land Use
3.2. Water Quality Changes
3.3. The Impact of Land Use Change on the East-Liao River Basin
3.3.1. The Land Use Dynamic Degree
3.3.2. The Important Dynamic Index of Land Use Change
3.3.3. The Information Entropy of Land Use Structure Change
3.4. Grey Correlation Analysis of Water Quality and Land Use Change Index
4. Discussion
5. Conclusions
- (1)
- The area of cultivated land, grassland, and construction land expanded. The area of forest land, water bodies, and unused land reduced during 2000–2020.
- (2)
- The transfer rate is cultivated field > forest land > construction land > grassland > unused land > water body.
- (3)
- The migration range can be ranked as forest land > grassland > water body > unused land > construction land > cultivated field.
- (4)
- Among the three areas, the water quality grade is as follows: Area I > Area II > Area III.
- (5)
- The entropy value of land use information is expressed as Area I > Area III > Area II.
- (6)
- Land use change index has a strong correlation with water quality, and can improve and manage water quality by changing the area of land use types.There was a strong correlation between land use change index and water quality, and water quality can be improved and managed by changing the area of land use types.
6. Policy and Management Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Min, K.C. Land use classification and land use change analysis using satellite images in Lombok Island, Indonesia. For. Sci. Technol. 2016, 12, 183–191. [Google Scholar] [CrossRef]
- Zhang, C.; Shoemaker, C.A.; Woodbury, J.D.; Cao, M.; Zhu, X. Impact of human activities on stream flow in the Biliu River basin, China. Hydrol. Process. 2013, 27, 2509–2523. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Ramankutty, N.; Foley, J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 1999, 13, 997–1027. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z. Land Use Change and Its Impact on Water Resources in East River Basin, South China. J. Beijing Norm. University. Nat. Sci. 2010, 46, 311–316. [Google Scholar]
- Zhang, T.; Zhang, X.; Xia, D.; Liu, Y. An Analysis of Land Use Change Dynamics and Its Impacts on Hydrological Processes in the Jialing River Basin. Water 2014, 6, 3758–3782. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, M.R.; Aguiar, F.C.; Martins, M.J.; Rivaes, R.; Ferreira, M.T. Long-term human-generated alterations of Tagus River: Effects of hydrological regulation and land-use changes in distinct river zones. Catena 2020, 188. [Google Scholar] [CrossRef]
- Zheng, H.; Yuan, Y.; Feng, W.; Shi, P. Model research on impact of land-use change on surface runoff depth: A case study on Shenzhen Region. J. Nat. Disasters 2005, 14, 77–82. [Google Scholar]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Meshesha, D.T.; Adgo, E.; Tsubo, M.; Masunaga, T.; Fenta, A.A.; Sultan, D.; Yibeltal, M.; et al. Hydrological responses to land use/land cover change and climate variability in contrasting agro-ecological environments of the Upper Blue Nile basin, Ethiopia. Sci. Total Environ. 2019, 689, 347–365. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Liu, D.L.; Zhang, M.; Leslie, L.M.; Yu, Q. Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. J. Hydrol. 2020, 585. [Google Scholar] [CrossRef]
- Shenfa, H.; Min, W.; Yue, C.H.E.; Kai, Y. Effect of Land Use on Water Quality in Waterhead Region in River Network Plain-A Case Study of the Upper Huangpu River. J. Ecol. Rural Environ. 2006, 22, 14–19. [Google Scholar]
- Xu, Q.; Wang, P.; Shu, W.; Zhang, H.; Ding, M. Investigation of the impacts of land use structure and spatial pattern on water quality in the Yuan River. Acta Sci. Circumstantiae 2020, 40, 2611–2620. [Google Scholar]
- Gossweiler, B.; Wesstrom, I.; Messing, I.; Villazon, M.; Joel, A. Impact of Land Use Change on Non-Point Source Pollution in a Semi-Arid Catchment under Rapid Urbanisation in Bolivia. Water 2021, 13, 410. [Google Scholar] [CrossRef]
- Alijani, Z.; Hosseinali, F.; Biswas, A. Spatio-temporal evolution of agricultural land use change drivers: A case study from Chalous region, Iran. J. Environ. Manag. 2020, 262. [Google Scholar] [CrossRef] [PubMed]
- Hashim, A.M.; Elkelish, A.; Alhaithloul, H.A.; El-hadidy, S.M.; Farouk, H. Environmental monitoring and prediction of land use and land cover spatio-temporal changes: A case study from El-Omayed Biosphere Reserve, Egypt. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Aydinoglu, A.C. Regional variations of land-use development and land-use/cover change dynamics: A case study of Turkey. Remote Sens. 2019, 11, 885. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Chen, H.; Zhang, J.; Hou, Y.; Shen, M.; Chen, J.; Xu, C. Impacts of climate change and LULC change on runoff in the Jinsha River Basin. J. Geogr. Sci. 2020, 30, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, R.; Garcia, A.S.; Vilela, V.M.d.F.N.; Ballester, M.V.R.; Neill, C.; Victoria, D.C.; Da Rocha, H.R.; Coe, M.T. Land use changes in Southeastern Amazon and trends in rainfall and water yield of the Xingu River during 1976–2015. Clim. Chang. 2020, 162, 1419–1436. [Google Scholar] [CrossRef]
- Wan, L.; Liu, H.; Gong, H.; Ren, Y. Effects of climate and land use changes on vegetation dynamics in the Yangtze River Delta, China based on abrupt change analysis. Sustainability 2020, 12, 1955. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Elhadj, A.; Xu, H.; Xu, X.; Qiao, Z. A study on the relationship between land use change and water quality of the Mitidja watershed in Algeria based on GIS and RS. Sustainability 2020, 12, 3510. [Google Scholar] [CrossRef]
- Batbayar, G.; Pfeiffer, M.; Kappas, M.; Karthe, D. Development and application of GIS-based assessment of land-use impacts on water quality: A case study of the Kharaa River Basin. Ambio 2019, 48, 1154–1168. [Google Scholar] [CrossRef]
- Rodrigues, V.; Estrany, J.; Ranzini, M.; De Cicco, V.; Tarjuelo Martin-Benito, J.M.; Hedo, J.; Lucas-Borja, M.E. Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Corrego Agua Limpa, Sao Paulo (Brazil). Sci. Total Environ. 2018, 622, 1553–1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Yu, X. Analysis of land use change and its influence on runoff in the Puhe River Basin. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Ervinia, A.; Huang, J.; Huang, Y.; Lin, J. Coupled effects of climate variability and land use pattern on surface water quality: An elasticity perspective and watershed health indicators. Sci. Total Environ. 2019, 693, 133592. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Huang, J. Coupled effects of land use pattern and hydrological regime on composition and diversity of riverine eukaryotic community in a coastal watershed of Southeast China. Sci. Total Environ. 2019, 660, 787–798. [Google Scholar] [CrossRef]
- Chen, L.; Chang, J.; Wang, Y.; Zhu, Y. Assessing runoff sensitivities to precipitation and temperature changes under global climate-change scenarios. Hydrol. Res. 2019, 50, 24–42. [Google Scholar] [CrossRef]
- Li, Y.; Chang, J.; Luo, L.; Wang, Y.; Guo, A.; Ma, F.; Fan, J. Spatiotemporal impacts of land use land cover changes on hydrology from the mechanism perspective using SWAT model with time-varying parameters. Hydrol. Res. 2019, 50, 244–261. [Google Scholar] [CrossRef]
- Yang, P.; Xia, J.; Zhan, C.; Chen, X.; Qiao, Y.; Chen, J. Separating the impacts of climate change and human activities on actual evapotranspiration in Aksu River Basin ecosystems, Northwest China. Hydrol. Res. 2018, 49, 1740–1752. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tang, J.; Li, Z.; Bai, Y.; Pan, Y.; Wang, X. Characteristics of agricultural non-point source pollution in Zhaosutai Basin of Jilin Province. Environ. Pollut. Control 2015, 37, 29–34, +40. [Google Scholar]
- Al-Shaibah, B.; Liu, X.; Zhang, J.; Tong, Z.; Zhang, M.; El-Zeiny, A.; Faichia, C.; Hussain, M.; Tayyab, M. Modeling Water Quality Parameters Using Landsat Multispectral Images: A Case Study of Erlong Lake, Northeast China. Remote Sens. 2021, 13, 1603. [Google Scholar] [CrossRef]
- Sun, L.; Lu, W.; Yang, Q.; Hou, Z.; Si, C. Effect of future land use caused change on the non-point source pollution in Dongliao River weatershed. China Environ. Sci. 2013, 33, 1459–1467. [Google Scholar]
- Resources and Environmental Science Data Center. Land Use Data. 2020. Available online: https://www.resdc.cn/ (accessed on 10 April 2019).
- Cloud, G.D. Digital Elevation Model. 2020. Available online: http://www.gscloud.cn/ (accessed on 15 October 2019).
- Liu, R.; Zhu, D. Methods for detecting land use changes based on the land use transition matrix. Resour. Sci. 2010, 32, 1544–1550. [Google Scholar]
- Lian, X. Analysis on the space evolvement track of population gravity center, employment gravity center and economic gravity center. Popul. J. 2007, 3, 23–28. [Google Scholar]
- Wang, G.; Wang, S.; Chen, Z. Land-use/land-cover changes in the Yellow River basin. J. Tsinghua Univ. (Sci. Technol.) 2004, 44, 1218–1222. [Google Scholar]
- Liu, F.; Yang, G.; Han, X.; Jia, G.; Wang, N. Spatial-temporal evolution of land use and spatial autocorrelation analysis in Horqin Sandy Land-A case study of Naiman banner. J. Northwest For. Univ. 2020, 35, 148–157. [Google Scholar]
- Luo, Y.; Yang, S.; Liu, X.; Liu, C.; Song, W.; Dong, G.; Zhao, H.; Lou, H. Land use change in the reach from Hekouzhen to Tongguan of the Yellow River during 1998–2010. Acta Geogr. Sin. 2014, 69, 42–53. [Google Scholar]
- Wang, Z. Strategical thinking of protecting grassland ecology in China. Grassl. China 2005, 27, 1–9. [Google Scholar]
- Zhang, S.; Zhang, G. Comparison between computation models of grey interconnet degree and analysis on their shortages. Syst. Eng. 1996, 3, 45–49. [Google Scholar]
- Liu, S.; Lin, Y. Grey System Theory and Application; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Lu, Z.; Fan, X.; Li, G.; Yue, C. A modeling credibility validation algorithm based on grey relational analysis. Comput. Appl. Softw. 2013, 30, 252–254. [Google Scholar]
- Vanwalleghem, T.; Gomez, J.A.; Infante Amate, J.; Gonzalez de Molina, M.; Vanderlinden, K.; Guzman, G.; Laguna, A.; Giraldez, J.V. Impact of historical land use and soil management change on soil erosion and agricultural sustainability during the Anthropocene. Anthropocene 2017, 17, 13–29. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Xin, X.; Li, L.; Tang, H. Systematic Restoration for Degraded Grasslands: Concept, Mechanisms and Approaches. Sci. Agric. Sin. 2020, 53, 2532–2540. [Google Scholar]
- White, R.P.; Murray, S.; Rohweder, M. Pilot Analysis of Global Ecosystems: Grassland Ecosystems. World Resour. Inst. 2000, 4, 275. [Google Scholar]
- Lou, P.; Fu, B.; Liu, H.; Gao, E.; Fan, D.; Tang, T.; Lin, X. Dynamic evaluation of grassland ecosystem services in Xilingol League. Acta Ecol. Sin. 2019, 39, 3837–3849. [Google Scholar]
- Zou, Y.; Zhang, Z.; Zhao, X.; Liu, B.; Tan, W. Analysis of grassland resource dynamics in China’s Arid Region supported by RS and GIS. Res. Environ. Sci. 2003, 16, 19–22, +26. [Google Scholar]
- Zou, Y.; Zhang, Z.; Zhou, Q.; Tan, W. Analysis of grassland dynamic in China based on RS and GIS. Resour. Sci. 2002, 24, 42–47. [Google Scholar]
- Pulido, M.; Schnabel, S.; Lavado Contador, J.F.; Lozano-Parra, J.; Gonzalez, F. The impact of heavy grazing on soil quality and pasture production in rangelands of SW spain. Land Degrad. Dev. 2018, 29, 219–230. [Google Scholar] [CrossRef]
- Li, X.; Wei, Y.; Zhang, C. Variation of grassland area and its cause in Inner Mongolia A case study on Duolun County of Xilin Gol League. Pratacult. Sci. 2012, 29, 19–24. [Google Scholar]
- Wang, J.; Zhang, W.; Zhang, Z. Impacts of land-use changes on soil erosion in water-wind crisscross erosion region of China. Remote Sens. 2019, 11, 1732. [Google Scholar] [CrossRef] [Green Version]
- Wimberly, M.C.; Janssen, L.L.; Hennessy, D.A.; Luri, M.; Chowdhury, N.M.; Feng, H. Cropland expansion and grassland loss in the eastern Dakotas: New insights from a farm-level survey. Land Use Policy 2017, 63, 160–173. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Szewranski, S.; Chruscinski, J.; Van Hoof, J.; Kazak, J.K.; Swiader, M.; Tokarczyk-Dorociak, K.; Zmuda, R. A location intelligence system for the assessment of Pluvial flooding risk and the identification of storm water pollutant sources from roads in Suburbanized areas. Water 2018, 10, 746. [Google Scholar] [CrossRef] [Green Version]
- Lijuan, L.I.; Dejuan, J.; Jiuyi, L.I.; Liqiao, L.; Li, Z. Advances in hydrological response to land use/land cover change. J. Nat. Resour. 2007, 22, 211–224. [Google Scholar]
- Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of urbanization on storm runoff in a pen-urban catchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, C.R. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. J. Environ. Manag. 2011, 92, 1438–1448. [Google Scholar] [CrossRef]
- Tong, S.T.Y.; Chen, W.L. Modeling the relationship between land use and surface water quality. J. Environ. Manag. 2002, 66, 377–393. [Google Scholar] [CrossRef] [PubMed]
- Gburek, W.J.; Folmar, G.J. Flow and chemical contributions to streamflow in an upland watershed: A baseflow survey. J. Hydrol. 1999, 217, 1–18. [Google Scholar] [CrossRef]
- Liu, A.J.; Tong, S.T.Y.; Goodrich, J.A. Land use as a mitigation strategy for the water-quality impacts of global warming: A scenario analysis on two watersheds in the Ohio River Basin. Environ. Eng. Policy 1999, 2, 65–76. [Google Scholar] [CrossRef]
Methods | Equation | Description | Reference |
---|---|---|---|
Land use transfer matrix | (1) | where S is the area of land use type, n is the land use type, and Sij indicates the area of class i land converted to level j land at the beginning of the study period. Besides, the sum of each row of the transfer matrix represents the total area of land use type i at the beginning of the study, and each row value represents the transfer destination and size of the land type. The sum of class i indicates the total area of the land type at the end of the study, and each row of values shows all the incoming types and sizes of the land type | [34] |
The shift of land use gravity center model | (2) (3) (4) | where Xt and Yt are the longitude and latitude coordinates of the center of gravity of the distribution of type i land resources in the year t, Cti is the area of this kind of land resources in the i region in the year t, Xi and Yi are the longitude and latitude of the i-th land resource patch, and m is the total number of land resource patches. where D is the distance of gravity center migration between two different years, and t′ and t are two other years. (Xt′, Yt′) and (Xt, Yt) are the geographical coordinates (longitude and latitude) of the space where the regional center of gravity is located in the t′ and t years, respectively. C = 111.111 is a constant, which is a coefficient that converts geographical coordinate units (longitude and latitude) into the plane distance (km). | [35,36] |
Land use, the dynamic degree | (5) | where Ua and Ub are the numbers of a certain land use type at the beginning and the end of the study. T is the study period. When t is the year, K value is the annual change rate of a certain land use type in the study area. | [37] |
Land use change important index | (6) | where Ci is the land use importance index of the i-th change type, with a value of 0–100 (%), Ai is the land change area of type i (km2), and A is the sum of various land change areas in the region (km2). | [38] |
The information entropy of land use structure | (7) | where Pi is the proportion of land use type i, and n is the number of land use types. The larger the H value is, the more complex the land use types and their internal relations are. | [39] |
Area | Years | |||||
---|---|---|---|---|---|---|
Types | 2000 | 2005 | 2010 | 2015 | 2020 | |
Cultivated field | 9577.11 | 9375.74 | 9376.71 | 9205.45 | 9802.69 | |
Forest land | 1769.97 | 1961.44 | 1954.54 | 2113.10 | 1077.63 | |
Grassland | 304.56 | 227.62 | 231.41 | 204.38 | 874.48 | |
Water body | 289.11 | 271.09 | 272.28 | 272.37 | 203.43 | |
Construction land | 984.08 | 1066.25 | 1073.61 | 1105.41 | 1148.64 | |
Unused land | 205.93 | 228.98 | 224.15 | 231.94 | 21.39 |
Period | Area | Cultivated Field | Forest Land | Grassland | Water Body | Construction Land | Unused Land | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K | C | K | C | K | C | K | C | K | C | K | C | ||
2000–2005 | Ⅰ | −0.70 | 50.16 | 0.99 | 27.66 | −8.09 | 10.35 | 3.07 | 1.82 | 3.13 | 10.01 | 2.63 | 0 b |
Ⅱ | −0.48 | 53.08 | 1.33 | 21.06 | −5.74 | 6.84 | 1.94 | 3.43 | 1.85 | 15.32 | 10.19 | 0.28 b | |
Ⅲ | −0.35 | 48.65 | 1.80 | 18.53 | −4.21 | 9.61 | −1.04 | 4.96 | 1.39 | 14.1 | 1.87 | 4.15 a | |
2005–2010 | Ⅰ | −0.01 | 47.82 | 0.01 | 34.64 | −0.09 | 3.07 | 0.00 | 1.6 | 0.05 | 12.77 | −0.38 | 0.11 b |
Ⅱ | 0.00 | 48.26 | −0.06 | 27.02 | 0.07 | 2.28 | 0.08 | 2.19 | 0.10 | 19.94 | 1.05 | 0.31 b | |
Ⅲ | 0.00 | 47.08 | −0.06 | 26.52 | 0.28 | 3.39 | 0.07 | 1.99 | 0.12 | 18.29 | −0.35 | 2.73 a | |
2010–2015 | Ⅰ | 0.19 | 44.36 | −0.07 | 31.89 | 0.05 | 2.65 | −3.47 | 4.6 | −0.40 | 16.42 | 39.20 | 0.09 b |
Ⅱ | −0.10 | 50.75 | 0.12 | 24.39 | −0.86 | 2.39 | 0.15 | 3.39 | 0.51 | 18.51 | 5.63 | 0.57 b | |
Ⅲ | −0.30 | 54.74 | 1.35 | 23.01 | −1.95 | 4.49 | 0.01 | 2.55 | 0.49 | 13.28 | 0.58 | 1.93 a | |
2015–2020 | Ⅰ | 1.74 | 31.04 | −4.10 | 46.73 | 79.79 | 3.92 | 0.80 | 1.53 | −6.56 | 16.25 | −16.67 | 0.52 b |
Ⅱ | 0.73 | 33.63 | −5.96 | 39.83 | 90.76 | 3.18 | −3.78 | 4.89 | −0.29 | 17.58 | −16.67 | 0.89 b | |
Ⅲ | 1.08 | 46.26 | −8.17 | 21.61 | 54.65 | 3.19 | −4.22 | 4.64 | 0.65 | 19.75 | −15.13 | 4.56 a | |
Mean ± SD | ns | 46.32 ± 7.14 a | ns | 28.57 ± 8.34 b | ns | 4.61 ± 2.79 d | ns | 3.13 ± 1.35 d | ns | 16.02 ± 3.04c | ns | 1.35 ± 1.63 d |
Year | Value of Land Use Information Entropy | ||
---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | |
2000 | 1.03 | 0.87 | 0.93 |
2005 | 1.04 | 0.90 | 0.95 |
2010 | 1.04 | 0.91 | 0.95 |
2015 | 1.03 | 0.92 | 0.97 |
2020 | 1.07 | 0.91 | 0.89 |
Mean ± SD | 1.0420 ± 0.0164 a | 0.9020 ± 0.0192 c | 0.9607 ± 0.0650 b |
Area | Ri | Ⅰ | Ⅱ | Ⅲ | Correlation Degree | Sort | ||||
---|---|---|---|---|---|---|---|---|---|---|
Type | Indicator | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ||
Single dynamic degree | Cultivated field | 0.86 | 0.86 | 0.94 | 0.87 | 0.90 | 0.93 | 0.95 | 0.90 | 9 |
Forest land | 0.97 | 0.97 | 0.93 | 0.97 | 1.00 | 0.99 | 0.97 | 0.97 | 3 | |
Grassland | 0.94 | 0.94 | 0.97 | 0.98 | 0.98 | 0.94 | 0.96 | 0.96 | 7 | |
Water body | 0.91 | 0.91 | 0.83 | 0.94 | 0.98 | 0.81 | 0.80 | 0.88 | 11 | |
Construction land | 0.33 | 0.33 | 0.35 | 0.42 | 0.43 | 0.38 | 0.39 | 0.38 | 13 | |
Unused land | 0.80 | 0.80 | 0.87 | 0.85 | 0.87 | 0.86 | 0.87 | 0.84 | 12 | |
Land use change important | Cultivated field | 0.95 | 0.95 | 0.96 | 0.96 | 0.99 | 0.99 | 1.00 | 0.97 | 4 |
Forest land | 0.92 | 0.92 | 0.99 | 0.95 | 0.98 | 0.95 | 0.96 | 0.95 | 8 | |
Grassland | 0.93 | 0.93 | 0.97 | 0.93 | 0.96 | 0.99 | 0.99 | 0.96 | 6 | |
Water body | 0.97 | 0.97 | 0.94 | 0.97 | 0.99 | 1.00 | 0.98 | 0.97 | 1 | |
Construction land | 0.95 | 0.95 | 0.95 | 0.97 | 1.00 | 0.99 | 1.00 | 0.97 | 2 | |
Unused land | 0.95 | 0.95 | 0.87 | 0.89 | 0.92 | 0.82 | 0.81 | 0.89 | 10 | |
The information entropy of land use structure | 0.93 | 0.93 | 0.97 | 0.95 | 0.98 | 0.98 | 0.99 | 0.96 | 5 |
Year | Weight | Type | |
---|---|---|---|
2000–2005 | 63% | 25% | Cultivated field |
19% | Unused land | ||
15% | Forest land | ||
2% | Construction land | ||
2% | Water body | ||
2005–2010 | 8% | 8% | Cultivated field |
2010–2015 | 22% | 13% | Cultivated field |
4% | Forest land | ||
3% | Unused land | ||
1% | Construction land | ||
1% | Water body | ||
2015–2020 | 91% | 77% | Cultivated field |
8% | Construction land | ||
5% | Forest land | ||
1% | Water body |
Area | Extreme Importance | Importance | Unimportance |
---|---|---|---|
Siping | 1521.68 | 4196.59 | 4523.45 |
Liaoyuan | 1023.57 | 914.62 | 678.57 |
Gongzhuling | 119.17 | 809.04 | 3212.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Rong, G.; Han, A.; Riao, D.; Liu, X.; Zhang, J.; Tong, Z. Spatial-Temporal Change of Land Use and Its Impact on Water Quality of East-Liao River Basin from 2000 to 2020. Water 2021, 13, 1955. https://doi.org/10.3390/w13141955
Zhang M, Rong G, Han A, Riao D, Liu X, Zhang J, Tong Z. Spatial-Temporal Change of Land Use and Its Impact on Water Quality of East-Liao River Basin from 2000 to 2020. Water. 2021; 13(14):1955. https://doi.org/10.3390/w13141955
Chicago/Turabian StyleZhang, Mingxi, Guangzhi Rong, Aru Han, Dao Riao, Xingpeng Liu, Jiquan Zhang, and Zhijun Tong. 2021. "Spatial-Temporal Change of Land Use and Its Impact on Water Quality of East-Liao River Basin from 2000 to 2020" Water 13, no. 14: 1955. https://doi.org/10.3390/w13141955
APA StyleZhang, M., Rong, G., Han, A., Riao, D., Liu, X., Zhang, J., & Tong, Z. (2021). Spatial-Temporal Change of Land Use and Its Impact on Water Quality of East-Liao River Basin from 2000 to 2020. Water, 13(14), 1955. https://doi.org/10.3390/w13141955