Evaluating Vulnerability of Central Asian Water Resources under Uncertain Climate and Development Conditions: The Case of the Ili-Balkhash Basin
Abstract
:1. Introduction
2. Study Area
3. Materials and Methodology
3.1. General Methodology
3.2. Hydro-Climate Simulations
3.2.1. Historical Hydro-Climatic Regime
3.2.2. Future Climate Change
3.3. Rainfall-Runoff Model
3.4. Water Resource Model
Water Demand Scenarios
3.5. Performance Metrics
4. Results
4.1. Tension between Upstream Demand and Downstream Water Shortages under Historical Hydro-Climatic Conditions
4.2. Basin Response to Precipitation Changes
4.3. Impacts of Climate Change and Demand Development on Flow Reliability Downstream
4.3.1. Reliability under Demand Change under Uncertain Climate Futures
4.3.2. Managing Flows under Climate Change
4.3.3. Climatic Robustness of Demand Scenarios
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Modelled Characteristics of Kapchagay Reservoir
Appendix B. Operation of Kapchagay Reservoir
Physical Limits (for Further Details, See [41]) | ||
---|---|---|
Target elevation | 477 m | |
Lowest active level | 473 m | |
Maximum storage level | 479.5 m | |
Policy (low to high priority): | ||
1 Operate dam with target pool elevation | ||
2 Augment outflows for maximum power production in winter months | ||
3 Augment for environmental flows | ||
Correct outflows within physical limits if initial calculated outflow is below the environmental requirement. | Modeled environmental requirement [41] | |
cms | ||
January | 200.00 | |
February | 200.00 | |
March | 200.00 | |
April | 500.00 | |
May | 500.00 | |
June | 500.00 | |
July | 500.00 | |
August | 500.00 | |
September | 200.00 | |
October | 200.00 | |
November | 200.00 | |
December | 200.00 | |
4 Flood control | ||
If pool elevation exceeds 479.5 m, release the maximum amount physically possible to reach a pool elevation below 479.5 m |
bcc_csm1_1 | Beijing Climate Center Climate System Model |
---|---|
bcc_csm1_1_m | Beijing Climate Center Climate System Model version 1.1 Moderate Resolution |
ccsm4 | Community Earth System Model (CESM) |
cesm1_cam5 | Community Atmosphere Model Version 5 |
csiro_mk3_6_0 | Commonwealth Scientific and Industrial Research Organisation MK3.6 Model |
fio_esm | First Institute of Oceanography Earth System Model |
gfdl_cm3 | Geophysical Fluid Dynamics Laboratory Climate Model Version 3 |
gfdl_esm2m | Geophysical Fluid Dynamics Laboratory Earth System Model Version 2 |
giss_e2_h | NASA Goddard Institute for Space Studies E2-H Model |
giss_e2_r | NASA Goddard Institute for Space Studies E2-R Model |
ipsl_cm5a_mr | Institut Pierre-Simon Laplace (IPSL) IPSL-CM5A-MR |
miroc_esm | Japan Agency for Marine-Earth Science and Technology (MIROC) Earth System Model |
miroc_esm_chem | Japan Agency for Marine-Earth Science and Technology (MIROC) Earth System Model Chemistry |
miroc5 | Model for Interdisciplinary Research On Climate Version 5 |
mri_cgcm3 | Meteorological Research Institute Coupled Global Circulation Model Version 3 |
noresm1_m | The Norwegian Earth System Model |
Station Name | Time Period Available | Missing Data |
---|---|---|
Dobyn | 2001–2016 | 2002 |
164 km above Kapchagay reservoir | 1973–2016 | 1984, 1989, 1994, 2002, 2003 |
[Below] Kapchagay | 1950–2016 | 1955, 1961, 1964, 1965, 1989, 1994, 2008, 2009 |
Ushurzarma | 1967–1999 | 1989, 1994, 1995, 1997, 1998 |
Zhideli | 1967–2016 | 1994, 1989, 1996–2002, 2006, 2009 |
Appendix C. Model Performance Overview
References
- Wang, J.; Song, C.; Reager, J.T.; Yao, F.; Famiglietti, J.S.; Sheng, Y.; MacDonald, G.M.; Brun, F.; Schmied, H.M.; Marston, R.A.; et al. Recent Global Decline in Endorheic Basin Water Storages. Nat. Geosci. 2018, 11, 926–932. [Google Scholar] [CrossRef] [Green Version]
- Hijioka, Y.; Lin, E.; Pereira, J.J.; Corlett, R.T.; Cui, X.; Insarov, G.E.; Lasco, R.D.; Lindgren, E.; Surjan, A. Asia. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1327–1370. [Google Scholar]
- Reyer, C.P.O.; Otto, I.M.; Adams, S.; Albrecht, T.; Baarsch, F.; Cartsburg, M.; Coumou, D.; Eden, A.; Ludi, E.; Marcus, R.; et al. Climate Change Impacts in Central Asia and Their Implications for Development. Reg. Environ. Change 2017, 17, 1639–1650. [Google Scholar] [CrossRef]
- Borgomeo, E.; Mortazavi-Naeini, M.; Hall, J.W.; Guillod, B.P. Risk, Robustness and Water Resources Planning Under Uncertainty. Earth’s Future 2018, 6, 468–487. [Google Scholar] [CrossRef] [Green Version]
- Shnitnikov, A.V. Water Balance Variability of Lakes Aral, Balkhash, Issyk-Kul and Chany. Hydrol. Lakes 1973, 19, 130–140. [Google Scholar] [CrossRef]
- Nurtazin, S.; Thevs, N.; Iklasov, M.; Graham, N.; Salmurzauli, R.; Pueppke, S. Challenges to the Sustainable Use of Water Resources in the Ili River Basin of Central Asia. E3S Web Conf. 2019, 81, 01009. [Google Scholar] [CrossRef]
- Thevs, N.; Nurtazin, S.; Beckmann, V.; Salmyrzauli, R.; Khalil, A. Water Consumption of Agriculture and Natural Ecosystems along the Ili River in China and Kazakhstan. Water 2017, 9, 207. [Google Scholar] [CrossRef] [Green Version]
- Isupova, M.V. The Effects of the Ili River Runoff and Water Regulation Function of the Delta on the Changing Water Level of Balkhash Lake Depending on the Delta Forest Coverage. Water Resour. 2019, 46, S29–S42. [Google Scholar] [CrossRef]
- Imentai, A.; Thevs, N.; Schmidt, S.; Nurtazin, S.; Salmurzauli, R. Vegetation, Fauna, and Biodiversity of the Ile Delta and Southern Lake Balkhash—A Review. J. Great Lakes Res. 2015, 41, 688–696. [Google Scholar] [CrossRef]
- Guo, L.; Xia, Z.; Zhou, H.; Huang, F.; Yan, B. Hydrological Changes of the Ili River in Kazakhstan and the Possible Causes. J. Hydrol. Eng. 2015, 20, 05015006. [Google Scholar] [CrossRef]
- Li, D.; Zhao, L.; Wang, C.; Sun, W.; Xue, J. Selection of China’s Imported Grain Distribution Centers in the Context of the Belt and Road Initiative. Transp. Res. Part. E Logist. Transp. Rev. 2018, 120, 16–34. [Google Scholar] [CrossRef]
- Stone, R. For China and Kazakhstan, No Meeting of the Minds on Water. Science 2012, 337, 405–407. [Google Scholar] [CrossRef] [PubMed]
- Ho, S. China’s Transboundary River Policies towards Kazakhstan: Issue-Linkages and Incentives for Cooperation. Water Int. 2017, 42, 142–162. [Google Scholar] [CrossRef]
- Pueppke, S.G.; Nurtazin, S.T.; Graham, N.A.; Qi, J. Central Asia’s Ili River Ecosystem as a Wicked Problem: Unraveling Complex Interrelationships at the Interface of Water, Energy, and Food. Water 2018, 10, 541. [Google Scholar] [CrossRef] [Green Version]
- Propastin, P. Patterns of Lake Balkhash Water Level Changes and Their Climatic Correlates during 1992–2010 Period. Lakes Reserv. Res. Manag. 2012, 17, 161–169. [Google Scholar] [CrossRef]
- Pueppke, S.; Zhang, Q.; Nurtazin, S. Irrigation in the Ili River Basin of Central Asia: From Ditches to Dams and Diversion. Water 2018, 10, 1650. [Google Scholar] [CrossRef] [Green Version]
- Martens, P. The Political Economy of Water Insecurity in Central Asia given the Belt and Road Initiative. Cent. Asian J. Water Res. 2018, 4, 79–94. [Google Scholar] [CrossRef]
- Nabiyeva, K. Win-Win or Win-Lose? China-Kazakhstan Energy Cooperation within the Belt and Road Initiative. Blickwechsel 2019. [Google Scholar] [CrossRef]
- Sternberg, T.; Ahearn, A.; McConnell, F. Central Asian ‘Characteristics’ on China’s New Silk Road: The Role of Landscape and the Politics of Infrastructure. Land 2017, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Toktomushev, K. Coronavirus and Sinophobia: Fear Along the Belt and Road. China–US Focus 2020. Available online: www.chinausfocus.com/energy-environment/coronavirus-and-sinophobia-fear-along-the-belt-androad (accessed on 1 June 2020).
- Clarke-Sather, A. From the Heavens to the Markets: Governing Agricultural Drought under Chinese Fragmented Authoritarianism. Ann. Am. Assoc. Geogr. 2019, 109, 456–464. [Google Scholar] [CrossRef]
- Chen, J.; Wu, H.; Qian, H.; Li, X. Challenges and Prospects of Sustainable Groundwater Management in an Agricultural Plain along the Silk Road Economic Belt, North-West China. Int. J. Water Resour. Dev. 2018, 34, 354–368. [Google Scholar] [CrossRef]
- Qi, J.; Tao, S.; Pueppke, S.G.; Espolov, T.E.; Beksultanov, M.; Chen, X.; Cai, X. Changes in Land Use/Land Cover and Net Primary Productivity in the Transboundary Ili-Balkhash Basin of Central Asia, 1995–2015. Environ. Res. Commun. 2020, 2, 011006. [Google Scholar] [CrossRef]
- Christiansen, T.; Schöner, U.; Giessen, J.; Gießen, D. Irrigation Areas and Irrigation Water Consumption in the Upper Ili Catchment, N-W China; Justus-Liebig-Universität Gießen, Zentrum für Internationale Entwicklungs- und Umweltforschung (ZEU): Giessen, Germany, 2004. [Google Scholar]
- Grant, A. Crossing Khorgos: Soft Power, Security, and Suspect Loyalties at the Sino-Kazakh Boundary. Polit. Geogr. 2020, 76, 102070. [Google Scholar] [CrossRef]
- World Bank Group Climate Change Knowledge Portal, For Development Practitioners and Policy Makers. 2020. Available online: https://climateknowledgeportal.worldbank.org/ (accessed on 1 July 2020).
- Kogutenko, L.; Severskiy, I.; Shahgedanova, M.; Lin, B. Change in the Extent of Glaciers and Glacier Runoff in the Chinese Sector of the Ile River Basin between 1962 and 2012. Water 2019, 11, 1668. [Google Scholar] [CrossRef] [Green Version]
- Shahgedanova, M.; Afzal, M.; Hagg, W.; Kapitsa, V.; Kasatkin, N.; Mayr, E.; Rybak, O.; Saidaliyeva, Z.; Severskiy, I.; Usmanova, Z.; et al. Emptying Water Towers? Impacts of Future Climate and Glacier Change on River Discharge in the Northern Tien Shan, Central Asia. Water 2020, 12, 627. [Google Scholar] [CrossRef] [Green Version]
- Unger-Shayesteh, K.; Vorogushyn, S.; Farinotti, D.; Gafurov, A.; Duethmann, D.; Mandychev, A.; Merz, B. What Do We Know about Past Changes in the Water Cycle of Central Asian Headwaters? A Review. Glob. Planet. Change 2013, 110, 4–25. [Google Scholar] [CrossRef]
- Xenarios, S.; Gafurov, A.; Schmidt-Vogt, D.; Sehring, J.; Manandhar, S.; Hergarten, C.; Shigaeva, J.; Foggin, M. Climate Change and Adaptation of Mountain Societies in Central Asia: Uncertainties, Knowledge Gaps, and Data Constraints. Reg. Environ. Change 2019, 19, 1339–1352. [Google Scholar] [CrossRef]
- Duan, W.; Zou, S.; Chen, Y.; Nover, D.; Fang, G.; Wang, Y. Sustainable Water Management for Cross-Border Resources: The Balkhash Lake Basin of Central Asia, 1931–2015. J. Clean. Prod. 2020, 263, 121614. [Google Scholar] [CrossRef]
- Prudhomme, C.; Wilby, R.L.; Crooks, S.; Kay, A.L.; Reynard, N.S. Scenario-Neutral Approach to Climate Change Impact Studies: Application to Flood Risk. J. Hydrol. 2010, 390, 198–209. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.; Steinschneider, S.; Ray, P.; Wi, S.; Basdekas, L.; Yates, D. Decision Scaling (DS): Decision Support for Climate Change. In Decision Making under Deep Uncertainty; Springer: Cham, Switzerland, 2019; pp. 255–287. [Google Scholar]
- Conway, D.; Nicholls, R.J.; Brown, S.; Tebboth, M.G.L.; Adger, W.N.; Ahmad, B.; Biemans, H.; Crick, F.; Lutz, A.F.; De Campos, R.S.; et al. The Need for Bottom-up Assessments of Climate Risks and Adaptation in Climate-Sensitive Regions. Nat. Clim. Change 2019, 9, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.; Ghile, Y.; Laverty, M.; Li, K. Decision Scaling: Linking Bottom-up Vulnerability Analysis with Climate Projections in the Water Sector. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Hall, J.W.; Borgomeo, E.; Mortazavi-Naeini, M.; Wheeler, K. Water Resource System Modelling and Decision Analysis. In Water Science, Policy, and Management; Wiley: Hoboken, NJ, USA, 2019; pp. 257–273. [Google Scholar]
- Guo, L.; Xia, Z. Temperature and Precipitation Long-Term Trends and Variations in the Ili-Balkhash Basin. Theor. Appl. Climatol. 2014, 115, 219–229. [Google Scholar] [CrossRef]
- Guo, Y.; Shen, Y. Agricultural Water Supply/Demand Changes under Projected Future Climate Change in the Arid Region of Northwestern China. J. Hydrol. 2016, 540, 257–273. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Chen, Y.; Deng, M.; Li, Q.; Wufu, A.; Wang, D.; Ma, L. Estimation of Regional Irrigation Water Requirements and Water Balance in Xinjiang, China during 1995–2017. PeerJ 2020, 2020, e8243. [Google Scholar] [CrossRef] [Green Version]
- Sala, R.; Deom, J.-M.; Aladin, N.V.; Plotnikov, I.S.; Nurtazin, S. Geological History and Present Conditions of Lake Balkhash. Large Asian Lakes Chang. World 2020, 143–175. [Google Scholar] [CrossRef]
- Vologdin, N.V. The Kapchagai hydroelectric Station On The Ili River*. Gidrotekhnicheskoe Stroitel’stvo 1972, 5, 1–7. [Google Scholar] [CrossRef]
- Guanghua, H.; Long, Y. Study on Accelerating the Construction of Irrigation Districts in the Ili River Basin of Xinjiang. [Translated from Chinese]. China Surv. Des. Technol. Exch. 2007, 77–81. [Google Scholar]
- Ili Prefecture Government Office. Ili Prefecture Master Plan for Direct Ecological Environmental Protection in Yili Prefecture; Ili Prefecture Government Office: Yining, Xinjiang, China, 2015. [Google Scholar]
- Ouarda, T.B.M.J.; Labadie, J.W.; Fontane, D.G. Indexed Sequential Hydrologic Modeling For Hydropower Capacity Estimation. J. Am. Water Resour. Assoc. 1997, 33, 1337–1349. [Google Scholar] [CrossRef]
- Hirpa, F.A.; Dyer, E.; Hope, R.; Olago, D.O.; Dadson, S.J. Finding Sustainable Water Futures in Data-Sparse Regions under Climate Change: Insights from the Turkwel River Basin, Kenya. J. Hydrol. Reg. Stud. 2018, 19, 124–135. [Google Scholar] [CrossRef]
- Thomas, H.A. Improved Methods for National Water Assessment: Final Report; Water Resources Contract WR15249270; Harvard University: Cambridge, MA, USA, 1981; p. 44. [Google Scholar]
- Martinez, G.F.; Gupta, H.V. Toward Improved Identification of Hydrological Models: A Diagnostic Evaluation of the “Abcd” Monthly Water Balance Model for the Conterminous United States. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Ray, P.A.; Brown, C.M. Confronting Climate Uncertainty in Water Resources Planning and Project Design: The Decision Tree Framework; The World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Zagona, E.A.; Fulp, T.J.; Shane, R.; Magee, T.; Goranflo, H.M. RiverWare: A Generalized Tool For Complex Reservoir System Modeling. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 913–929. [Google Scholar] [CrossRef]
- Wheeler, K.G.; Basheer, M.; Mekonnen, Z.T.; Eltoum, S.O.; Mersha, A.; Abdo, G.M.; Zagona, E.A.; Hall, J.W.; Dadson, S.J. Cooperative Filling Approaches for the Grand Ethiopian Renaissance Dam. Water Int. 2016, 41, 611–634. [Google Scholar] [CrossRef]
- Basheer, M.; Wheeler, K.G.; Ribbe, L.; Majdalawi, M.; Abdo, G.; Zagona, E.A. Quantifying and Evaluating the Impacts of Cooperation in Transboundary River Basins on the Water-Energy-Food Nexus: The Blue Nile Basin. Sci. Total Environ. 2018, 630, 1309–1323. [Google Scholar] [CrossRef]
- Wheeler, K.G.; Hall, J.W.; Abdo, G.M.; Dadson, S.J.; Kasprzyk, J.R.; Smith, R.; Zagona, E.A. Exploring Cooperative Transboundary River Management Strategies for the Eastern Nile Basin. Water Resour. Res. 2018, 54, 9224–9254. [Google Scholar] [CrossRef]
- Wurbs, R.A. Methods for Developing Naturalized Monthly Flows at Gaged and Ungaged Sites. J. Hydrol. Eng. 2006, 11, 55–64. [Google Scholar] [CrossRef]
- Shen, Y.; Li, S.; Chen, Y.; Qi, Y.; Zhang, S. Estimation of Regional Irrigation Water Requirement and Water Supply Risk in the Arid Region of Northwestern China 1989–2010. Agric. Water Manag. 2013, 128, 55–64. [Google Scholar] [CrossRef]
- Grey, D.; Sadoff, C.W. Sink or Swim? Water Security for Growth and Development. Water Policy 2007, 9, 545–571. [Google Scholar] [CrossRef]
- Garrick, D.; Hall, J.W. Water Security and Society: Risks, Metrics, and Pathways. Annu. Rev. Environ. Resour. 2014, 39, 611–639. [Google Scholar] [CrossRef] [Green Version]
- Huizar, L.H.; Lansey, K.E.; Arnold, R.G. Sustainability, Robustness, and Resilience Metrics for Water and Other Infrastructure Systems. Sustain. Resilient Infrastruct. 2018, 3, 16–35. [Google Scholar] [CrossRef]
- Baizakova, Z. Voices from Central Asia The Irtysh and Ili Transboundary Rivers: The Kazakh-Chinese Path to Compromise. Voices Cent. Asia 2015, 21, 1–12. [Google Scholar]
- Hall, J.W.; Borgomeo, E.; Bruce, A.; Di Mauro, M.; Mortazavi-Naeini, M. Resilience of Water Resource Systems: Lessons from England. Water Secur. 2019, 8, 100052. [Google Scholar] [CrossRef]
- Dostaj, Z.D.; Giese, E.; Hagg, W. Wasserressourcen Und Deren Nutzung Im Ili-Balchasch Becken; Discussion Paper 34; Justus-Liebig-Universität Gießen, Zentrum für Internationale Entwicklungs- und Umweltforschung (ZEU): Giessen, Germany, 2007. [Google Scholar]
- Petr, T. Lake Balkhash, Kazakhstan. Int. J. Salt Lake Res. 1992, 1, 21–46. [Google Scholar] [CrossRef]
- Hashimoto, T.; Stedinger, J.R.; Loucks, D.P. Reliability, Resiliency, and Vulnerability Criteria for Water Resource System Performance Evaluation. Water Resour. Res. 1982, 18, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Isbekov, K.B.; Tsoy, V.N.; Crétaux, J.F.; Aladin, N.V.; Plotnikov, I.S.; Clos, G.; Berge-Nguyen, M.; Assylbekova, S.Z. Impacts of Water Level Changes in the Fauna, Flora and Physical Properties over the Balkhash Lake Watershed. Lakes Reserv. Res. Manag. 2019, 24, 195–208. [Google Scholar] [CrossRef]
- Panyushkina, I.P.; Meko, D.M.; Macklin, M.G.; Toonen, W.H.J.; Mukhamаdiev, N.S.; Konovalov, V.G.; Ashikbaev, N.Z.; Sagitov, A.O. Runoff Variations in Lake Balkhash Basin, Central Asia, 1779–2015, Inferred from Tree Rings. Clim. Dyn. 2018, 51, 3161–3177. [Google Scholar] [CrossRef]
- Panyushkina, I.P.; Macklin, M.G.; Toonen, W.H.J.; Meko, D.M. Water Supply and Ancient Society in the Lake Balkhash Basin: Runoff Variability along the Historical Silk Road. In Socio-Environmental Dynamics along the Historical Silk Road; Yang, L.E., Bork, H.-R., Fang, X., Mischke, S., Eds.; Springer: Cham, Switzerland, 2019; pp. 379–410. [Google Scholar]
- Matsuyama, H.; Kezer, K. Long-Term Variation of Precipitation around Lake Balkhash in Central Asia from the End of the 19th Century. Sci. Online Lett. Atmos. 2009. [Google Scholar] [CrossRef] [Green Version]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate Change Impacts on Glaciers and Runoff in Tien Shan (Central Asia). Nat. Clim. Change 2012. [Google Scholar] [CrossRef]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Vorogushyn, S.; Güntner, A. Substantial Glacier Mass Loss in the Tien Shan over the Past 50 Years. Nat. Geosci. 2015. [Google Scholar] [CrossRef]
- Bolch, T. Climate Change and Glacier Retreat in Northern Tien Shan (Kazakhstan/Kyrgyzstan) Using Remote Sensing Data. Glob. Planet. Change 2007, 56, 1–12. [Google Scholar] [CrossRef]
- Huss, M.; Hock, R. Global-Scale Hydrological Response to Future Glacier Mass Loss. Nat. Clim. Change 2018, 8, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Aizen, V.B.; Kuzmichenok, V.A.; Surazakov, A.B.; Aizen, E.M. Glacier Changes in the Tien Shan as Determined from Topographic and Remotely Sensed Data. Glob. Planet. Change 2007, 56, 328–340. [Google Scholar] [CrossRef]
- Jimenez Cisneros, B.E.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Doll, P.; Jiang, T.; Mwakalila, S.S.; Fischer, T.; Gerten, D.; et al. Freshwater resources. In Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 229–269. [Google Scholar]
- Wheeler, K.G.; Robinson, C.J.; Bark, R.H. Modelling to Bridge Many Boundaries: The Colorado and Murray-Darling River Basins. Reg Environ. Change 2018, 18, 1607–1619. [Google Scholar] [CrossRef] [Green Version]
- Brown, C. The End of Reliability. J. Water Resour. Plan. Manag. 2010, 136, 143–145. [Google Scholar] [CrossRef]
Uncertain Parameter | Min | Max | Changes Interval |
---|---|---|---|
Temperature | −1 °C | 6 °C | 1 °C |
Precipitation | −50% | +50% | 11% |
Gauge Location | Calibration Period January 2001–December 2008 | Validation Period January 2009–December 2016 | Evaluation Based on [36] | ||||
---|---|---|---|---|---|---|---|
NSE | PBIAS | RSR | NSE | PBIAS | RSR | ||
“Yamadu” | 0.99 | 1% | 0.39 | 0.99 | 1% | 0.35 | Very good |
“Dobyn” | 0.99 | 1% | 0.39 | 0.99 | 1% | 0.35 | Very good |
“164 km above KapHES” | 0.80 | 7% | 0.47 | 0.84 | 5% | 0.42 | Very good |
[Below] “Kapchagay” | 0.60 | 6% | 0.52 | 0.78 | 8% | 0.45 | Good |
Scenario Name | Description | Simulated in Chinese Ili Valley |
---|---|---|
AC 1 | Baseline scenario with existing crop pattern and area under irrigation, based on estimates from [23,24] | 7350 km2 irrigated land; 15% rice (1105 km2) |
AC2 | Expansion: Current irrigated land use extent with increase of wet rice cultivation to 50% of total | 7350 km2 irrigated land; 50% rice (3675 km2) |
AC3 | Expansion: The maximal potential irrigable land area with the same cropping pattern as AC1 | 12000 km2 irrigated land; 15% rice (1800 km2) |
AC4 | Expansion: The maximal potential irrigable land area with increase of wet rice cultivation to 50% of total | 12000 km2 irrigated land; 50% rice (6000 km2) |
AC5 | Mitigation: Environmental Protection Plan maximum water consumption [43] with the same cropping pattern as AC1 | 7.12 BCM upstream water consumption per annum |
AC6 | Mitigation: Water saving, based on irrigation demands 1976/77 [24] | 5000 km2 irrigated land; Rice cultivation negligible |
Main Findings |
---|
Historically, environmental water shortages were already frequently occurring in the IBB, and may intensify and become more frequent if upstream water use increases. |
Future reliability of environmental water supply to the Ili Delta is negatively affected by precipitation reductions, temperature reductions and upstream water demand increases. |
Current available mitigation strategies (Environmental Protection Plan of the Ili Prefecture and a general water saving agenda) may enhance downstream reliability under slight to moderate climatic change, yet are unable to mitigate larger shifts in demand or hydro-climate. |
The IBB system is currently under pressure and vulnerable to demand and climatic changes, and potential increased demands would drastically reduce basin robustness to climate change. There is scope for improvement in sustainable expansion of agriculture upstream if parties cooperate and coordinate water use. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Boer, T.; Paltan, H.; Sternberg, T.; Wheeler, K. Evaluating Vulnerability of Central Asian Water Resources under Uncertain Climate and Development Conditions: The Case of the Ili-Balkhash Basin. Water 2021, 13, 615. https://doi.org/10.3390/w13050615
de Boer T, Paltan H, Sternberg T, Wheeler K. Evaluating Vulnerability of Central Asian Water Resources under Uncertain Climate and Development Conditions: The Case of the Ili-Balkhash Basin. Water. 2021; 13(5):615. https://doi.org/10.3390/w13050615
Chicago/Turabian Stylede Boer, Tesse, Homero Paltan, Troy Sternberg, and Kevin Wheeler. 2021. "Evaluating Vulnerability of Central Asian Water Resources under Uncertain Climate and Development Conditions: The Case of the Ili-Balkhash Basin" Water 13, no. 5: 615. https://doi.org/10.3390/w13050615