Impacts of Climate Change on the Precipitation and Streamflow Regimes in Equatorial Regions: Guayas River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Meteorological and Hydrological Data
2.2.2. GCMs Data
2.3. Methodology
2.3.1. Assessment of GCMs
2.3.2. Precipitation and Temperature Correction
2.3.3. Delta Change Analysis
2.3.4. Wet Periods and Drought Analysis
2.3.5. Hydrological Modeling by GR2M
3. Results
3.1. Model Performance
3.2. Analysis of Climatic Variables
3.3. Changes in Precipitation Characteristics
3.4. Hydrological Modeling of the Daule River
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vargas-Amelin, E.; Pindado, P. The challenge of climate change in Spain: Water resources, agriculture and land. J. Hydrol. 2014, 518, 243–249. [Google Scholar] [CrossRef]
- Wang, G.Q.; Zhang, J.Y.; Jin, J.L.; Pagano, T.C.; Calow, R.; Bao, Z.X.; Liu, C.S.; Liu, Y.L.; Yan, X.L. Assessing water resources in China using PRECIS projections and a VIC model. Hydrol. Earth Syst. Sci. 2012, 16, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Leng, G.; Tang, Q.; Rayburg, S. Climate change impacts on meteorological, agricultural and hydrological droughts in China. Glob. Planet. Chang. 2015, 126, 23–34. [Google Scholar] [CrossRef]
- Lima, C.H.; Kwon, H.-H.; Kim, J.-Y. A Bayesian beta distribution model for estimating rainfall IDF curves in a changing climate. J. Hydrol. 2016, 540, 744–756. [Google Scholar] [CrossRef]
- So, B.-J.; Kim, J.-Y.; Kwon, H.-H.; Lima, C.H.R. Stochastic extreme downscaling model for an assessment of changes in rainfall intensity-duration-frequency curves over South Korea using multiple regional climate models. J. Hydrol. 2017, 553, 321–337. [Google Scholar] [CrossRef]
- Zhu, J.; Forsee, W.; Schumer, R.; Gautam, M.R. Future projections and uncertainty assessment of extreme rainfall intensity in the United States from an ensemble of climate models. Clim. Chang. 2012, 118, 469–485. [Google Scholar] [CrossRef]
- Hadour, A.; Mahé, G.; Meddi, M. Watershed based hydrological evolution under climate change effect: An example from North Western Algeria. J. Hydrol. Reg. Stud. 2020, 28, 100671. [Google Scholar] [CrossRef]
- Khoi, D.N.; Suetsugi, T. Impact of climate and land-use changes on hydrological processes and sediment yield—a case study of the Be River catchment, Vietnam. Hydrol. Sci. J. 2014, 59, 1095–1108. [Google Scholar] [CrossRef]
- Arunrat, N.; Pumijumnong, N.; Sereenonchai, S.; Chareonwong, U.; Wang, C. Assessment of climate change impact on rice yield and water footprint of large-scale and individual farming in Thailand. Sci. Total Environ. 2020, 726, 137864. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Verichev, K.; Zamorano, M.; Carpio, M. Effects of climate change on variations in climatic zones and heating energy consumption of residential buildings in the southern Chile. Energy Build. 2020, 215, 109874. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Y.; Hein-Griggs, D.; Janes, T.; Tucker, S.; Ciborowski, J.J.H. Climate change projections of temperature and precipitation for the great lakes basin using the PRECIS regional climate model. J. Great Lakes Res. 2020, 46, 255–266. [Google Scholar] [CrossRef]
- Hartmann, D. Chapter 10 global climate models. International geophysics. Climatol. Física Glob. 1994, 56, 254–285. [Google Scholar]
- Wiens, J.; Stralberg, D.; Jongsomjit, D.; Howell, C.; Snyder, M. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proc. Natl. Acad. Sci. USA 2009, 106, 19729–19736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez-Patiño, A.; Campozano, L.; Mendoza, D.; Samaniego, E. A causal flow approach for the evaluation of global climate models. Int. J. Climatol. 2020, 40, 4497–4517. [Google Scholar] [CrossRef]
- Maurer, E.P. Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios. Clim. Chang. 2007, 82, 309–325. [Google Scholar] [CrossRef] [Green Version]
- Kirono, D.G.C.; Kent, D.M.; Hennessy, K.J.; Mpelasoka, F. Characteristics of Australian droughts under enhanced greenhouse conditions: Results from 14 global climate models. J. Arid. Environ. 2011, 75, 566–575. [Google Scholar] [CrossRef]
- Buytaert, W.; Vuille, M.; Dewulf, A.; Urrutia, R.; Karmalkar, A.; Célleri, R. Uncertainties in climate change projections and regional downscaling in the tropical Andes: Implications for water resources management. Hydrol. Earth Syst. Sci. 2010, 14, 1247–1258. [Google Scholar] [CrossRef] [Green Version]
- Keyantash, J.; Dracup, J.A. The quantification of drought: An evaluation of drought indices. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Estrela, M.J.; Pen, D. Multi-annual drought episodes in the Mediterranean (Valencia region) from 1950–1996. A spatio-temporal analysis. Int. J. Climatol. 2000, 20, 1599–1618. [Google Scholar] [CrossRef]
- Karambiri, H.; Galiano, S.G.G.; Giraldo, J.D.; Yacouba, H.; Ibrahim, B.; Barbier, B.; Polcher, J. Assessing the impact of climate variability and climate change on runoff in West Africa: The case of Senegal and Nakambe River basins. Atmos. Sci. Lett. 2011, 12, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Webster, K.; Kratz, T.K.; Bowser, C.J.; Magnuson, J.J.; Rose, W.J. The influence of landscape position on lake chemical responses to drought in northern Wisconsin. Limnol. Oceanogr. 1996, 41, 977–984. [Google Scholar] [CrossRef]
- Tegegne, G.; Melesse, A.M.; Worqlul, A.W. Development of multi-model ensemble approach for enhanced assessment of impacts of climate change on climate extremes. Sci. Total Environ. 2019, 704, 135357. [Google Scholar] [CrossRef]
- Michelson, K.; Chang, H. Spatial characteristics and frequency of citizen-observed pluvial flooding events in relation to storm size in Portland, Oregon. Urban Clim. 2019, 29, 100487. [Google Scholar] [CrossRef]
- Jonkman, S.N. Global Perspectives on Loss of Human Life Caused by Floods. Nat. Hazards 2005, 34, 151–175. [Google Scholar] [CrossRef]
- Rodrigues, D.T.; Gonçalves, W.A.; Spyrides, M.H.C.; Andrade, L.D.M.B.; de Souza, D.O.; de Araujo, P.A.A.; da Silva, A.C.N.; e Silva, C.M.S. Probability of occurrence of extreme precipitation events and natural disasters in the city of Natal, Brazil. Urban Clim. 2021, 35, 100753. [Google Scholar] [CrossRef]
- Wang, R.; Kalin, L.; Kuang, W.; Tian, H. Individual and combined effects of land use/cover and climate change on Wolf Bay watershed streamflow in southern Alabama: Relative impacts of land use/cover and climate change on streamflow. Hydrol. Process. 2014, 28, 5530–5546. [Google Scholar] [CrossRef]
- Zhang, L.; Nan, Z.; Xu, Y.; Li, S. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China. PLoS ONE 2016, 11, e0158394. [Google Scholar] [CrossRef] [Green Version]
- Aubin, D.; Riche, C.; Water, V.V.; La Jeunesse, I. The adaptive capacity of local water basin authorities to climate change: The Thau lagoon basin in France. Sci. Total Environ. 2018, 651, 2013–2023. [Google Scholar] [CrossRef] [PubMed]
- Batisani, N.; Yarnal, B. Rainfall variability and trends in semi-arid Botswana: Implications for climate change adaptation policy. Appl. Geogr. 2010, 30, 483–489. [Google Scholar] [CrossRef]
- Savo, V.; Lepofsky, V.S.D.; Benner, J.P.; Kohfeld, K.; Bailey, J.; Lertzman, J.P.B.K.E.K.J.B.K. Observations of climate change among subsistence-oriented communities around the world. Nat. Clim. Chang. 2016, 6, 462–473. [Google Scholar] [CrossRef]
- Global Facility for Disaster Reduction and Recovery (GFDRR). Vulnerability, Risk Reduction, and Adaptation to Climate Change Ecuador. Climate Risk and Adaptation Country Profile. 2011. Available online: https://www.gfdrr.org/sites/default/files/publication/climate-change-country-profile-2011-ecuador.pdf (accessed on 9 June 2021).
- Elsanabary, M.H.; Gan, T.Y. Evaluation of climate anomalies impacts on the Upper Blue Nile Basin in Ethiopia using a distributed and a lumped hydrologic model. J. Hydrol. 2015, 530, 225–240. [Google Scholar] [CrossRef]
- Cadier, E.; Rossel, F.; Sémiond, H.; Gomez, G. Las Inundaciones en la Zona Costera Ecuatoriana: Mecanismos Responsables, Obras de Proteccion Existentes y Previstas. 28 June 1996. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers14-12/010011839 (accessed on 28 October 2021).
- Recalde-Coronel, G.C.; Barnston, A.G.; Muñoz, G. Predictability of December–April Rainfall in Coastal and Andean Ecuador. J. Appl. Meteorol. Clim. 2014, 53, 1471–1493. [Google Scholar] [CrossRef] [Green Version]
- Rossel, F.; Cadier, E.; Gómez, G. Las inundaciones en la zona costera Ecuatoriana: Causas, obras de proteccion existentes y previstas. Bull. l’Institut Français d’Etudes Andin. 1996, 25, 399–420. [Google Scholar]
- Frappart, F.; Bourrel, L.; Brodu, N.; Salazar, X.R.; Baup, F.; Darrozes, J.; Pombosa, R. Monitoring of the Spatio-Temporal Dynamics of the Floods in the Guayas Watershed (Ecuadorian Pacific Coast) Using Global Monitoring ENVISAT ASAR Images and Rainfall Data. Water 2017, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- INEC. Resultados del Censo 2010 de Población y Vivienda en el Ecuador; Fascículo Provincial Guayas: Quito, Ecuador, 2010; pp. 1–8. [Google Scholar]
- Fries, A.; Rollenbeck, R.; Bayer, F.; González-Jaramillo, V.H.; Oñate-Valivieso, F.; Peters, T.; Bendix, J. Catchment precipitation processes in the San Francisco valley in southern Ecuador: Combined approach using high-resolution radar images and in situ observations. Theor. Appl. Clim. 2014, 126, 13–29. [Google Scholar] [CrossRef]
- Ilbay, M.L.; Zubieta Barragán, R.; Lavado-Casimiro, W. Regionalización de la precipitación, su agresividad y concentración en la cuenca del río Guayas, Ecuador. Granja Rev. Cienc. Vida 2019, 30, 57–76. [Google Scholar] [CrossRef] [Green Version]
- Barrera Crespo, P.D.; Mosselman, E.; Giardino, A.; Becker, A.; Ottevanger, W.; Nabi, M.; Arias-Hidalgo, M. Sediment budget analysis of the Guayas River using a process-based model. Hydrol. Earth Syst. Sci. 2019, 23, 2763–2778. [Google Scholar] [CrossRef] [Green Version]
- Corporación Andina de Fomento. Las Lecciones de El Niño Ecuador. Mem. Retos Soluc. 1998, 5, 72–73. Available online: https://scioteca.caf.com/bitstream/handle/123456789/675/Las%20lecciones%20de%20El%20Ni%C3%B1o.%20Ecuador.pdf?sequence=1&isAllowed=y (accessed on 28 June 2020).
- Tutasi, P.; Palma, S.; Cáceres, M. Epipelagic copepod distributions in the eastern equatorial Pacific during the weak La Niña event of 2001. Sci. Mar. 2011, 75, 791–802. [Google Scholar] [CrossRef]
- CIIFEN. Estrategia Provincial de Cambio Climático del Guayas. Fase I: Diagnóstico. Vulnerabilidad Social, Económica y Ambiental de la Provincia del Guayas. Informe Técnico. Guayaquil—Ecuador: Gobierno Autónomo Descentralizado Provincial del Guayas. Dirección de Medio Ambiente. 2013. Available online: https://www.researchgate.net/publication/306107811_Estrategia_Provincial_de_Cambio_Climatico_del_Guayas (accessed on 20 October 2020).
- CELEC. 25 Años de la Presa Daule-Peripa. Rev. Hidronacion Celec. 2013, 3, 108. [Google Scholar]
- Espinoza Villar, J.C.; Ronchail, J.; Guyot, J.L.; Cochonneau, G.; Naziano, F.; Lavado, W.; Oliveira, E.D.; Pombosa, R.; Vauchel, P. Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int. J. Climatol. 2009, 29, 1574–1594. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Space Phys. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Shadmehri Toosi, A.; Doulabian, S.; Ghasemi Tousi, E.; Calbimonte, G.H.; Alaghmand, S. Large-scale flood hazard assessment under climate change: A case study. Ecol. Eng. 2020, 147, 105765. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, W.; Wang, Y.; Zhao, Y.; Lu, F.; Yang, M.; Hou, B.; Yang, H. Assessment of the impact of climate change on hydropower potential in the Nanliujiang River basin of China. Energy 2018, 167, 950–959. [Google Scholar] [CrossRef]
- Yuan, S.; Quiring, S.M.; Kalcic, M.M.; Apostel, A.M.; Evenson, G.R.; Kujawa, H.A. Optimizing climate model selection for hydrological modeling: A case study in the Maumee River basin using the SWAT. J. Hydrol. 2020, 588, 125064. [Google Scholar] [CrossRef]
- Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. A trend-preserving bias correction—The ISI-MIP approach. Earth Syst. Dyn. 2013, 4, 219–236. [Google Scholar] [CrossRef] [Green Version]
- Eisner, S.; Voss, F.; Kynast, E. Statistical bias correction of global climate projections—Consequences for large scale modeling of flood flows. Adv. Geosci. 2012, 31, 75–82. [Google Scholar] [CrossRef] [Green Version]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 6. [Google Scholar]
- Dutta, D.; Kundu, A.; Patel, N.; Saha, S.; Siddiqui, A. Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). Egypt. J. Remote Sens. Space Sci. 2015, 18, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Carbone, G.; Gao, P. Detrending crop yield data for spatial visualization of drought impacts in the United States, 1895–2014. Agric. For. Meteorol. 2017, 237–238, 196–208. [Google Scholar] [CrossRef]
- Sobral, B.S.; de Oliveira-Junior, J.F.; de Gois, G.; Pereira-Júnior, E.R.; de Bodas Terassi, P.M.; Muniz-Júnior, J.G.R.; Lyra, G.B.; Zeri, M. Drought characterization for the state of Rio de Janeiro based on the annual SPI index: Trends, statistical tests and its relation with ENSO. Atmos. Res. 2019, 220, 141–154. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, Q.; Jiao, M.; Wu, P.; Gao, X.; Ma, M.; Hong, Y. The Temporal-Spatial Characteristics of Drought in the Loess Plateau Using the Remote-Sensed TRMM Precipitation Data from 1998 to 2014. Remote Sens. 2018, 10, 838. [Google Scholar] [CrossRef] [Green Version]
- Lloyd-Hughes, B.; Saunders, M.A. A drought climatology for Europe. Int. J. Climatol. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Niel, H.; Paturel, J.-E.; Servat, E. Study of parameter stability of a lumped hydrologic model in a context of climatic variability. J. Hydrol. 2003, 278, 213–230. [Google Scholar] [CrossRef]
- Mouelhi, S.; Michel, C.; Perrin, C.; Andréassian, V. Stepwise development of a two-parameter monthly water balance model. J. Hydrol. 2006, 318, 200–214. [Google Scholar] [CrossRef]
- Farfán, J.F.; Palacios, K.; Ulloa, J.; Aviles, A. A hybrid neural network-based technique to improve the flow forecasting of physical and data-driven models: Methodology and case studies in Andean watersheds. J. Hydrol. Reg. Stud. 2020, 27, 100652. [Google Scholar] [CrossRef]
- Ibrahim, B. Caractérisation des Saisons de Pluies au Burkina Faso Dans un Contexte de Changement Climatique et Évaluation des Impacts Hydrologiques sur le Bassin du Nakanbé. Ph.D. Thesis, Université Pierre et Marie Curie de Paris (UPMC) et Institut international d’Ingénierie de l’eau et de l’Environnement (2iE) de Ouagadougou, Paris, France, 2012. [Google Scholar]
- Oudin, L.; Michel, C.; Anctil, F. Which potential evapotranspiration input for a lumped rainfall-runoff model? J. Hydrol. 2005, 303, 275–289. [Google Scholar] [CrossRef]
- Kay, A.; Davies, H. Calculating potential evaporation from climate model data: A source of uncertainty for hydrological climate change impacts. J. Hydrol. 2008, 358, 221–239. [Google Scholar] [CrossRef] [Green Version]
- Tegos, A.; Malamos, N.; Koutsoyiannis, D. A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman–Monteith formula. J. Hydrol. 2015, 524, 708–717. [Google Scholar] [CrossRef]
- Tegos, A.; Efstratiadis, A.; Koutsoyiannis, D. A parametric model for potential evapotranspiration estimation based on a simplified formulation of the Penman—Monteith equation. In Evapotranspiration—An Overview; Alexandris, S., Ed.; InTech, 2013; Available online: http://www.intechopen.com/books/evapotranspiration-an-overview/a-parametric-model-for-potential-evapotranspiration-estimation-based-on-a-simplified-formulation-of- (accessed on 30 September 2020).
- Zhou, J.; Wang, Y.; Su, B.; Wang, A.; Tao, H.; Zhai, J.; Kundzewicz, Z.; Jiang, T. Choice of potential evapotranspiration formulas influences drought assessment: A case study in China. Atmos. Res. 2020, 242, 104979. [Google Scholar] [CrossRef]
- Nash, J.; Sutcliffe, J. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Farjad, B.; Gupta, A.; Sartipizadeh, H.; Cannon, A. A novel approach for selecting extreme climate change scenarios for climate change impact studies. Sci. Total Environ. 2019, 678, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Wyseure, G. Impact of climate change on hydropower generation in Rio Jubones Basin, Ecuador. Water Sci. Eng. 2018, 11, 157–166. [Google Scholar] [CrossRef]
- Litardo, J.; Palme, M.; Borbor-Cordova, M.; Caiza, R.; Macias-Zambrano, J.; Hidalgo-Leon, R.; Soriano, G. Urban Heat Island intensity and buildings’ energy needs in Duran, Ecuador: Simulation studies and proposal of mitigation strategies. Sustain. Cities Soc. 2020, 62, 102387. [Google Scholar] [CrossRef]
- Palme, M.; Inostroza, L.; Villacreses, G.; Cordero, A.L.; Carrasco, C. From urban climate to energy consumption. Enhancing building performance simulation by including the urban heat island effect. Energy Build. 2017, 145, 107–120. [Google Scholar] [CrossRef]
- Asare-Nuamah, P.; Botchway, E. Understanding climate variability and change: Analysis of temperature and rainfall across agroecological zones in Ghana. Heliyon 2019, 5, e02654. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Informe especial del IPCC sobre los impactos del calentamiento global de 1.5 °C. Resum. Para Responsab. Políticos 2018, 2, 1–32. [Google Scholar]
- INEC. Libro Metodológico del Instituto Nacional de Estadística y Censo. Metodología de la Encuesta de Superficie y Producción Agropecuaria Continúa ESPAC; Instituto Nacional de Estadística y Censos (INEC): Loja, Ecuador, 2014. [Google Scholar]
- Valverde-Arias, O.; Garrido, A.; Valencia, J.L.; Tarquis, A. Using geographical information system to generate a drought risk map for rice cultivation: Case study in Babahoyo canton (Ecuador). Biosyst. Eng. 2018, 168, 26–41. [Google Scholar] [CrossRef]
- Stagge, J.H.; Kohn, I.; Tallaksen, L.M.; Stahl, K. Modeling drought impact occurrence based on meteorological drought indices in Europe. J. Hydrol. 2015, 530, 37–50. [Google Scholar] [CrossRef]
- Van Loon, A.F. Hydrological drought explained. Wiley Interdiscip. Rev. Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Demoraes, F.; D’Ercole, R. Cartografía de las amenazas de origen natural por cantón en el Ecuador. Inf. Prelim. COOPI OXFAM Sist. Integr. Indic. Soc. Ecuad. (SIISE) 2001, 1, 65. [Google Scholar]
- Boonwichai, S.; Shrestha, S.; Babel, M.S.; Weesakul, S.; Datta, A. Evaluation of climate change impacts and adaptation strategies on rainfed rice production in Songkhram River Basin, Thailand. Sci. Total Environ. 2018, 652, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, E.I.; Fischer, G.; van Velthuizen, H.; Walter, C.; Ewert, F. Global hot-spots of heat stress on agricultural crops due to climate change. Agric. For. Meteorol. 2013, 170, 206–215. [Google Scholar] [CrossRef]
- Won, J.; Choi, J.; Lee, O.; Kim, S. Copula-based Joint Drought Index using SPI and EDDI and its application to climate change. Sci. Total Environ. 2020, 744, 140701. [Google Scholar] [CrossRef] [PubMed]
- Shahid, S.; Wang, X.-J.; Bin Harun, S.; Shamsudin, S.B.; Ismail, T.; Minhans, A. Climate variability and changes in the major cities of Bangladesh: Observations, possible impacts and adaptation. Reg. Environ. Chang. 2015, 16, 459–471. [Google Scholar] [CrossRef]
- Huntington, T. Climate warming could reduce runoff significantly in New England, USA. Agric. For. Meteorol. 2003, 117, 193–201. [Google Scholar] [CrossRef]
- Du Plessis, J.A.; Kalima, S.G. Modelling the impact of climate change on the flow of the Eerste River in South Africa. Phys. Chem. Earth Parts A/B/C 2021, 11, 103025. [Google Scholar] [CrossRef]
- Cui, T.; Tian, F.; Yang, T.; Wen, J.; Khan, M.Y.A. Development of a comprehensive framework for assessing the impacts of climate change and dam construction on flow regimes. J. Hydrol. 2020, 590, 125358. [Google Scholar] [CrossRef]
- Gierszewski, P.J.; Habel, M.; Szmańda, J.B.; Luc, M. Evaluating effects of dam operation on flow regimes and riverbed adaptation to those changes. Sci. Total. Environ. 2019, 710, 136202. [Google Scholar] [CrossRef]
- Kay, A.; Griffin, A.; Rudd, A.; Chapman, R.; Bell, V.; Arnell, N. Climate change effects on indicators of high and low river flow across Great Britain. Adv. Water Resour. 2021, 151, 103909. [Google Scholar] [CrossRef]
- Shen, M.; Chen, J.; Zhuan, M.; Chen, H.; Xu, C.-Y.; Xiong, L. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. J. Hydrol. 2018, 556, 10–24. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.N.; Saeed, F.; Alkhalaf, A.K.; Dambul, R. Assessing the robustness and uncertainties of projected changes in temperature and precipitation in AR5 Global Climate Models over the Arabian Peninsula. Atmos. Res. 2017, 194, 202–213. [Google Scholar] [CrossRef]
- Campozano, L.; Ballari, D.; Montenegro, M.; Avilés, A. Future meteorological droughts in Ecuador: Decreasing trends and associated spatio-temporal features derived from CMIP5 models. Front. Earth Sci. 2020, 8, 17. Available online: https://www.frontiersin.org/articles/10.3389/feart.2020.00017/full (accessed on 31 May 2021). [CrossRef]
- Xu, K.; Wu, C.; Zhang, C.; Hu, B.X. Uncertainty assessment of drought characteristics projections in humid subtropical basins in China based on multiple CMIP5 models and different index definitions. J. Hydrol. 2021, 600, 126502. [Google Scholar] [CrossRef]
- Ilbay-Yupa, M.; Lavado-Casimiro, W.; Rau, P.; Zubieta, R.; Castillón, F. Updating regionalization of precipitation in Ecuador. Theor. Appl. Climatol. 2021, 143, 1513–1528. [Google Scholar] [CrossRef]
- Pourrut, P. Los climas del Ecuador: Fundamentos explicativos. In ORSTOM y Programa Nacional de Regionalización Agraria del Ministerio de Agricultura y Ganadería Quito, Quito, Ecuador; 1983; Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers11-10/21848.pdf (accessed on 28 October 2021).
- Poveda, G.; Mesa, Ó.J. Las fases extremas del fenómeno ENSO (El Niño y La Niña) y su influencia sobre la hidrología de Colombia. Tecnol. Cienc. Agua 1996, 11, 21–37. [Google Scholar]
- Vuille, M.; Bradley, R.S.; Keimig, F. Climate Variability in the Andes of Ecuador and Its Relation to Tropical Pacific and Atlantic Sea Surface Temperature Anomalies. J. Clim. 2000, 13, 2520–2535. [Google Scholar] [CrossRef]
Name | Latitude (°S) | Longitude (°W) | Altitude (masl) | Period | ||
---|---|---|---|---|---|---|
Precipitation | Temperature | Streamflows | ||||
Salinas–Bolívar | −1.40 | −79.02 | 3600 | 1968–2014 | ||
Achupallas–Chimborazo | −2.28 | −78.77 | 3178 | 1968–2014 | ||
Pangor–J.de Velasco | −1.83 | −78.88 | 3109 | 1969–2014 | ||
Cañi–limbe | −1.77 | −78.99 | 2800 | 1977–2014 | ||
Guasuntos | −2.23 | −78.81 | 2438 | 1972–2014 | ||
Compud | −2.34 | −78.94 | 2402 | 1968–2014 | ||
Chillanes | −1.98 | −79.06 | 2330 | 1968–2014 | 1982–2014 | |
Alausi | −2.2 | −78.85 | 2267 | 1968–2014 | ||
San Antonio–Monjas River | −1.58 | −79.13 | 2200 | 1980–2014 | ||
Chunchi | −2.28 | −78.92 | 2177 | 1968–2014 | 1982–2014 | |
Pallatanga | −2.00 | −78.97 | 1523 | 1968–2014 | ||
Ramón Campaña | −1.12 | −79.09 | 1462 | 1968–2014 | ||
Chimbo Pj Pangor | −1.94 | −79.00 | 1452 | 1968–2014 | ||
Sto. Domingo Airport | −0.25 | −79.20 | 554 | 1968–2098 | ||
Bucay | −2.20 | −79.13 | 480 | 1968–2000 | ||
Las Delicias–Pichincha | −0.26 | −79.40 | 340 | 1968–2003 | ||
Puerto Ila | −0.48 | −79.34 | 319 | 1968–2014 | 1970–2014 | |
Echeandia | −1.43 | −79.29 | 308 | 1968–2014 | ||
San Juan La Mana | −0.92 | −79.25 | 215 | 1968–2014 | ||
Colimes de Pajan | −1.58 | −80.51 | 200 | 1970–2014 | ||
Camposano #2 | −1.59 | −80.40 | 113 | 1977–2014 | 1982–2014 | |
Pichilingue | −1.07 | −79.49 | 81 | 1968–2014 | 1978–2014 | |
Ingenio San Carlos | −2.22 | −79.41 | 63 | 1968–2014 | ||
Milagro (Ingenio Valdez) | −2.12 | −79.60 | 23 | 1968–2014 | 1970–2014 | |
Pueblo Viejo | −1.52 | −79.54 | 19 | 1968–2014 | 1984–2014 | |
Vinces INAMHI | −1.56 | −79.77 | 14 | 1968–2014 | ||
La Capilla INAMHI | −1.70 | −80.00 | 7 | 1968–2014 | ||
Daule en la Capilla | 1.69 | 79.99 | 13 | 1982–2014 |
SPI Value | Category |
---|---|
2.00 or more | Extremely wet |
1.50 a 1.99 | Severely wet |
1.00 a 1.49 | Moderately wet |
0 a 0.99 | Mildly wet |
0 a −0.99 | Mild drought |
−1.00 a −1.49 | Moderate drought |
−1.50 a −1.99 | Severe drought |
−2 or less | Extreme drought |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilbay-Yupa, M.; Ilbay, F.; Zubieta, R.; García-Mora, M.; Chasi, P. Impacts of Climate Change on the Precipitation and Streamflow Regimes in Equatorial Regions: Guayas River Basin. Water 2021, 13, 3138. https://doi.org/10.3390/w13213138
Ilbay-Yupa M, Ilbay F, Zubieta R, García-Mora M, Chasi P. Impacts of Climate Change on the Precipitation and Streamflow Regimes in Equatorial Regions: Guayas River Basin. Water. 2021; 13(21):3138. https://doi.org/10.3390/w13213138
Chicago/Turabian StyleIlbay-Yupa, Mercy, Franklin Ilbay, Ricardo Zubieta, Mario García-Mora, and Paolo Chasi. 2021. "Impacts of Climate Change on the Precipitation and Streamflow Regimes in Equatorial Regions: Guayas River Basin" Water 13, no. 21: 3138. https://doi.org/10.3390/w13213138
APA StyleIlbay-Yupa, M., Ilbay, F., Zubieta, R., García-Mora, M., & Chasi, P. (2021). Impacts of Climate Change on the Precipitation and Streamflow Regimes in Equatorial Regions: Guayas River Basin. Water, 13(21), 3138. https://doi.org/10.3390/w13213138