Development of a Periphytic Diatom-Based Comprehensive Diatom Index for Assessing the Trophic Status of Lakes in the Lower Reaches of the Yangtze River, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Diatom Sampling and Identification
2.3. Environmental Data
2.4. Model Development and Statistical Analyses
3. Results
3.1. Predictive Models of Environments of Diatom Assemblages
3.2. Environmental Optima and Tolerances of the Diatoms
3.3. Development of the Comprehensive Diatom Index
3.4. Application of the Comprehensive Diatom Index
4. Discussion
4.1. A Predictive Model of Diatom Associations in the Environment
4.2. Comparison of Different Diatom Indices
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szczepocka, E.; Zelazna-Wieczorek, J. Diatom biomonitoring-scientific foundations, commonly discussed issues and frequently made errors. Oceanol. Hydrobiol. Stud 2019, 47, 313–325. [Google Scholar] [CrossRef]
- Tan, X.; Sheldon, F.; Bunn, S.E.; Zhang, Q.F. Using diatom indices for water quality assessment in a subtropical river, China. Environ. Sci. Pollut. Res 2013, 20, 4164–4175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potapova, M.; Charles, D.F. Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshw. Biol 2003, 48, 1311–1328. [Google Scholar] [CrossRef] [Green Version]
- Potapova, M.; Charles, D.F. Diatom metrics for monitoring eutrophication in rivers of the United States. Ecol. Indic 2007, 7, 48–70. [Google Scholar] [CrossRef]
- Lobo, E.A.; Schuch, M.; Heinrich, C.G.; Da Costa, A.B.; Düpont, A.; Wetzel, C.E.; Ector, L. Development of the Trophic Water Quality Index (TWQI) for subtropical temperate Brazilian lotic systems. Env. Monit Assess 2015, 187, 354. [Google Scholar] [CrossRef]
- Vilmi, A.; Karjalainen, M.S.; Landeiro, V.L.; Heino, J. Freshwater diatom as environment indicators: Evaluating the effects of eutrophication using species morphology and biological indices. Environ. Monit. Assess. 2015, 187, 243. [Google Scholar] [CrossRef] [PubMed]
- Chessman, B.C.; Bate, N.; Gell, P.A.; Newall, P. A diatom species index for bioassessment of Australian rivers. Mar. Freshw. Res. 2007, 58, 542–557. [Google Scholar] [CrossRef]
- Kireta, A.R.; Reavie, E.D.; Sgro, G.V.; Angradi, T.R.; Bolgrien, D.W.; Hill, B.H.; Jicha, T.M. Planktonic and perphytic diatoms as indicators of stress on great rivers of the United States: Testing water quality and disturbance models. Ecol. Indic. 2012, 13, 222–231. [Google Scholar] [CrossRef]
- O’Driscoll, C.; de Eyto, E.; Rodgers, M.; O’Connor, M.; Asam, Z.; Xiao, L. Diatom assemblage and their associated environmental factors in upland peat forest rivers. Ecol. Indic. 2012, 18, 443–451. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, W.Q.; Pickett, S.T.A.; Li, W.F.; Han, L.J. Diatoms are better indicators of urban stream conditions: A case study in Beijing, China. Ecol. Indic. 2016, 60, 265–274. [Google Scholar] [CrossRef]
- Gray, J.B.; Vis, M.L. Reference diatom assembalage response to restoration of an acid mine drainage stream. Ecol. Indic. 2013, 29, 234–245. [Google Scholar] [CrossRef]
- Stevenson, R.J.; Pan, Y.D. Assessing ecological conditions in rivers and streams with diatoms. In The Diatoms: Applications to the Environment and Earth Sciences; Stoermer, E.F., Smol, J.P., Eds.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Stevenson, R.J.; Pan, Y.D.; Manoylov, K.M.; Parker, C.A.; Larsen, D.P.; Herlihy, A.T. Development of diatom indicators of ecological conditions for streams of the wetern US. J. N. Am. Benthol. Soc. 2008, 27, 1000–1016. [Google Scholar] [CrossRef]
- Delgado, C.; Pardo, I.; Garcia, L. A multimetric diatom index to assess the ecological status of coastal Galicain rivers (NW Spain). Hydrobiologia 2010, 644, 371–384. [Google Scholar] [CrossRef]
- Rusanov, A.G.; Stanislavskya, E.V. River pollution in Ladoga basin: Estimation based on diatom index. Water Res. 2011, 38, 95–106. [Google Scholar] [CrossRef]
- Adams, G.L.; Pichler, D.E.; Cox, E.J.; O’gorman, E.J.; Seeney, A.; Woodward, G.; Reuman, D.G. Diatoms can be an important exception to temperature-size rules at species and community levels of organization. Glob. Chang. Biol 2013, 19, 3540–3552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelinka, M.; Marvan, P. Zur Präzierung der biologischen Klassifikation der Reinheit fliessender Gewässer. Arch. Für Hydrobiol. 1961, 57, 389–407. [Google Scholar]
- Descy, J.P. A new approach to water quality estimation using diatoms. Nova Hedwig. 1979, 64, 305–323. [Google Scholar]
- Delgado, C.; Pardo, I.; García, L. Diatom communities as indicators of ecological status in Mediterranean temporary streams (Balearic Islands, Spain). Ecol. Indic. 2012, 15, 131–139. [Google Scholar] [CrossRef]
- Kelly, M.G.; Whitton, B.A. The Trophic Diatom Index: A new index for monitoring eutrophication in rivers. J. Appl. Phycol. 1995, 7, 433–444. [Google Scholar] [CrossRef]
- Chessman, B.; Growns, I.; Currey, J.; Plunkett-Cole, N. Predicting diatom communities at the genus level for the rapid biological assessment of rivers. Freshw. Biol. 1999, 41, 317–331. [Google Scholar] [CrossRef]
- Gómez, N.; Licursi, M. The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquat. Ecol. 2001, 35, 173–181. [Google Scholar] [CrossRef]
- Eloranta, P.; Soininen, J. Ecological status of some Finnish rivers evaluated using benthic diatom communities. J. Appl. Phycol. 2002, 14, 1–7. [Google Scholar] [CrossRef]
- Stenger-Kovács, C.; Buczkó, K.; Hajnal, É.; Padisák, J. Epiphytic, littoral diatoms as bioindicators of shallow lake trophic status: Trophic Diatom Index for Lakes (TDIL) developed in Hungary. Hydrobiologia 2007, 589, 141–154. [Google Scholar] [CrossRef]
- Picińska-Fałtynowicz, J.; Błachuta, J.; Kotowicz, J.; Mazurek, M.; Rawa, W. Wybór Typów Jednolitych Czesci Wód Recznych i Jeziornych do Oceny Stanu Ekologicznego na Podstawie Fitobentosu wraz z Rekomendacjq Metodyki Poboru i Analizy Prób; Główny Inspektorat Ochrony Środowiska: Wrocław, Poland, 2006. [Google Scholar]
- Lecointe, C.; Coste, M.; Prygiel, J. “Omnidia”: A software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 1993, 269/270, 509–513. [Google Scholar] [CrossRef]
- Carayon, D.; Tison-Rosebery, J.; Delmas, F. Defining a new autoecological trait matrix for French stream benthic. Ecol. Indic. 2019, 103, 650–658. [Google Scholar] [CrossRef]
- Potapova, M.; Coles, J.E.; Giddings, E.M.P.; Zappia, H. A comparsion of the influences of urbanization in contrasting environmental settings on stream benthic algal assemblages. Am. Fish. Soc. Symp. 2005, 41, 333–359. [Google Scholar]
- Lavoie, I.; Campeau, S.; Grenier, M.; Dillon, P.J. A diatom-based index for the biological assessment of eastern Canadian rivers: An application of correspondence analysis (CA). Can. J. Fish. Aquat. Sci. 2006, 63, 1793–1811. [Google Scholar] [CrossRef]
- Oeding, S.; Taffs, K.H. Developing a regional diatom index for assessment and monitoring of freshwater streams in sub-tropical Australia. Ecol. Indic. 2017, 80, 135–146. [Google Scholar] [CrossRef]
- Kelly, M.G.; Whitton, B.A. Biological monitoring of eutrophication in rivers. Hydrobiologia 1998, 384, 55–67. [Google Scholar] [CrossRef]
- Bere, T.; Tundisi, J.G. Applicability of borrowed diatom-based water quality assessment indices in streams around São Carlos-SP, Brazil. Hydrobiologia 2011, 673, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Li, G.C.; Liu, L.S.; Wang, X.; Li, L. Application of diatom in river health assessment: A review. Chin. J. Appl. Ecol. 2012, 23, 2617–2624. [Google Scholar]
- Wu, J.T. A generic index of diatom assemblages as bioindicator of pollution in the Keelung River of Taiwan. Hydrobiologia 1999, 397, 79–87. [Google Scholar] [CrossRef]
- Deng, D.Y.; Lu, W.; Tao, M. Recent advances and indicative role of diatoms in water environment monitoring. Environ. Sci. Technol. 2009, 32, 222–225. [Google Scholar]
- Feio, M.J.; Hughes, R.M.; Callisto, M.; Nichols, S.J.; Odume, O.N.; Quintella, B.R.; Kuemmerlen, M.; Aguiar, F.C.; Almeida, S.F.P.; Alonso-Eguíalis, P.; et al. The biological assessment and rehabilitation of the world’s rivers: An overview. Water 2021, 13, 371. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.M.; Dou, H.S. Lakes in China; Science Press: Berlin, Germany, 1998. [Google Scholar]
- Dong, X.H.; Yang, X.D.; Chen, X.; Liu, Q.; Yao, M.; Wang, R.; Xu, M. Using sedimentary diatoms to identify reference conditions and historical variability in shallow lake ecosystems in the Yangtze floodplain. Mar. Freshw. Res. 2016, 67, 803. [Google Scholar] [CrossRef]
- Qin, B.Q. Appraoches to mechanisms and control of eutrophication of shallow lakes in the middle and lower reaches of the Yangze River. J. Lake Sci. 2002, 3, 193–202. [Google Scholar]
- Parr, J.F.; Taffs, K.H.; Lane, C.M. A microwave digestion technique for the extraction of fossil diatoms from coastal lake and swamp sediments. J. Paleolimnol. 2004, 31, 383–390. [Google Scholar] [CrossRef]
- Zhu, H.Z.; Chen, J.Y. Bacillariophyta of the Xizang (Tibet) Plateau; Science Press: Beijing, China, 2000. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Die Süsswasserflora von Mitteleuropa 2: Bacillariophyceae. 1 Teil: Naviculaceae; Gustav Fischer-Verlag: Stuttgart, Germany, 1986. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Die Süßwasserflora von Mitteleuropa, II: 2. Bacillariophyceae. Teil 2: Bacillariaceae, Epithemiaceae, Surirellaceae. 2te Auflage, mit einem neuen Anhang; Gustav Fischer Verlag: Stuttgart, Germany, 1997. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Die Süsswasserflora von Mitteleuropa 2: Bacillariophyceae. 3 Teil: Centrales, Fragilariaceae, Eunotiaceae, 2nd ed.; Gustav Fischer Verlag: Stuttgart, Germany, 2000. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Süsswasserflora von Mitteleuropa 2, Bacillariophyceae. Teil 4: Achnanthaceae. Kritische Ergänzungen zu Achnanthes s.l., Navicula s. str., Gomphonema; Spektrum Akademischer Verlag: Heidelberg, Germany, 2004. [Google Scholar]
- Lange-Bertalot, H.; Hofmann, G.; Werum, M.; Cantonati, M. Freshwater Benthic Diatoms of Central Europe: Over 800 Common Species Used in Ecological Assessment; Koeltz Botanical Books: Stuttgart, Germany, 2017. [Google Scholar]
- Chinese State Environment Protection Bureau (CSEPB). Water and Wastewater Monitoring Analysis Methods, 4th ed.; Chinese Environment Science Press: Beijing, China, 2002. [Google Scholar]
- Ter Braak, C.J.F.; van Dam, H. Inferring pH from diatoms: A comparison of old and new calibration methods. Hydrobiologia 1989, 178, 209–223. [Google Scholar] [CrossRef]
- Birks, H.J.B.; Line, J.M.; Juggins, S.; Stevenson, A.C.; Ter Braak, C.J.F. Diatoms and pH reconstruction. Philos. Trans. R. Soc. Lond. 1990, 327, 263–278. [Google Scholar]
- Snyder, J.A.; Wasylik, K.; Fritz, S.C.; Wright, J.H.E. Diatom-based conductivity reconstruction and palaeoclimatic interpretation of a 40-ka record from lake Zeribar, Iran. Holocene 2001, 11, 737–745. [Google Scholar] [CrossRef]
- Davies, S.J.; Metcalfe, S.E.; Caballero, M.E.; Juggins, S. Developing diatom-based transfer functions for Central Mexican lakes. Hydrobiologia 2002, 467, 199–213. [Google Scholar] [CrossRef]
- Ryves, D.B.; Mcgowan, S.; Anderson, N.J. Development and evaluation of a diatom-conductivity model from lakes in West Greenland. Freshw. Biol. 2002, 47, 995–1014. [Google Scholar] [CrossRef]
- Yang, X.; Kamenik, C.; Schmidt, R.; Wang, S. Diatom-based conductivity and water-level inference models from eastern Tibetan (Qinghai-Xizang) Plateau lakes. J. Paleolimnol. 2003, 30, 1–19. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Huo, S.L.; Li, R.H.; Xi, B.D.; Li, H.; He, Z.S.; Pang, C.F. Diatom taxa and assemblages for establishing nutrient criteria of lakes with anthropogenic hydrologic alteration. Ecol. Indic. 2016, 67, 166–173. [Google Scholar] [CrossRef]
- Bennion, H. A diatom-phosphorous transfer function for shallow, eutrophic pond sin southeast England. Hydrobiologia 1994, 275/276, 391–410. [Google Scholar] [CrossRef]
- Ponader, K.C.; Charles, D.F.; Belton, T.J. Diatom-based TP and TN inference models and indices for monitoring nutrient enrichment of New Jersey streams. Ecol. Indic. 2007, 7, 79–93. [Google Scholar] [CrossRef]
- Dam, H.V.; Mertens, A.; Sinkeldam, J. A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Aquat. Ecol. 1994, 28, 117–133. [Google Scholar] [CrossRef]
- Hustedt, F. Diatomeen aus den Pyrenäien. Bet. Dtsch. Hot. Ges. 1938, 56, 543–572. [Google Scholar]
- Charles, D.F.; Acker, F.W.; Hart, D.D.; Reimer, C.W.; Cotter, P.B. Large-scale regional variation in diatom-water chemistry relationship, rivers of the eastern United States. Hydrobiologia 2006, 561, 27–57. [Google Scholar] [CrossRef]
- Besse-Lototskaya, A.; Verdonschot, P.F.W.; Coste, M.; Van de Vijver, B. Evaluation of European diatom trophic indices. Ecol. Indic. 2011, 11, 456–467. [Google Scholar] [CrossRef]
- Blanco, S.; Cejudo-Figueiras, C.; Álvarez-Blanco, I.; Donk, E.V.; Gross, E.M.; Hansson, L.A.; Irvine, K.; Jeppesen, E.; Kairesalo, T.; Moss, B.; et al. Epiphytic Diatoms along Environmental Gradients in Western European Shallow Lakes. Clean Soil Air Water 2013, 42, 229–235. [Google Scholar] [CrossRef]
- Rimet, F.; Bouchez, A.; Tapolczai, K. Spatial heterogeneity of littoral benthic diatoms in a large lake: Monitoring implications. Hydrobiologia 2016, 771, 179–193. [Google Scholar] [CrossRef]
- Coste, M.; Boutry, S.; Rosebery, J.T.; Delmans, F. Improvements of the biological diatom index (BDI): Description and efficiency of the new version (BDI-2006). Ecol. Indic. 2009, 9, 621–650. [Google Scholar] [CrossRef]
- European Parliament. Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for Community Action in the Field of Water Policy, O.J.L327; European Parliament: Brussels, Belgium, 2000. [Google Scholar]
- Prygiel, J.; Lévêque, L.; Iserentant, R. A new Practical Diatom Index for the assessment of water quality in monitoring networks. Rev. Des Sci. De L’eau J. Water Sci. 1996, 9, 97–113. [Google Scholar]
- Rumeau, A.; Coste, M. Introduction into the systematics of freshwater diatoms. For a useful generic diatomic index. Bull. Fr. De La Peche Et De La Piscic. 1988, 309, 1–69. [Google Scholar] [CrossRef] [Green Version]
- Kelly, M.G.; Cazzubon, A.; Coring, E.; Dell’Uomo, A.; Ector, L.; Goldsmith, B.; Guasch, H.; Hürlimann, J.; Jarlman, A.; Kawecka, B.; et al. Recommendations for the rountine sampling of diatoms for water quality assessments in Europe. J. Appl. Phycol. 1998, 10, 215–224. [Google Scholar] [CrossRef]
Species | TP | TN | COD | Comprehensive | |||||
---|---|---|---|---|---|---|---|---|---|
Code | v | s | v | s | v | s | v | s | |
Achnanthidium duthii (Sreen.) Edlund | ADDU | 4 | 3 | 2 | 1 | 4 | 4 | 3.33 | 2.67 |
Achnanthidium ennediense (Compere) Compere & Van De Vijver | AENN | 1 | 2 | 3 | 2 | 1 | 1 | 1.67 | 1.67 |
Achnanthidium eutrophilum (Lange-Bertalot) Lange-Bertalot | ADEU | 1 | 2 | 1 | 1 | 1 | 1 | 1.00 | 1.33 |
Achnanthidium exile (Kützing) Heiberg | ADEX | 1 | 2 | 2 | 1 | 1 | 1 | 1.33 | 1.33 |
Achnanthidium minutissimum (Kützing) Czarnecki | ADMI | 2 | 1 | 3 | 3 | 2 | 1 | 2.33 | 1.67 |
Achnanthidium pyrenaicum (Hust.) Kobayas | ADPY | 1 | 2 | 2 | 1 | 1 | 1 | 1.33 | 1.33 |
Achnanthidium rivulare Potapova and Ponader | ADRI | 3 | 2 | 3 | 3 | 2 | 3 | 2.67 | 2.67 |
Achnanthidium subatomus (Hustedt) Lange-Bertalot | ADSU | 1 | 2 | 2 | 1 | 1 | 1 | 1.33 | 1.33 |
Actinocyclus normanii (Greg.) Hustedt | ANMN | 5 | 4 | 5 | 4 | 5 | 4 | 5.00 | 4.00 |
Aulacoseira ambigua f. japonica (Meister) Tuji & Williams | AUAJ | 2 | 1 | 2 | 1 | 3 | 2 | 2.33 | 1.33 |
Aulacoseira granulata var. angustissima (Müll.) Simonsen | AUGA | 4 | 4 | 3 | 1 | 2 | 3 | 3.00 | 2.67 |
Aulacoseira pusilla (Mesister) Tuji & Houki | AUPU | 4 | 3 | 2 | 2 | 4 | 3 | 3.33 | 2.67 |
Aulacoseira granulata (Ehrenb.) Simonsen | AUGR | 4 | 2 | 4 | 2 | 5 | 4 | 4.33 | 2.67 |
Caloneis falcifera Lange-Bertalot, Genkal & Vekhov | CFAF | 2 | 1 | 2 | 1 | 4 | 2 | 2.67 | 1.33 |
Cocconeis pediculus Ehrenberg | CPED | 4 | 2 | 2 | 2 | 4 | 1 | 3.33 | 1.67 |
Cocconeis placentula (Ehrenberg) Grunow | CPLA | 4 | 1 | 5 | 4 | 3 | 1 | 4.00 | 2.00 |
Cyclotella meneghiniana Kützing | CMEN | 4 | 3 | 3 | 3 | 4 | 4 | 3.67 | 3.33 |
Cymbella affinis Kützing | CAFF | 2 | 1 | 1 | 2 | 2 | 2 | 1.67 | 1.67 |
Cymbella tumida (Brebisson) Van Heurck | CTUM | 2 | 1 | 3 | 3 | 2 | 2 | 2.33 | 2.00 |
Cymbella turgidula Grunow | CTGL | 4 | 3 | 2 | 1 | 5 | 3 | 3.67 | 2.33 |
Discostella pseudostelligera (Hustedt) Houk & Klee | DPST | 4 | 2 | 4 | 1 | 3 | 3 | 3.67 | 2.00 |
Discostella stelligera (Cleve & Grunow) Houk & Klee | DSTE | 2 | 2 | 2 | 1 | 2 | 2 | 2.00 | 1.67 |
Encyonema lange-bertalotii Krammer | ENLB | 4 | 2 | 1 | 1 | 5 | 2 | 3.33 | 1.67 |
Encyonema minutum (Hilse) Mann | ENMI | 2 | 1 | 3 | 3 | 2 | 1 | 2.33 | 1.67 |
Encyonema silesiacum (Bleisch) Mann | ELSE | 3 | 2 | 2 | 2 | 4 | 3 | 3.00 | 2.33 |
Encyonema ventricosum (Agardh) Grunow | ENVE | 3 | 2 | 2 | 1 | 4 | 2 | 3.00 | 1.67 |
Encyonema vulgare Krammer | EVUL | 2 | 1 | 1 | 1 | 3 | 1 | 2.00 | 1.00 |
Encyonopsis microcephala (Grunow) Krammer | ENCM | 1 | 1 | 2 | 1 | 1 | 1 | 1.33 | 1.00 |
Eolimna minima (Gruow) Lange-Bertalot | EOMI | 4 | 3 | 3 | 4 | 4 | 2 | 3.67 | 3.00 |
Eolimna subminuscula (Manguin) Gerd Moser | ESBM | 5 | 4 | 2 | 2 | 5 | 3 | 4.00 | 3.00 |
Fragilaria crotonensis Kitton | FCRO | 2 | 1 | 3 | 1 | 1 | 1 | 2.00 | 1.00 |
Fragilaria nevadensis Linare | FNEV | 5 | 2 | 2 | 4 | 5 | 2 | 4.00 | 2.67 |
Fragilaria pararumpens Lange-Bertalot, Hofm & Werum | FPRU | 3 | 2 | 2 | 3 | 4 | 3 | 3.00 | 2.67 |
Fragilaria tenera (Smith) Lange-Bertalot | FTEN | 2 | 1 | 2 | 1 | 3 | 2 | 2.33 | 1.33 |
Fragilaria vaucheriae (Kützing) Petersen | FVAU | 5 | 4 | 5 | 4 | 5 | 4 | 5.00 | 4.00 |
Gomphonema acidoclinatum Lange-Bertalot & Reichardt | GADC | 2 | 1 | 1 | 1 | 4 | 1 | 2.33 | 1.00 |
Gomphonema augur Ehrenberg | GAUG | 2 | 1 | 3 | 2 | 2 | 2 | 2.33 | 1.67 |
Gomphonema exilissimum (Grunow) Lange-Bertalot | GEXL | 1 | 1 | 1 | 1 | 4 | 1 | 2.00 | 1.00 |
Gomphonema gracile Ehrenberg | GGRA | 4 | 2 | 4 | 4 | 4 | 2 | 4.00 | 2.67 |
Gomphonema hebridense Gregory | GHEB | 3 | 2 | 3 | 4 | 4 | 1 | 3.33 | 2.33 |
Gomphonema insularum Kociolek, Woodward & Graeff | GILR | 1 | 2 | 2 | 1 | 1 | 1 | 1.33 | 1.33 |
Gomphonema lagenula Kützing | GLGN | 4 | 3 | 3 | 2 | 4 | 3 | 3.67 | 2.67 |
Gomphonema minutum (Agardh) Agardh | GMIN | 2 | 1 | 3 | 2 | 2 | 2 | 2.33 | 1.67 |
Gomphonema parvulum (Kützing) Kutzing | GPAR | 5 | 4 | 5 | 4 | 5 | 3 | 5.00 | 3.67 |
Gomphonema turris Ehrenberg | GPTN | 2 | 1 | 1 | 1 | 4 | 1 | 2.33 | 1.00 |
Gomphosphenia biwaensis Taisuke Ohtsuka | GOPP | 2 | 1 | 5 | 3 | 2 | 2 | 3.00 | 2.00 |
Luticola goeppertiana (Bleisch) Mann | LGOP | 2 | 1 | 2 | 1 | 2 | 1 | 2.00 | 1.00 |
Luticola pitranenis Levkov Metzeltin & Pavlov | LPIT | 2 | 1 | 1 | 2 | 2 | 1 | 1.67 | 1.33 |
Melosira varians Agardh | MVAR | 4 | 3 | 5 | 4 | 2 | 4 | 3.67 | 3.67 |
Navicula catalanogermanica Lange-Bertalot & Hofmann | NCAT | 4 | 2 | 5 | 4 | 4 | 2 | 4.33 | 2.67 |
Navicula cryptocephala Kützing | NCRY | 4 | 4 | 3 | 3 | 4 | 2 | 3.67 | 3.00 |
Navicula cryptotenella Lange-Bertalot | NCTE | 3 | 1 | 4 | 3 | 2 | 1 | 3.00 | 1.67 |
Navicula erifuga Lange-Bertalot | NERI | 4 | 3 | 4 | 3 | 3 | 4 | 3.67 | 3.33 |
Navicula lundii Reichardt | NLUN | 3 | 3 | 2 | 2 | 2 | 3 | 2.33 | 2.67 |
Nitzschia acicularis (Kützing) Smith | NACI | 5 | 3 | 2 | 1 | 5 | 3 | 4.00 | 2.33 |
Nitzschia amphibia Grunow | NAMP | 3 | 2 | 1 | 2 | 4 | 3 | 2.67 | 2.33 |
Nitzschia elegantula Grunow | NELE | 2 | 1 | 3 | 1 | 2 | 3 | 2.33 | 1.67 |
Nitzschia filiformis (Smith) Van Heurck | NFIL | 5 | 3 | 5 | 3 | 5 | 3 | 5.00 | 3.00 |
Nitzschia inconspicua Grunow | NINC | 4 | 1 | 1 | 2 | 3 | 1 | 2.67 | 1.33 |
Nitzschia intermedia Hantzsch & Grunow | NINT | 4 | 4 | 1 | 1 | 4 | 2 | 3.00 | 2.33 |
Nitzschia liebetruthii Rabenhorst | NILM | 4 | 3 | 4 | 2 | 4 | 2 | 4.00 | 2.33 |
Nitzschia lorenziana Grunow | NLOR | 4 | 4 | 2 | 1 | 5 | 2 | 3.67 | 2.33 |
Nitzschia palea (Kützing) Smith | NPAL | 5 | 4 | 5 | 4 | 5 | 4 | 5.00 | 4.00 |
Nitzschia perminuta (Grunow) Peragallo | NIPM | 3 | 1 | 3 | 2 | 2 | 3 | 2.67 | 2.00 |
Nitzschia regula var. robusta Hustedt | NIRE | 4 | 2 | 2 | 2 | 5 | 4 | 3.67 | 2.67 |
Nitzschia soratensis Morales & Vis | NSTS | 5 | 2 | 5 | 3 | 4 | 3 | 4.67 | 2.67 |
Nitzschia subacicularis Hustedt | NISS | 4 | 3 | 1 | 1 | 5 | 2 | 3.33 | 2.00 |
Nitzschia subcohaerens var. scotica (Grunow) Van Heurck | NZSH | 2 | 1 | 2 | 2 | 3 | 1 | 2.33 | 1.33 |
Nitzschia supralitorea Lange-Bertalot | NZSU | 4 | 2 | 4 | 2 | 3 | 2 | 3.67 | 2.00 |
Pinnularia obscura Krasske | POBS | 2 | 1 | 2 | 1 | 2 | 2 | 2.00 | 1.33 |
Planothidium lanceolatum (Brebisson & Kützing) Lange-Bertalot | PTLC | 2 | 1 | 2 | 2 | 1 | 1 | 1.67 | 1.33 |
Seminavis strigosa (Hustedt) Danieledis & Economou-Amilli | SMST | 4 | 3 | 3 | 4 | 5 | 4 | 4.00 | 3.67 |
Stephanodiscus minutulus (Kützing) Round | STMI | 3 | 1 | 3 | 2 | 2 | 2 | 2.67 | 1.67 |
Stephanodiscus parvus Stoermer and Håk. | SPAV | 4 | 4 | 3 | 3 | 5 | 2 | 4.00 | 3.00 |
Tabularia fasciculata (Agardh) Williams & Round | TFAS | 4 | 2 | 4 | 3 | 3 | 3 | 3.67 | 2.67 |
Ulnaria acus (Kützing) Aboal | UACU | 2 | 1 | 1 | 1 | 3 | 2 | 2.00 | 1.33 |
Ulnaria ulna (Nitzsch) Compere | UULN | 3 | 2 | 3 | 3 | 2 | 2 | 2.67 | 2.33 |
Ulnaria ulna var. danica (Kützing) Liu | UUDA | 2 | 1 | 4 | 3 | 3 | 2 | 3.00 | 2.00 |
Class Boundary | Trophic Status |
---|---|
<30 | Oligotrophic |
30–50 | Mesotrophic |
50–60 | Light eutrophication |
60–70 | Moderate eutrophication |
70–80 | Heavy eutrophication |
80–100 | Ultra-eutrophication |
IBD | IPS | IDG | TDIL | TDI | PDI | CDI | |
---|---|---|---|---|---|---|---|
DO | –0.115 | –0.099 | –0.011 | 0.034 | –0.095 | 0.043 | –0.39 |
COD | –0.383 ** | –0.393 ** | –0.425 ** | –0.491 ** | –0.395 ** | –0.564 ** | 0.621 ** |
TN | –0.140 | –0.178 * | 0.016 | –0.028 | –0.129 | –0.098 | 0.197 * |
TP | –0.307 ** | –0.317 ** | –0.316 ** | –0.368 ** | –0.338 ** | –0.413 ** | 0.611 ** |
pH | –0.152 | –0.076 | –0.176 * | –0.258 ** | –0.157 | –0.224 ** | 0.291 ** |
TDS | –0.351 ** | –0.260 ** | –0.466 ** | –0.505 ** | –0.403 ** | –0.273 ** | 0.467 ** |
Cond | –0.342 ** | –0.251 ** | –0.469 ** | –0.496 ** | –0.400 ** | –0.277 ** | 0.463 ** |
Test Group | Control Group | |
---|---|---|
TN (mg/L) | 0.197 * | 0.259 |
TP (mg/L) | 0.611 ** | 0.583 ** |
COD (mg/L) | 0.621 ** | 0.492 ** |
Cond (μs/cm) | 0.463 ** | 0.502 ** |
pH | 0.291 ** | 0.143 |
DO (mg/L) | −0.39 | −0.31 |
TDS (mg/L) | 0.467 ** | 0.587 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; You, Q.; Pang, W.; Cao, Y.; Bi, Y.; Wang, Q. Development of a Periphytic Diatom-Based Comprehensive Diatom Index for Assessing the Trophic Status of Lakes in the Lower Reaches of the Yangtze River, China. Water 2021, 13, 3570. https://doi.org/10.3390/w13243570
Yu P, You Q, Pang W, Cao Y, Bi Y, Wang Q. Development of a Periphytic Diatom-Based Comprehensive Diatom Index for Assessing the Trophic Status of Lakes in the Lower Reaches of the Yangtze River, China. Water. 2021; 13(24):3570. https://doi.org/10.3390/w13243570
Chicago/Turabian StyleYu, Pan, Qingmin You, Wanting Pang, Yue Cao, Yonghong Bi, and Quanxi Wang. 2021. "Development of a Periphytic Diatom-Based Comprehensive Diatom Index for Assessing the Trophic Status of Lakes in the Lower Reaches of the Yangtze River, China" Water 13, no. 24: 3570. https://doi.org/10.3390/w13243570
APA StyleYu, P., You, Q., Pang, W., Cao, Y., Bi, Y., & Wang, Q. (2021). Development of a Periphytic Diatom-Based Comprehensive Diatom Index for Assessing the Trophic Status of Lakes in the Lower Reaches of the Yangtze River, China. Water, 13(24), 3570. https://doi.org/10.3390/w13243570