Effects of Filtration Mode on the Performance of Gravity-Driven Membrane (GDM) Filtration: Cross-Flow Filtration and Dead-End Filtration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Water
2.2. Experimental Setups and Operation Procedures
2.3. Analytical Methods
3. Results and Discussion
3.1. Membrane Permeation and Membrane Resistance
3.2. Removal Performance of Various Pollutants
3.2.1. Turbidity
3.2.2. Organic Matters
3.2.3. Trend of DO Concentration
3.2.4. Fluorescent Excitation-Emission Matrix
3.3. Comparison for Applications of Gravity-Driven Membrane Filtration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pronk, W.; Ding, A.; Morgenroth, E.; Derlon, N.; Desmond, P.; Burkhardt, M.; Wu, B.; Fane, A.G. Gravity-driven membrane filtration for water and wastewater treatment: A review. Water Res. 2019, 149, 553–565. [Google Scholar] [CrossRef]
- Ishak, N.I.I.; Chieh, D.C.J.; Seng, O.B. Decontaminate river water via portable gravity-driven ultrafiltration (GDU) unit: Fouling and cleaning efficiencies studies. J. Environ. Chem. Eng. 2021, 9, 106213. [Google Scholar] [CrossRef]
- Tang, X.; Pronk, W.; Traber, J.; Liang, H.; Li, G.; Morgenroth, E. Integrating granular activated carbon (GAC) to gravity-driven membrane (GDM) to improve its flux stabilization: Respective roles of adsorption and biodegradation by GAC. Sci. Total. Environ. 2021, 768, 144758. [Google Scholar] [CrossRef]
- Desmond, P.; Morgenroth, E.; Derlon, N. Physical structure determines compression of membrane biofilms during Gravity Driven Membrane (GDM) ultrafiltration. Water Res. 2018, 143, 539–549. [Google Scholar] [CrossRef]
- Derlon, N.; Koch, N.; Eugster, B.; Posch, T.; Pernthaler, J.; Pronk, W.; Morgenroth, E. Activity of metazoa governs biofilm structure formation and enhances permeate flux during Gravity-Driven Membrane (GDM) filtration. Water Res. 2013, 47, 2085–2095. [Google Scholar] [CrossRef] [Green Version]
- Chomiak, A.; Mimoso, J.; Koetzsch, S.; Sinnet, B.; Pronk, W.; Derlon, N.; Morgenroth, E. Biofilm formation and permeate quality improvement in Gravity Driven Membrane ultrafiltration. Water Supply 2014, 14, 274–282. [Google Scholar] [CrossRef]
- Derlon, N.; Peter-Varbanets, M.; Scheidegger, A.; Pronk, W.; Morgenroth, E. Predation influences the structure of biofilm developed on ultrafiltration membranes. Water Res. 2012, 46, 3323–3333. [Google Scholar] [CrossRef]
- Shao, S.; Feng, Y.; Yu, H.; Li, J.; Li, G.; Liang, H. Presence of an adsorbent cake layer improves the performance of gravity-driven membrane (GDM) filtration system. Water Res. 2017, 108, 240–249. [Google Scholar] [CrossRef]
- Wu, B.; Hochstrasser, F.; Akhondi, E.; Ambauen, N.; Tschirren, L.; Burkhardt, M.; Fane, A.G.; Pronk, W. Optimization of gravity-driven membrane (GDM) filtration process for seawater pretreatment. Water Res. 2016, 93, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Akhondi, E.; Wu, B.; Sun, S.; Marxer, B.; Lim, W.; Gu, J.; Liu, L.; Burkhardt, M.; McDougald, D.; Pronk, W.; et al. Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: Linking biofouling layer morphology with flux stabilization. Water Res. 2015, 70, 158–173. [Google Scholar] [CrossRef]
- Peter-Varbanets, M.; Hammes, F.; Vital, M.; Pronk, W. Stabilization of flux during dead-end ultra-low pressure ultrafiltration. Water Res. 2010, 44, 3607–3616. [Google Scholar] [CrossRef]
- Shamsuddin, N.; Das, D.B.; Starov, V.M. Filtration of natural organic matter using ultrafiltration membranes for drinking water purposes: Circular cross-flow compared with stirred dead end flow. Chem. Eng. J. 2015, 276, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Arnot, T.; Field, R.; Kołtuniewicz, A. Cross-flow and dead-end microfiltration of oily-water emulsions: Part II. Mechanisms and modelling of flux decline. J. Membr. Sci. 2000, 169, 1–15. [Google Scholar] [CrossRef]
- Moreira, V.R.; Lebron, Y.A.R.; Santos, L.V.D.S.; Amaral, M.C.S. Dead-end ultrafiltration as a cost-effective strategy for improving arsenic removal from high turbidity waters in conventional drinking water facilities. Chem. Eng. J. 2021, 417, 128132. [Google Scholar] [CrossRef]
- Shi, D.; Liu, Y.; Fu, W.; Li, J.; Fang, Z.; Shao, S. A combination of membrane relaxation and shear stress significantly improve the flux of gravity-driven membrane system. Water Res. 2020, 175, 115694. [Google Scholar] [CrossRef]
- Ding, A.; Liang, H.; Li, G.; Derlon, N.; Szivak, I.; Morgenroth, E.; Pronk, W. Impact of aeration shear stress on permeate flux and fouling layer properties in a low pressure membrane bioreactor for the treatment of grey water. J. Membr. Sci. 2016, 510, 382–390. [Google Scholar] [CrossRef]
- Buzatu, P.; Qiblawey, H.; Nasser, M.; Judd, S. Comparative power demand of mechanical and aeration imposed shear in an immersed membrane bioreactor. Water Res. 2017, 126, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Qu, F.; Yan, Z.; Liu, W.; Shao, S.; Ren, X.; Ren, N.; Li, G.; Liang, H. Effects of manganese dioxides on the ultrafiltration membrane fouling by algal extracellular organic matter. Sep. Purif. Technol. 2015, 153, 29–36. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, P.; Tan, F.J.; Huang, Y.; Li, P.; Xia, S. Effect of coagulation pretreatment on the performance of gravity-driven membrane filtration with Yangtze River water. J. Clean. Prod. 2021, 297, 126736. [Google Scholar] [CrossRef]
- Tang, X.; Ding, A.; Qu, F.; Jia, R.; Chang, H.; Cheng, X.; Liu, B.; Li, G.; Liang, H. Effect of operation parameters on the flux stabilization of gravity-driven membrane (GDM) filtration system for decentralized water supply. Environ. Sci. Pollut. Res. 2016, 23, 16771–16780. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liang, H.; Tang, X.; Gan, Z.; Li, G. Chemicals-free approach control interface characteristics of nanofiltration membrane: Feasibility and mechanism insight into CEM electrolysis. Water Res. 2021, 206, 117761. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tang, X.; Liu, Y.; Xie, B.; Li, G.; Liang, H. Self-sustained ultrafiltration coupling vermifiltration for decentralized domestic wastewater treatment: Microbial community and mechanism. Resour. Conserv. Recycl. 2022, 177, 106008. [Google Scholar] [CrossRef]
- Tang, X.; Ding, A.; Pronk, W.; Ziemba, C.; Cheng, X.; Wang, J.; Xing, J.; Xie, B.; Li, G.; Liang, H. Biological pre-treatments enhance gravity-driven membrane filtration for the decentralized water supply: Linking extracellular polymeric substances formation to flux stabilization. J. Clean. Prod. 2018, 197, 721–731. [Google Scholar] [CrossRef]
- Derlon, N.; Desmond, P.; Rühs, P.A.; Morgenroth, E. Cross flow frequency determines the physical structure and cohesion of membrane biofilms developed during gravity-driven membrane ultrafiltration of river water: Implication for hydraulic resistance. J. Membr. Sci. 2022, 643, 120079. [Google Scholar] [CrossRef]
- Ding, A.; Wang, J.; Lin, D.; Tang, X.; Cheng, X.; Wang, H.; Bai, L.; Li, G.; Liang, H. A low pressure gravity-driven membrane filtration (GDM) system for rainwater recycling: Flux stabilization and removal performance. Chemosphere 2017, 172, 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, D.; Liu, C.; Sun, Z.; Liu, Q.; Wang, P.; Sun, S.; Cheng, W.; Qiu, L.; Ma, J.; Qi, J. Tailoring the distribution of microbial communities and gene expressions to achieve integrating nitrogen transformation in a gravity-driven submerged membrane bioreactor. Water Res. 2020, 187, 116382. [Google Scholar] [CrossRef]
Characteristics | Values |
---|---|
CODMn | 1~3 mg L−1 |
UV254 | 0.018~0.045 cm−1 |
Ammonia | 0.07~0.15 mg L−1 |
Turbidity | 1~6.5 NTU |
Dissolved oxygen | 4~7 mg L−1 |
pH | 6.8~7.6 |
Temperature | 16~33 °C |
Systems | Group Name | TMP (mbar) |
---|---|---|
SGDM | SGDM-120 | 120 |
SGDM-200 | 200 | |
CGDM | CGDM-120 | 120 |
CGDM-200 | 200 |
Water Samples | Peak A | Peak B | Peak C | Peak D | ||||
---|---|---|---|---|---|---|---|---|
Ex/Em (nm/nm) | Intensity (a.u.) | Ex/Em (nm/nm) | Intensity (a.u.) | Ex/Em (nm/nm) | Intensity (a.u.) | Ex/Em (nm/nm) | Intensity (a.u.) | |
Raw water | 220/303 | 273.27 | 220/326 | 333.19 | 230/410 | 149.84 | 275/306 | 198.40 |
SGDM | — | — | 220/330 | 145.12 | 230/410 | 106.94 | — | — |
IGDM | — | — | 220/329 | 117.92 | 230/408 | 89.13 | — | — |
Water Source | Flux (L m−2 h−1) | Rejection Performance (%) | TMP (mbar) | Filtration Mode * | Membrane Type ** | Ref. | |
---|---|---|---|---|---|---|---|
CODMn | DOC | ||||||
Reservoir water | 10.65 | 45.5 | 55.6 | 120 | CM | HF, PVDF (0.1 μm) | This work |
Reservoir water | 9.16 | 30.6 | 23.4 | 200 | DM | HF, PVDF (0.1 μm) | This work |
River water | 8.0 | − | − | 40 | DM | FS, PES (100 kDa) | [7] |
Rain water | 6.0 | − | towards zero | 50 | DM | FS, PES (150 kDa) | [25] |
Seawater treated by biofilm reactor | 4.5 | − | 3.6 | 40 | DM | FS, PES (100 kDa) | [9] |
Seawater treated by biofilm reactor | 3.6 | − | –29.7 | 40 | DM | HF, PVDF (0.1 μm) | [9] |
Reservoir water | 4.0 | 80.2 | 63.8 | 150 | DM | HF, PVDF (0.08 μm) | [26] |
River water | 10.9 | − | − | 100 | CM | FS, PES (150 kDa) | [24] |
River water | 6.7 | − | − | 100 | DM | FS, PES (150 kDa) | [24] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Tang, X.; Liang, H.; Cheng, W.; Li, G.; Zhang, Q.; Chen, J.; Chen, K.; Wang, J. Effects of Filtration Mode on the Performance of Gravity-Driven Membrane (GDM) Filtration: Cross-Flow Filtration and Dead-End Filtration. Water 2022, 14, 190. https://doi.org/10.3390/w14020190
Wang Q, Tang X, Liang H, Cheng W, Li G, Zhang Q, Chen J, Chen K, Wang J. Effects of Filtration Mode on the Performance of Gravity-Driven Membrane (GDM) Filtration: Cross-Flow Filtration and Dead-End Filtration. Water. 2022; 14(2):190. https://doi.org/10.3390/w14020190
Chicago/Turabian StyleWang, Qian, Xiaobin Tang, Heng Liang, Wenjun Cheng, Guibai Li, Qingjun Zhang, Jie Chen, Kang Chen, and Jinlong Wang. 2022. "Effects of Filtration Mode on the Performance of Gravity-Driven Membrane (GDM) Filtration: Cross-Flow Filtration and Dead-End Filtration" Water 14, no. 2: 190. https://doi.org/10.3390/w14020190
APA StyleWang, Q., Tang, X., Liang, H., Cheng, W., Li, G., Zhang, Q., Chen, J., Chen, K., & Wang, J. (2022). Effects of Filtration Mode on the Performance of Gravity-Driven Membrane (GDM) Filtration: Cross-Flow Filtration and Dead-End Filtration. Water, 14(2), 190. https://doi.org/10.3390/w14020190