Development of Technology for Identification of Climate Patterns during Floods Using Global Climate Model Data with Convolutional Neural Networks
Abstract
:1. Introduction
2. Methods
2.1. Study Area and Data Collection
2.1.1. Study Area
2.1.2. Definition of Flood Events
2.1.3. Climate Data
2.2. CNN Model Construction
2.2.1. CNN Model Structure
2.2.2. Establishment of a Model to Identify Flood-Induced Climate Patterns
2.2.3. Model Performance Evaluation Index
3. Results
4. Conclusions
- (1)
- The goal of this study was to develop a model that categorizes climate patterns during flooding, without considering the length of time preceding the flood. Future studies are warranted to build a prediction model for leading times (estimated 1–6 months) to use for flood preparation.
- (2)
- This study can be extended to research into dynamic causes of flood-induced climate patterns and analysis of the characteristics of each climate pattern change in the case of floods by water systems or points in detail.
- (3)
- We strongly suggest the study to be expanded to propose teleconnection climate indices induced by the extreme climate in Korea.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CGT | Circumglobal teleconnection |
CNN | Convolutional neural network |
DOISST | Daily optimum interpolation sea surface temperature |
ELM | Extreme learning machine |
ENSO | El Niño-Southern Oscillation |
FN | False Negative |
FP | False Positive |
IOD | Indian Ocean dipole |
NAO | North Atlantic Oscillation |
NOAA | National Oceanic and Atmospheric Administration |
PDO | Pacific Decadal Oscillation |
PPV | Rred to as the positive predictive value |
RF | Random forest |
SST | Sea surface temperature |
SSTA | Sea surface temperature anomaly |
SVR | Support vector regression |
TN | True Negative |
TP | True Positive |
References
- Cai, W.; Van Rensch, P.; Cowan, T.; Hendon, H.H. Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Clim. 2011, 24, 3910–3923. [Google Scholar] [CrossRef]
- Lee, H.S. General rainfall patterns in Indonesia and the potential impacts of local season rainfall intensity. Water 2015, 7, 1751–1769. [Google Scholar] [CrossRef]
- Cho, J.P.; Jung, I.W.; Kim, C.G.; Kim, T.G. One-month lead dam infow forecast using climate indices based on teleconnection. J. Korea Water Resour. Assoc. 2016, 49, 361–372. [Google Scholar] [CrossRef]
- Lee, J.H.; Julien, P.Y. ENSO impacts on temperature over South Korea. Int. J. Climatol. 2016, 36, 3651–3663. [Google Scholar] [CrossRef]
- Cao, Q.; Hao, Z.; Yuan, F.; Su, Z.; Berndtsson, R.; Hao, J.; Nyima, T. Impact of ENSO regimes on developing- and decaying-phase precipitation during rainy season in China. Hydrol. Earth Syst. Sci. 2017, 21, 5415–5426. [Google Scholar] [CrossRef] [Green Version]
- Levin, N.; Phinn, S. Assessing the 2022 Flood Impacts in Queensland Combining Daytime and Nighttime Optical and Imaging Radar Data. Remote Sens. 2022, 14, 5009. [Google Scholar] [CrossRef]
- Gerlitz, L.; Vorogushyn, S.; Apel, H.; Gafurov, A.; Unger-Shayesteh, K.; Merz, B. A Statistically based seasonal precipitation forecast model with automatic predictor selection and its application to central and south Asia. Hydrol. Earth Syst. Sci. 2016, 20, 4605–4623. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Wang, H. Impact of the November/December Arctic oscillation on the following January temperature in East Asia. J. Geophys. Res. Atmos. 2013, 118, 12981–12998. [Google Scholar] [CrossRef]
- He, S.; Gao, Y.; Li, F.; Wang, H.; He, Y. Impact of Arctic oscillation on the East Asian climate: A review. Earth Sci. Rev. 2017, 164, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Ahn, J.B. Possible impact of the autumnal North Pacifc SST and November AO on the East Asian winter temperature. J. Geophys. Res. Atmos. 2012, 117, D12. [Google Scholar] [CrossRef]
- Ouyang, R.; Liu, W.; Fu, G.; Liu, C.; Hu, L.; Wang, H. Linkages between ENSO/PDO signals and precipitation, streamfow in China during the last 100 years. Hydrol. Earth Syst. Sci. 2014, 18, 3651–3661. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; Ahn, J.B. Combined efect of the Arctic oscillation and the western Pacifc pattern on East Asia winter temperature. Clim. Dyn. 2016, 46, 3205–3221. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Cai, W.; Guo, X.; Ng, B. The asymmetric infuence of the positive and negative IOD events on Chinas rainfall. Sci. Rep. 2014, 4, 4943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singhrattna, N.; Rajagopalan, B.; Clark, M.; Krishna Kumar, K. Seasonal forecasting of Thailand summer monsoon rainfall. Int. J. Climatol. J. R. Meteorol. Soc. 2005, 25, 649–664. [Google Scholar] [CrossRef] [Green Version]
- Nurutami, M.N.; Hidayat, R. Infuences of IOD and ENSO to Indonesian rainfall variability: Role of Atmosphere-ocean interaction in the Indo-pacifc sector. Procedia Environ. Sci. 2016, 33, 196–203. [Google Scholar] [CrossRef] [Green Version]
- El-Jabi, N.; Turkkan, N.; Caissie, D. Regional climate index for floods and droughts using Canadian climate model (CGCM3.1). Am. J. Clim. Chang. 2013, 2, 33529. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Dong, Q.; Chen, J. Comparison of ensemble models for drought prediction based on climate indexes. Stoch. Environ. Res. Risk Assess. 2019, 33, 593–606. [Google Scholar] [CrossRef]
- Zhao, Y.; Weng, Z.; Chen, H.; Yang, J. Analysis of the evolution of drought, flood, and drought-flood abrupt alternation events under climate change using the daily SWAP index. Water 2020, 12, 1969. [Google Scholar] [CrossRef]
- Dixit, S.; Jayakumar, K.V. A study on copula-based bivariate and trivariate drought assessment in Godavari River basin and the teleconnection of drought with large-scale climate indices. Theor. Appl. Climatol. 2021, 146, 1335–1353. [Google Scholar] [CrossRef]
- Wang, D.; Dong, Z.; Jiang, F.; Zhu, S.; Ling, Z.; Ma, J. Spatiotemporal variability of drought/flood and its teleconnection with large-scale climate indices based on standard precipitation index: A case study of Taihu Basin, China. Environ. Sci. Pollut. Res. 2022, 29, 50117–50134. [Google Scholar] [CrossRef]
- Fang, G.; Li, X.; Xu, M.; Wen, X.; Huang, X. Spatiotemporal Variability of Drought and Its Multi-Scale Linkages with Climate Indices in the Huaihe River Basin, Central China and East China. Atmosphere 2021, 12, 1446. [Google Scholar] [CrossRef]
- Tong, J.; Qiang, Z.; Deming, Z.; Yijin, W. Yangtze floods and droughts (China) and teleconnections with ENSO activities (1470–2003). Quat. Int. 2006, 144, 29–37. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Chang, T.J. Correlations between hydrological drought and climate indices with respect to the impact of a large reservoir. Theor. Appl. Climatol. 2020, 139, 727–739. [Google Scholar] [CrossRef]
- Khandelwal, A.; Xu, S.; Li, X.; Jia, X.; Stienbach, M.; Duffy, C.; Nieber, J.; Kumar, V. Physics guided machine learning methods for hydrology. arXiv 2020, arXiv:2012.02854. [Google Scholar] [CrossRef]
- Sit, M.; Demiray, B.Z.; Xiang, Z.; Ewing, G.J.; Sermet, Y.; Demir, I. A comprehensive review of deep learning applications in hydrology and water resources. Water Sci. Technol. 2020, 82, 2635–2670. [Google Scholar] [CrossRef]
- Han, H.; Choi, C.; Kim, J.; Morrison, R.R.; Jung, J.; Kim, H.S. Multiple-depth soil moisture estimates using artificial neural network and long short-term memory models. Water 2021, 13, 2584. [Google Scholar] [CrossRef]
- Kim, D.; Han, H.; Wang, W.; Kang, Y.; Lee, H.; Kim, H.S. Application of Deep Learning Models and Network Method for Comprehensive Air-Quality Index Prediction. Appl. Sci. 2022, 12, 6699. [Google Scholar] [CrossRef]
- Kwak, J.; Han, H.; Kim, S.; Kim, H.S. Is the deep-learning technique a completely alternative for the hydrological model?: A case study on Hyeongsan River Basin, Korea. Stoch. Environ. Res. Risk Assess. 2022, 36, 1615–1629. [Google Scholar] [CrossRef]
- Shen, C.; Lawson, K. Applications of deep learning in hydrology. In Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science, and Geosciences; Camps-Valls, G., Tuia, D., Zhu, X.X., Reichstein, M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 283–297. [Google Scholar]
- Yuan, K.; Zhuang, X.; Schaefer, G.; Feng, J.; Guan, L.; Fang, H. Deep-learning-based multispectral satellite image segmentation for water body detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7422–7434. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Y.P.; Wang, G. Agricultural drought prediction using climate indices based on Support Vector Regression in Xiangjiang River basin. Sci. Total Environ. 2018, 622, 710–720. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Wu, X.; Xu, C.Y.; Guo, S.; Chen, X.; Zhang, Z. Robust meteorological drought prediction using antecedent SST fluctuations and machine learning. Water Resour. Res. 2021, 57, e2020WR029413. [Google Scholar] [CrossRef]
- Jung, J.W.; Kim, H.S. Predicting temperature and precipitation during the flood season based on teleconnection. Geosci. Lett. 2022, 9, 4. [Google Scholar] [CrossRef]
- National Emergency Management Agency. Disaster Annual Report Central Disaster and Safety Countermeasures Headquarters; National Emergency Management Agency: Canberra City, Australia, 2015; Volume 2014.
- Korea Meteorological Administration. Meteorological Data Open Portal. Available online: https://data.kma.go.kr (accessed on 1 March 2022).
- Han River Flood Control Center. Available online: http://www.hrfco.go.kr (accessed on 1 March 2022).
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Banzon, V.; Smith, T.M.; Chin, T.M.; Liu, C.; Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 2016, 8, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.-M. Improvements of the daily optimum interpolation sea surface temperature (DOISST) Version 2.1. J. Clim. 2020, 34, 7421–7441. [Google Scholar] [CrossRef]
- Kim, J.H. Development of the ENSO Prediction System Using Convolutional Neural Network (CNN); Graduate School Chonnam National University: Daejeon, Republic of Korea, 2018. [Google Scholar]
- Ham, Y.G.; Kim, J.H.; Luo, J.J. Deep learning for multi-year ENSO forecasts. Nature 2019, 573, 568–572. [Google Scholar] [CrossRef]
- Kim, J.; Lee, M.; Han, H.; Kim, D.; Bae, Y.; Kim, H.S. Case study: Development of the CNN model considering teleconnection for spatial downscaling of precipitation in a climate change scenario. Sustainability 2022, 14, 4719. [Google Scholar] [CrossRef]
- Hussain, D.; Hussain, T.; Khan, A.A.; Naqvi, S.A.A.; Jamil, A. A deep learning approach for hydrological time-series prediction: A case study of Gilgit river basin. Earth Sci. Inform. 2020, 13, 915–927. [Google Scholar] [CrossRef]
- Panahi, M.; Sadhasivam, N.; Pourghasemi, H.R.; Rezaie, F.; Lee, S. Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). J. Hydrol. 2020, 588, 125033. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.S.; Kim, S.; Kim, D.; Kim, J. Development of a method for urban flooding detection using unstructured data and deep learning. J. Korea Water Resour. Assoc. 2021, 54, 1233–1242. [Google Scholar]
Case | Temporal Range | Spatial Range | Resolution |
---|---|---|---|
NOAA NCDC OISST version 2p1 AVHRR anom/SST anomaly | |||
Case 1 | 1 Janauary 1982–31 December 2021; June to September | 33.5° N–39.25° N, 123.0° E–130.5° E | Daily, 0.25° × 0.25° |
Case 2 | 30° S–0° N, 160° E–130° W | Daily, 2.5° × 2.5° | |
Case 3 | 60° S–60° N, 70° E–70° W | Daily, 2.5° × 2.5° | |
Case 4 | 60° S–60° N, 0° E–0° W | Daily, 2.5° × 2.5° |
Flood | Predicted as | ||
---|---|---|---|
True | False | ||
Actual | True | True Positive (TP) | False Negative (FN) |
False | False Positive (FP) | True Negative (TN) |
Evaluation Index | Equation |
---|---|
Accuracy | |
Precision, also known as the positive predicted value | |
Recall, also known as sensitivity | |
Specificity, also known as the true negative rate | |
F1 score |
Flood | Predicted | ||||||||
---|---|---|---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 3 | Case 4 | ||||||
True | False | True | False | True | False | True | False | ||
Actual | True | 353 | 23 | 372 | 4 | 370 | 6 | 371 | 5 |
False | 55 | 316 | 25 | 346 | 15 | 356 | 13 | 358 |
Evaluation Index | Case 1 | Case 2 | Case 3 | Case 4 |
---|---|---|---|---|
Accuracy | 89.6% | 96.1% | 97.2% | 97.6% |
Precision | 0.87 | 0.94 | 0.96 | 0.97 |
Recall | 0.94 | 0.99 | 0.98 | 0.99 |
Specificity | 0.85 | 0.93 | 0.96 | 0.96 |
F1 score | 0.90 | 0.96 | 0.97 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.; Han, H. Development of Technology for Identification of Climate Patterns during Floods Using Global Climate Model Data with Convolutional Neural Networks. Water 2022, 14, 4045. https://doi.org/10.3390/w14244045
Jung J, Han H. Development of Technology for Identification of Climate Patterns during Floods Using Global Climate Model Data with Convolutional Neural Networks. Water. 2022; 14(24):4045. https://doi.org/10.3390/w14244045
Chicago/Turabian StyleJung, Jaewon, and Heechan Han. 2022. "Development of Technology for Identification of Climate Patterns during Floods Using Global Climate Model Data with Convolutional Neural Networks" Water 14, no. 24: 4045. https://doi.org/10.3390/w14244045
APA StyleJung, J., & Han, H. (2022). Development of Technology for Identification of Climate Patterns during Floods Using Global Climate Model Data with Convolutional Neural Networks. Water, 14(24), 4045. https://doi.org/10.3390/w14244045