Surface Seawater pCO2 Variation after a Typhoon Passage in the Kuroshio off Eastern Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. Analytical Methods
2.3. Statistical Analyses
3. Results
3.1. Spatial Variations of Temperature, Salinity, and pCO2 in the Sea Surface Water before and after the Passage of Typhoon Saola
3.2. Depth Distributions of Temperature, Salinity, DIC, TA, pH, Nitrate, and Chl a before and after the Passage of Typhoon Saola
4. Discussion
4.1. Typhoon Effects on Surface pCO2
= ΔpCO2.T + ΔpCO2.S + ΔpCO2.C + ΔpCO2.B + ΔpCO2.O
4.2. Non-Typhoon on Surface pCO2
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhai, W.D.; Dai, M.H.; Cai, W.J.; Wang, Y.C.; Hong, H.S. The partial pressure of carbon dioxide and air-sea fluxes in the northern South China Sea in spring, summer and autumn. Mar. Chem. 2005, 96, 87–97. [Google Scholar] [CrossRef]
- Nemoto, K.; Midorikawa, T.; Wada, A.; Ogawa, K.; Takatani, S.; Kimoto, H.; Ishii, M.; Inoue, H.Y. Continuous observations of atmospheric and oceanic CO2 using a moored buoy in the East China Sea: Variations during the passage of typhoons. Deep. Sea Res. 2 Top. Stud. Oceanogr. 2009, 56, 542–553. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Wang, Z.A.; Churchill, J.; Zheng, M.; Pan, J.; Bai, Y.; Liang, C. Effects of typhoons on surface seawater pCO2 and air—sea CO2 fluxes in the northern South China Sea. J. Geophy. Res. Oceans 2020, 125, e2020JC016258. [Google Scholar] [CrossRef]
- Ning, J.; Xu, Q.; Zhang, H.; Wang, T.; Fan, K. Impact of cyclonic ocean eddies on upper ocean thermodynamic response to typhoon Soudelor. Remote Sens. 2019, 11, 938. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Lin, S.; Jiang, Y.; Wang, Y. Modulation of Typhoon-Induced Sea Surface Cooling by Preexisting Eddies in the South China Sea. Water 2021, 13, 653. [Google Scholar] [CrossRef]
- Takahashi, T.; Sutherland, S.C.; Wanninkhof, R.; Sweeney, C.; Feely, R.A.; Chipman, D.W.; Hales, B.; Friederich, G.; Chavez, F.; Sabine, C.; et al. Climatological mean and decadal change in surface ocean pCO2, and net air-sea CO2 flux over the global oceans. Deep.-Sea Res. II Top. Stud. Oceanogr. 2009, 56, 554–577. [Google Scholar] [CrossRef]
- Ye, H.; Morozov, E.; Tang, D.; Wang, S.; Liu, Y.; Li, Y.; Tang, S. Variation of pCO2 concentrations induced by tropical cyclones “Wind-Pump” in the middle-latitude surface oceans: A comparative study. PLoS ONE 2020, 15, e0226189. [Google Scholar] [CrossRef] [Green Version]
- Bates, N.R.; Knap, A.H.; Michaels, A.F. Contribution of hurricanes to local and global estimates of air—Sea exchange of CO2. Nature 1998, 395, 58–61. [Google Scholar] [CrossRef]
- Hood, E.M.; Wanninkhof, R.; Merlivat, L. Short timescale variations of fCO2 in a North Atlantic warm—Core eddy: Results from the Gas-Ex 98 carbon interface ocean atmosphere (CARIOCA) buoy data. J. Geophys. Res. 2001, 106, 2561–2572. [Google Scholar] [CrossRef]
- Sun, Q.Y.; Tang, D.L.; Legendre, L.; Shi, P. Enhanced air-sea CO2 exchange influenced by a tropical depression in the South China Sea. J. Geophys. Res. Ocean. 2014, 119, 6792–6804. [Google Scholar] [CrossRef]
- Jan, S.; Yang, Y.J.; Wang, J.; Mensah, V.; Kuo, T.-H.; Chiou, M.-D.; Chern, C.-S.; Chang, M.-H.; Chien, H. Large variability of the Kuroshio at 23.75° N east of Taiwan. J. Geophys. Res. Oceans 2015, 120, 1825–1840. [Google Scholar] [CrossRef]
- L12. Liang, W.-D.; Tang, T.Y.; Yang, Y.J.; Ko, M.T.; Chuang, W.-S. Upper-ocean currents around Taiwan. Deep Sea Res. 2 2003, 50, 1085–1105. [Google Scholar] [CrossRef]
- Chou, W.C.; Sheu, D.D.; Chen, C.T.A.; Wen, L.S.; Yang, Y.; Wei, C.L. Transport of the South China Sea subsurface water outflow and its influence on the carbon chemistry of Kuroshio waters off southeastern Taiwan. J. Geophys. Res. 2007, 112, C12008. [Google Scholar] [CrossRef]
- Pelletier, G.J.; Lewis, E.; Wallace, D.W.R. CO2SYS.XLS: A Calculator for the CO2 System in Seawater for Microsoft Excel/VBA. Version 16; Washington State Department of Ecology: Olympia, WA, USA, 2011. [Google Scholar]
- Dickson, A.G.; Millero, F.J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep. Sea Res. A 1987, 34, 1733–1743. [Google Scholar] [CrossRef]
- Chou, W.-C.; Fan, L.-F.; Yang, C.-C.; Chen, Y.-H.; Hung, C.-C.; Huang, W.-J.; Shih, Y.-Y.; Soong, K.; Tseng, H.-C.; Gong, G.-C.; et al. A Unique Diel Pattern in Carbonate Chemistry in the Seagrass Meadows of Dongsha Island: The Enhancement of Metabolic Carbonate Dissolution in a Semienclosed Lagoon. Front. Mar. Sci. 2021, 8, 717685. [Google Scholar] [CrossRef]
- Fan, L.-F.; Qiu, S.-Q.; Chou, W.-C. Carbonate chemistry of the Dongsha Atoll Lagoon in the northern South China Sea. Terr. Atmos. Ocean. Sci. 2021, 32, 399–409. [Google Scholar] [CrossRef]
- Clayton, T.D.; Byrne, R.H. Spectrophotometric seawater pH measurements: Total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep. Sea Res. 1 1993, 40, 2115–2129. [Google Scholar] [CrossRef]
- Gong, G.-C.; Chang, J.; Wen, Y.-H. Estimation of annual primary production in the Kuroshio waters northeast of Taiwan using a photosynthesis-irradiance model. Deep Sea Res. 1 1999, 46, 93–108. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2012; p. 730. [Google Scholar]
- SAS Institute. SAS User’s Guide: Statistics, Release 9.1; SAS Institute: Cary, NC, USA, 2003. [Google Scholar]
- Hung, C.C.; Gong, G.C. Biogeochemical responses in the Southern East China Sea after typhoons. Oceanography 2011, 24, 42–51. [Google Scholar] [CrossRef]
- Shih, Y.-Y.; Hung, C.-C.; Huang, S.-Y.; Muller, F.L.L.; Chen, Y.-H. Biogeochemical Variability of the Upper Ocean Response to Typhoons and Storms in the Northern South China Sea. Front. Mar. Sci. 2020, 7, 151. [Google Scholar] [CrossRef] [Green Version]
- Chou, W.-C.; Gong, G.-C.; Cai, W.-J.; Sheu, D.D.; Hung, C.-C.; Chen, H.-Y.; Chung, C.-C. CO2 system in the oligotrophic northwest Pacific Ocean during the Asian dust storm season. Mar. Chem. 2011, 127, 210–222. [Google Scholar] [CrossRef]
- Jan, S.; Mensah, V.; Andres, M.; Chang, M.-H.; Yang, Y.J. Eddy-Kuroshio interactions: Local and remote effects. J. Geophys. Res. Oceans 2017, 122, 9744–9764. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Cai, W.-J.; Benitez-Nelson, C.; Wang, Y. Sea surface pCO2-SST relationships across a cold-core cyclonic eddy: Implications for understanding regional variability and air-sea gas exchange. Geophys. Res. Lett. 2007, 34, L10603. [Google Scholar] [CrossRef] [Green Version]
- Sheu, D.D.; Chou, W.C.; Chen, C.T.A.; Wei, C.L.; Hsieh, H.L.; Hou, W.P.; Dai, M. Riding over the Kuroshio from the South to the East China Sea: Mixing and transport of DIC. Geophys. Res. Lett. 2009, 36, L07603. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.-C.; Wu, C.-R.; Chuang, C.-Y.; Tai, J.-H.; Lee, K.-Y.; Kuo, H.-Y.; Shiah, F.-K. Phytoplankton and Bacterial Responses to Monsoon-Driven Water Masses Mixing in the Kuroshio Off the East Coast of Taiwan. Front. Mar. Sci. 2021, 8, 707807. [Google Scholar] [CrossRef]
- Chow, C.H.; Liu, Q.; Xie, S.-P. Effects of Kuroshio Intrusions on the atmosphere northeast of Taiwan Island. Geophys. Res. Lett. 2015, 42, 1465–1470. [Google Scholar] [CrossRef]
Zone | I | II | III | IV | |||||
---|---|---|---|---|---|---|---|---|---|
Station | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Parameter | |||||||||
ΔSST (°C) | −0.4 | −0.1 | −1.4 | −2 | −1.5 | −0.9 | −0.6 | −0.6 | −0.5 |
ΔSSS | −0.2 | 1 | 0.8 | 0.6 | 0.8 | 0.4 | 0.9 | 0.9 | 0.8 |
ΔMLD (m) | 8 | 16 | 34 | 22 | 32 | 25 | 18 | 4 | 21 |
ΔpCO2 (μatm) | 13 | 18 | −8 | 15 | 9 | −8 | −7 | −20 | −7 |
ΔnpCO2 (μatm) | 15 | 17 | 15 | 47 | 30 | 3 | 3 | −12 | 2 |
ΔDIC (μmol kg−1) | 4 | 10 | 11 | 5 | 13 | 15 | 11 | 0 | 8 |
ΔTA (μmol kg−1) | 3 | 8 | 5 | 4 | 14 | 12 | 8 | 1 | 5 |
ΔNO3 (μmol kg−1) | 0.10 | 0.05 | 0.01 | −0.01 | −0.02 | −0.01 | 0.02 | −0.01 | −0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.-F.; Chow, C.H.; Gong, G.-C.; Chou, W.-C. Surface Seawater pCO2 Variation after a Typhoon Passage in the Kuroshio off Eastern Taiwan. Water 2022, 14, 1326. https://doi.org/10.3390/w14091326
Fan L-F, Chow CH, Gong G-C, Chou W-C. Surface Seawater pCO2 Variation after a Typhoon Passage in the Kuroshio off Eastern Taiwan. Water. 2022; 14(9):1326. https://doi.org/10.3390/w14091326
Chicago/Turabian StyleFan, Lan-Feng, Chun Hoe Chow, Gwo-Ching Gong, and Wen-Chen Chou. 2022. "Surface Seawater pCO2 Variation after a Typhoon Passage in the Kuroshio off Eastern Taiwan" Water 14, no. 9: 1326. https://doi.org/10.3390/w14091326
APA StyleFan, L. -F., Chow, C. H., Gong, G. -C., & Chou, W. -C. (2022). Surface Seawater pCO2 Variation after a Typhoon Passage in the Kuroshio off Eastern Taiwan. Water, 14(9), 1326. https://doi.org/10.3390/w14091326