Assessing the Role of Extreme Mediterranean Events on Coastal River Outlet Dynamics
Abstract
:1. Introduction
2. Regional Setting
2.1. The Têt Fieldsite
2.2. Storm Gloria Event
3. Materials and Methods
3.1. Meteorological Data
3.2. Hydrodynamic and Sediment Flux Data
3.2.1. Station 1 (Hydrodynamic)
3.2.2. Station 2 (Sediment Flux)
3.2.3. Stations 3 and 4 (Hydrodynamic and Sediment Flux)
3.3. Wave Set-Up and Run-Up
3.4. Collection and Analysis of Topographic/Bathymetric Data
3.5. Sediment Cores
4. Results
4.1. Local Characterization of Storm Gloria
4.2. River Mouth Hydrodynamics
4.3. Morphological Changes
4.4. Coastal Sedimentation Characteristics
4.5. Sediment Fluxes
5. Discussion
5.1. Conceptual Model of Spit Breaching during Fluvial/Marine Event
5.2. Role of Hydrodynamic Condition in Spit Breaching
5.3. Sediment Transfers
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyd, R.; Dalrymple, R.; Zaitlin, B.A. Classification of clastic coastal depositional environments. Sediment. Geol. 1992, 80, 139–150. [Google Scholar] [CrossRef]
- Cooper, J. Geomorphological variability among microtidal estuaries from the wave-dominated South African coast. Geomorphology 2001, 40, 99–122. [Google Scholar] [CrossRef]
- Roy, P.; Williams, R.; Jones, A.; Yassini, I.; Gibbs, P.; Coates, B.; West, R.; Scanes, P.; Hudson, J.; Nichol, S. Structure and Function of South-east Australian Estuaries. Estuar. Coast. Shelf Sci. 2001, 53, 351–384. [Google Scholar] [CrossRef]
- Becker, A.; Laurenson, L.J.; Bishop, K. Artificial mouth opening fosters anoxic conditions that kill small estuarine fish. Estuar. Coast. Shelf Sci. 2009, 82, 566–572. [Google Scholar] [CrossRef]
- Behrens, D.K.; Bombardelli, F.A.; Largier, J.L.; Twohy, E. Characterization of time and spatial scales of a migrating rivermouth. Geophys. Res. Lett. 2009, 36, L09402. [Google Scholar] [CrossRef] [Green Version]
- Davidson, M.; Morris, B.; Turner, I. A simple numerical model for inlet sedimentation at intermittently open–closed coastal lagoons. Cont. Shelf Res. 2009, 29, 1975–1982. [Google Scholar] [CrossRef]
- Cooper, J.G. Sedimentary processes in the river-dominated Mvoti estuary, South Africa. Geomorphology 1994, 9, 271–300. [Google Scholar] [CrossRef]
- Lichter, M.; Klein, M. The effect of river floods on the morphology of small river mouths in the southeastern Mediterranean. Z. Für Geomorphol. 2011, 55, 317–340. [Google Scholar] [CrossRef]
- Measures, R.J.; Hart, D.E.; Cochrane, T.A.; Hicks, D.M. Processes controlling river-mouth lagoon dynamics on high-energy mixed sand and gravel coasts. Mar. Geol. 2020, 420, 106082. [Google Scholar] [CrossRef]
- Lesourd, S.; Lesueur, P.; Brun-Cottan, J.; Garnaud, S.; Poupinet, N. Seasonal variations in the characteristics of superficial sediments in a macrotidal estuary (the Seine inlet, France). Estuar. Coast. Shelf Sci. 2003, 58, 3–16. [Google Scholar] [CrossRef]
- Robin, N.; Levoy, F. Stage and rate of formation of a complex spit in a megatidal environment. Z. Für Geomorphol. 2007, 51, 337–360. [Google Scholar] [CrossRef]
- Thomas, T.; Lynch, S.; Phillips, M.; Williams, A. Long-term evolution of a sand spit, physical forcing and links to coastal flooding. Appl. Geogr. 2014, 53, 187–201. [Google Scholar] [CrossRef]
- Hein, C.J.; Fallon, A.R.; Rosen, P.; Hoagland, P.; Georgiou, I.Y.; Fitzgerald, D.M.; Morris, M.; Baker, S.; Marino, G.B.; Fitzsimons, G. Shoreline Dynamics Along a Developed River Mouth Barrier Island: Multi-Decadal Cycles of Erosion and Event-Driven Mitigation. Front. Earth Sci. 2019, 7, 103. [Google Scholar] [CrossRef]
- Robin, N.; Levoy, F.; Anthony, E.J.; Monfort, O. Sand spit dynamics in a large tidal-range environment: Insight from multiple LiDAR, UAV and hydrodynamic measurements on multiple spit hook development, breaching, reconstruction, and shoreline changes. Earth Surf. Process. Landf. 2020, 45, 2706–2726. [Google Scholar] [CrossRef]
- Dalrymple, R.W.; Zaitlin, B.A.; Boyd, R. Estuarine facies models; conceptual basis and stratigraphic implications. J. Sediment. Res. 1992, 62, 1130–1146. [Google Scholar] [CrossRef]
- Galloway, W.E. Process Framework for Describing the Morphologic and Stratigraphic Evolution of Deltaic Depositional Systems; Houston Geological Society: Houston, TX, USA, 1975; pp. 87–98. [Google Scholar]
- Van Niekerk, L.; Van Der Merwe, J. The hydrodynamics of the Bot River Estuary revisited. Water SA 2005, 31, 73–86. [Google Scholar] [CrossRef] [Green Version]
- McSweeney, S.L.; Kennedy, D.M.; Rutherfurd, I.D. The daily-scale entrance dynamics of intermittently open/closed estuaries. Earth Surf. Process. Landf. 2018, 43, 791–807. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Pattiaratchi, C.; Masselink, G. A morphodynamic model to simulate the seasonal closure of tidal inlets. Coast. Eng. 1999, 37, 1–36. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Pattiaratchi, C. The Seasonal Closure of Tidal Inlets: Causes and Effects. Coast. Eng. J. 2003, 45, 601–627. [Google Scholar] [CrossRef]
- McSweeney, S.; Kennedy, D.; Rutherfurd, I.; Stout, J. Intermittently Closed/Open Lakes and Lagoons: Their global distribution and boundary conditions. Geomorphology 2017, 292, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Stretch, D.; Parkinson, M. The Breaching of Sand Barriers at Perched, Temporary Open/Closed Estuaries—A Model Study. Coast. Eng. J. 2006, 48, 13–30. [Google Scholar] [CrossRef]
- Whitfield, A.K.; Bate, G.C.; South Africa; Water Research Commission. A Review of Information on Temporarily Open/Closed Estuaries in the Warm and Cool Temperate Biogeographic Regions of South Africa, with Particular Emphasis on the Influence of River Flow on These Systems; Water Research Commission: Gezina, South Africa, 2007; ISBN 978-1-77005-518-6. [Google Scholar]
- Largier, J.; Taljaard, S. The dynamics of tidal intrusion, retention, and removal of seawater in a bar-built estuary. Estuar. Coast. Shelf Sci. 1991, 33, 325–338. [Google Scholar] [CrossRef]
- Boudet, L.; Sabatier, F.; Radakovitch, O. Modelling of sediment transport pattern in the mouth of the Rhone delta: Role of storm and flood events. Estuar. Coast. Shelf Sci. 2017, 198, 568–582. [Google Scholar] [CrossRef]
- Castelle, B.; Dodet, G.; Masselink, G.; Scott, T. Increased Winter-Mean Wave Height, Variability, and Periodicity in the Northeast Atlantic Over 1949-2017. Geophys. Res. Lett. 2018, 45, 3586–3596. [Google Scholar] [CrossRef] [Green Version]
- Rohmer, J.; Louisor, J.; Cozannet, G.L.; Naveau, P.; Thao, S.; Bertin, X. Attribution of Extreme Wave Height Records along the North Atlantic Coasts using Hindcast Data: Feasibility and Limitations. J. Coast. Res. 2020, 95, 1268. [Google Scholar] [CrossRef]
- Bourrin, F.; Friend, P.; Amos, C.; Manca, E.; Ulses, C.; Palanques, A.; de Madron, X.D.; Thompson, C. Sediment dispersal from a typical Mediterranean flood: The Têt River, Gulf of Lions. Cont. Shelf Res. 2008, 28, 1895–1910. [Google Scholar] [CrossRef]
- Many, G.; Bourrin, F.; de Madron, X.D.; Pairaud, I.; Gangloff, A.; Doxaran, D.; Ody, A.; Verney, R.; Menniti, C.; Le Berre, D.; et al. Particle assemblage characterization in the Rhone River ROFI. J. Mar. Syst. 2016, 157, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Zăinescu, F.; Vespremeanu-Stroe, A.; Anthony, E.; Tătui, F.; Preoteasa, L.; Mateescu, R. Flood deposition and storm removal of sediments in front of a deltaic wave-influenced river mouth. Mar. Geol. 2019, 417, 106015. [Google Scholar] [CrossRef]
- Dufois, F.; Verney, R.; Le Hir, P.; Dumas, F.; Charmasson, S. Impact of winter storms on sediment erosion in the Rhone River prodelta and fate of sediment in the Gulf of Lions (North Western Mediterranean Sea). Cont. Shelf Res. 2014, 72, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Kraus, N.C.; Patsch, K.; Munger, S. Barrier Beach Breaching from the Lagoon Side, with Reference to Northern California. Shore Beach 2008, 76, 12. [Google Scholar]
- Balouin, Y.; Howa, H. Sediment transport pattern at the Barra Nova inlet, south Portugal: A conceptual model. Geo-Marine Lett. 2001, 21, 226–235. [Google Scholar] [CrossRef] [Green Version]
- FitzGerald, D.M.; Kraus, N.C.; Hands, E.B. Natural Mechanisms of Sediment Bypassing at Tidal Inlets. Environ. Sci. Eng. 2000, 11. [Google Scholar]
- Ganguli, P.; Merz, B. Extreme Coastal Water Levels Exacerbate Fluvial Flood Hazards in Northwestern Europe. Sci. Rep. 2019, 9, 13165. [Google Scholar] [CrossRef]
- Petroliagkis, T.I.; Voukouvalas, E.; Disperati, J.; Bidlot, J.; European Commission; Joint Research Centre. Joint Probabilities of Storm Surge, Significant Wave Height and River Discharge Components of Coastal Flooding Events: Utilising Statistical Dependence Methodologies & Techniques; Publications Office: Luxembourg, 2016; ISBN 978-92-79-57665-2. [Google Scholar]
- Bas, X.P.L.; Levoy, F. Bar Migrations on a Macrotidal Ebb Delta over a Period of Six Years Using Lidar Survey. J. Coast. Res. 2018, 85, 146–150. [Google Scholar] [CrossRef]
- Long, N.; Millescamps, B.; Guillot, B.; Pouget, F.; Bertin, X. Monitoring the Topography of a Dynamic Tidal Inlet Using UAV Imagery. Remote Sens. 2016, 8, 387. [Google Scholar] [CrossRef] [Green Version]
- Morris, B.D.; Davidson, M.A.; Huntley, D.A. Measurements of the response of a coastal inlet using video monitoring techniques. Mar. Geol. 2001, 175, 251–272. [Google Scholar] [CrossRef]
- Balouin, Y.; Bourrin, F.; Meslard, F.; Palvadeau, E.; Robin, N. Assessing the Role of Storm Waves and River Discharge on Sediment Bypassing Mechanisms at the Têt River Mouth in the Mediterranean (Southeast France). J. Coast. Res. 2020, 95, 351. [Google Scholar] [CrossRef]
- Bertin, X.; Mendes, D.; Martins, K.; Fortunato, A.B.; Lavaud, L. The Closure of a Shallow Tidal Inlet Promoted by Infragravity Waves. Geophys. Res. Lett. 2019, 46, 6804–6810. [Google Scholar] [CrossRef]
- Sherwood, C.R.; Long, J.W.; Dickhudt, P.J.; Dalyander, P.S.; Thompson, D.M.; Plant, N.G. Inundation of a barrier island (Chandeleur Islands, LA, USA) during a hurricane: Observed water-level gradients and modeled seaward sand transport. J. Geophys. Res. Earth Surf. 2014, 119, 1498–1515. [Google Scholar] [CrossRef] [Green Version]
- Sotillo, M.G.; Mourre, B.; Mestres, M.; Lorente, P.; Aznar, R.; García-León, M.; Liste, M.; Santana, A.; Espino, M.; Álvarez, E. Evaluation of the Operational CMEMS and Coastal Downstream Ocean Forecasting Services During the Storm Gloria (January 2020). Front. Mar. Sci. 2021, 8, 644525. [Google Scholar] [CrossRef]
- Serrat, P.; Ludwig, W.; Navarro, B.; Blazi, J.-L. Variabilité spatio-temporelle des flux de matières en suspension d’un fleuve côtier méditerranéen: La Têt (France). Comptes Rendus L’académie Sci.—Ser. IIA—Earth Planet. Sci. 2001, 333, 389–397. [Google Scholar] [CrossRef]
- Aleman, N.; Robin, N.; Certain, R.; Anthony, E.; Barusseau, J.-P. Longshore variability of beach states and bar types in a microtidal, storm-influenced, low-energy environment. Geomorphology 2015, 241, 175–191. [Google Scholar] [CrossRef]
- Certain, R. Morphodynamique D’une Côte Sableuse Microtidale à Barres: Le Golfe Du Lion (Languedoc-Roussillon). Ph.D. Thesis, Universite de Perpignan, Perpignan, France, 2002. [Google Scholar]
- Kulling, B. Déformation Du Rivage et Dérive Littorale Des Plages Du Golfe Du Lion. Ph.D. Thesis, Aix-Marseille University, Aix-Marseille, France, 2017. [Google Scholar]
- Aleman, N.; Robin, N.; Certain, R.; Vanroye, C.; Barusseau, J.-P.; Bouchette, F. Typology of Nearshore Bars in the Gulf of Lions (France) Using LIDAR Technology. J. Coast. Res. 2011, SI64, 721–725. [Google Scholar]
- Aleman, N. Morphodynamique à L’échelle Régionale D’une Avant-Côte Microtidale à Barres Sédimentaires: Le Cas du Languedoc-Roussillon à L’aide de la Technologie LiDAR. Ph.D. Thesis, Université de Perpignan, Perpignan, France, 2013. [Google Scholar]
- Amores, A.; Marcos, M.; Carrió, D.S.; Gómez-Pujol, L. Coastal impacts of Storm Gloria (January 2020) over the north-western Mediterranean. Nat. Hazards Earth Syst. Sci. 2020, 20, 1955–1968. [Google Scholar] [CrossRef]
- López-Bustins, J.A.; Martín-Vide, J. Causes meteorològiques i contextualització climàtica de la precipitació del temporal Glòria. Treb. Soc. Catalana Geogr. 2020, 89, 39–54. [Google Scholar] [CrossRef]
- de Alfonso, M.; Lin-Ye, J.; García-Valdecasas, J.M.; Pérez-Rubio, S.; Luna, M.Y.; Santos-Muñoz, D.; Ruiz, M.I.; Pérez-Gómez, B.; Álvarez-Fanjul, E. Storm Gloria: Sea State Evolution Based on in situ Measurements and Modeled Data and Its Impact on Extreme Values. Front. Mar. Sci. 2021, 8, 646873. [Google Scholar] [CrossRef]
- Pérez-Gómez, B.; García-León, M.; García-Valdecasas, J.; Clementi, E.; Aranda, C.M.; Pérez-Rubio, S.; Masina, S.; Coppini, G.; Molina-Sánchez, R.; Muñoz-Cubillo, A.; et al. Understanding Sea Level Processes During Western Mediterranean Storm Gloria. Front. Mar. Sci. 2021, 8, 647437. [Google Scholar] [CrossRef]
- Quintana Seguí, P.; Le Moigne, P.; Durand, Y.; Martin, E.; Habets, F.; Baillon, M.; Canellas, C.; Franchisteguy, L.; Morel, S. Analysis of Near-Surface Atmospheric Variables: Validation of the SAFRAN Analysis over France. J. Appl. Meteorol. Clim. 2008, 47, 92–107. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lim, J.-Y.; Kim, J.-H. Change of Sea Sand Density by Washing. J. Korean Inst. Resour. Recycl. 2017, 26, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Milliman, J.D.; Meade, R.H. World-Wide Delivery of River Sediment to the Oceans. J. Geol. 1983, 91, 1–21. [Google Scholar] [CrossRef]
- Bourrin, F.; Monaco, A.; Aloïsi, J.-C.; Sanchez-Cabeza, J.-A.; Lofi, J.; Heussner, S.; De Madron, X.D.; Jeanty, G.; Buscail, R.; Saragoni, G. Last millennia sedimentary record on a micro-tidal, low-accumulation prodelta (Têt NW Mediterranean). Mar. Geol. 2007, 243, 77–96. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.; Van Dongeren, A.; van Thiel De Vries, J.; McCall, R.; Lescinski, J. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- Valentini, N.; Balouin, Y.; Palvadeau, E. Role of Storm-Induced Erosion on the Vulnerability of the Occitanie Coastal Area to Marine Flooding Phenomena. Paralia. submitted.
- McDougall, T.J.; Barker, P.M. Getting Started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox; Trevor J McDougall: Battery Point, Australia, 2011; ISBN 978-0-646-55621-5. [Google Scholar]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H., Jr. Empirical parameterization of setup, swash, and runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- van Beek, P.; Souhaut, M.; Lansard, B.; Bourquin, M.; Reyss, J.-L.; von Ballmoos, P.; Jean, P. LAFARA: A new underground laboratory in the French Pyrénées for ultra low-level gamma-ray spectrometry. J. Environ. Radioact. 2013, 116, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Kergadallan, X.; Le Berre, A.; Sanquer, R.; Leclerc, B. Candhis: Analyses 2022 Des États de Mer—Tome 2 Méditerranée; Centre d’Etudes et d’Expertise sur les Risques, l’Environnement, la Mobilité et l’Aménagement (CEREMA): Plouzané, France, 2022; p. 202. [Google Scholar]
- Orford, J.D.; Carter, R.W.G. Crestal Overtop and Washover Sedimentation on a Fringing Sandy Gravel Barrier Coast, Carnsore Point, Southeast Ireland. J. Sediment. Res. 1982, 52, 265–278. [Google Scholar] [CrossRef]
- Sallenger, A.H. Storm Impact Scale for Barrier Islands. J. Coast. Res. 2000, 16, 890–895. [Google Scholar]
- Lorenzo-Trueba, J.; Ashton, A.D. Rollover, drowning, and discontinuous retreat: Distinct modes of barrier response to sea-level rise arising from a simple morphodynamic model. J. Geophys. Res. Earth Surf. 2014, 119, 779–801. [Google Scholar] [CrossRef] [Green Version]
- Suanez, S.; Stéphan, P.; Floc’h, F.; Autret, R.; Fichaut, B.; Blaise, E.; Houron, J.; Ammann, J.; Grandjean, P.; Accensi, M.; et al. Fifteen years of hydrodynamic forcing and morphological changes leading to breaching of a gravel spit, Sillon de Talbert (Brittany). Geomorphologie 2018, 24, 403–428. [Google Scholar] [CrossRef]
- Madsen, H.O. Floodfreq COST Action ES0901—European Procedures for Flood Frequency Estimation: A Review of Applied Methods in Europe for Flood-Frequency Analysis in a Changing Environment: WG4—Flood Frequency Estimation Methods and Environmental Change; Centre for Ecology & Hydrology: Lancaster, UK, 2013; ISBN 978-1-906698-36-2. [Google Scholar]
- Muis, S.; Verlaan, M.; Winsemius, H.; Aerts, J.C.J.H.; Ward, P.J. A global reanalysis of storm surges and extreme sea levels. Nat. Commun. 2016, 7, 11969. [Google Scholar] [CrossRef] [Green Version]
- Nienhuis, J.H.; Heijkers, L.G.H.; Ruessink, G. Barrier Breaching Versus Overwash Deposition: Predicting the Morphologic Impact of Storms on Coastal Barriers. J. Geophys. Res. Earth Surf. 2021, 126, e2021JF006066. [Google Scholar] [CrossRef]
- Guillén, J.; Bourrin, F.; Palanques, A.; de Madron, X.D.; Puig, P.; Buscail, R. Sediment dynamics during wet and dry storm events on the Têt inner shelf (SW Gulf of Lions). Mar. Geol. 2006, 234, 129–142. [Google Scholar] [CrossRef]
- Paprotny, D.; Vousdoukas, M.I.; Morales-Nápoles, O.; Jonkman, S.N.; Feyen, L. Compound Flood Potential in Europe; Hydrometeorology/Mathematical applications; European Geosciences Union: Munich, Germany, 2018. [Google Scholar]
- Plomaritis, T.A.; Ferreira, Ó.; Costas, S. Regional assessment of storm related overwash and breaching hazards on coastal barriers. Coast. Eng. 2018, 134, 124–133. [Google Scholar] [CrossRef]
- Wang, P.; Briggs, T.M.R. Storm-Induced Morphology Changes along Barrier Islands and Poststorm Recovery. In Coastal and Marine Hazards, Risks, and Disasters; Elsevier: Amsterdam, The Netherlands, 2015; pp. 271–306. ISBN 978-0-12-396483-0. [Google Scholar]
- Engelstad, A.; Ruessink, B.G.; Hoekstra, P.; van der Vegt, M. Sand Suspension and Transport During Inundation of a Dutch Barrier Island. J. Geophys. Res. Earth Surf. 2018, 123, 3292–3307. [Google Scholar] [CrossRef] [Green Version]
- Pierce, J.W. Tidal Inlets and Washover Fans. J. Geol. 1970, 78, 230–234. [Google Scholar] [CrossRef]
- Shin, C. A One-Dimensional Model for Storm Breaching of Barrier Islands. Ph.D. Thesis, Old Dominion University, Norfolk, VA, USA, 1996. [Google Scholar] [CrossRef]
- Orescanin, M.M.; Coughlin, J.; Young, W.R. Morphological response of variable river discharge and wave forcing at a bar-built estuary. Estuar. Coast. Shelf Sci. 2021, 258, 107438. [Google Scholar] [CrossRef]
- James, G.W. Surface Water Dynamics at the Carmel River Lagoon Water Years 1991 through 2005; Monterey Peninsula Water Management Agency: Monterey, CA, USA, 2005. [Google Scholar]
- Barnard, P.L.; Warrick, J.A. Dramatic beach and nearshore morphological changes due to extreme flooding at a wave-dominated river mouth. Mar. Geol. 2010, 271, 131–148. [Google Scholar] [CrossRef]
- Zăinescu, F.; Anthony, E.; Vespremeanu-Stroe, A. River Jets Versus Wave-Driven Longshore Currents at River Mouths. Front. Mar. Sci. 2021, 8, 708258. [Google Scholar] [CrossRef]
- Shaw, J.B.; Miller, K.; McElroy, B. Island Formation Resulting from Radially Symmetric Flow Expansion. J. Geophys. Res. Earth Surf. 2018, 123, 363–383. [Google Scholar] [CrossRef]
- Sadaoui, M.; Ludwig, W.; Bourrin, F.; Raimbault, P. Controls, budgets and variability of riverine sediment fluxes to the Gulf of Lions (NW Mediterranean Sea). J. Hydrol. 2016, 540, 1002–1015. [Google Scholar] [CrossRef]
- Crockett, J.; Nittrouer, C. The sandy inner shelf as a repository for muddy sediment: An example from Northern California. Cont. Shelf Res. 2004, 24, 55–73. [Google Scholar] [CrossRef]
- Garcia Esteves, J. Géochimie d’un Fleuve Côtier Méditerranéen: La Têt En Roussillon: Origines et Transferts de Matières Dissoutes et Particulaires de La Source Jusqu’à La Mer. Ph.D. Thesis, University de Perpignan, Perpignan, France, 2005. [Google Scholar]
- Antonelli, C. Flux Sédimentaires et Morphogénèse Récente Dans Le Chenal Du Rhône Aval. Ph.D. Thesis, Aix-Marseille University, Aix-Marseille, France, 2002. [Google Scholar]
- Naudin, J.; Cauwet, G.; Chrétiennot-Dinet, M.-J.; Deniaux, B.; Devenon, J.-L.; Pauc, H. River Discharge and Wind Influence Upon Particulate Transfer at the Land–Ocean Interaction: Case Study of the Rhone River Plume. Estuar. Coast. Shelf Sci. 1997, 45, 303–316. [Google Scholar] [CrossRef]
- Thill, A.; Moustier, S.; Garnier, J.-M.; Estournel, C.; Naudin, J.-J.; Bottero, J.-Y. Evolution of particle size and concentration in the Rhône river mixing zone: Influence of salt flocculation. Cont. Shelf Res. 2001, 21, 2127–2140. [Google Scholar] [CrossRef]
Type of Transport | Total (t) | Sand (t) | Sand Volume (m3) |
---|---|---|---|
SPM | 198,000 ± 28,000 | 23,500 ± 600 | 14,700 ± 400 |
Bedload | 22,000 ± 3 100 | 19,800 ± 2800 | 12,400 ± 1800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meslard, F.; Balouin, Y.; Robin, N.; Bourrin, F. Assessing the Role of Extreme Mediterranean Events on Coastal River Outlet Dynamics. Water 2022, 14, 2463. https://doi.org/10.3390/w14162463
Meslard F, Balouin Y, Robin N, Bourrin F. Assessing the Role of Extreme Mediterranean Events on Coastal River Outlet Dynamics. Water. 2022; 14(16):2463. https://doi.org/10.3390/w14162463
Chicago/Turabian StyleMeslard, Florian, Yann Balouin, Nicolas Robin, and François Bourrin. 2022. "Assessing the Role of Extreme Mediterranean Events on Coastal River Outlet Dynamics" Water 14, no. 16: 2463. https://doi.org/10.3390/w14162463
APA StyleMeslard, F., Balouin, Y., Robin, N., & Bourrin, F. (2022). Assessing the Role of Extreme Mediterranean Events on Coastal River Outlet Dynamics. Water, 14(16), 2463. https://doi.org/10.3390/w14162463