Evaluation of the Richness, Species Diversity, and Biosafety of Saprotrophic Fungal Communities in Constructed Wetlands and Biological Wastewater Ponds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Object
2.2. Study Material
2.3. Methods for Isolation and Identification of Fungi
2.4. Analysis of Results
2.5. Statistical Analysis
3. Results
3.1. General Characteristics of Mycobiota in Constructed Wetlands and Wastewater Stabilization Ponds
3.2. Species Similarity, Diversity, and Determinants of the Growth of Fungal Communities in the Wastewater Treatment Plants
3.3. Changes in the Composition and Frequency of Genera and Species during the Wastewater Treatment Process
3.4. Analysis of the Biosafety of Wastewater-Colonizing Fungi
4. Discussion
4.1. Evaluation of the Frequency in the Species Composition and the Taxonomic and Spatial Structure of Total Fungal Communities
4.2. Evaluation of Changes in the Species Composition and Frequency of Populations in the Fungal Communities Depending on the System and Wastewater Treatment Stage
4.3. Evaluation of the Biodegradation and Bioremediation Potential of Fungal Communities in Wastewater Treatment Systems
4.4. Evaluation of Mycological Hazards in Biological and Constructed Wetland Wastewater Treatment Plants
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vymazal, J. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecol. Eng. 2005, 25, 478–490. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetland of wastewater treatment. Water 2010, 2, 530–549. [Google Scholar] [CrossRef] [Green Version]
- Jóźwiakowski, K.; Marzec, M.; Kowalczyk-Juśko, A.; Gizińska-Górna, M.; Pytka-Woszczyło, A.; Malik, A.; Listosz, A.; Gajewska, M. 25 years of research and experiences about the application of constructed wetlands in southeastern Poland. Ecol. Eng. 2018, 127, 440–453. [Google Scholar] [CrossRef]
- Jóźwiakowski, K.; Bugajski, P.; Kurek, K.; Cáceres, R.; Siwiec, T.; Jucherski, A.; Czekała, W.; Kozlowski, K. Technological reliability of pollutant removal in different seasons in one-stage constructed wetland system with horizontal flow operating in the moderate climate. Sep. Purif. Technol. 2019, 238, 116439. [Google Scholar] [CrossRef]
- Scholz, M.; Lee, B. Constructed wetlands: A review. Int. J. Environ. Stud. 2005, 62, 421–447. [Google Scholar] [CrossRef]
- Singh, S. Wastewater Pretreatment Methods for Constructed Wetland: A Review. Int. J. Res. Appl. Sci. Biotechnol. 2022, 9, 40–47. [Google Scholar] [CrossRef]
- Faulwetter, J.L.; Gagnon, V.; Sundberg, C.; Chazarenc, F.; Burr, M.D.; Brisson, J.; Camper, A.K.; Stein, O.R. Microbial processes influencing performance of treatment wetlands: A review. Ecol. Eng. 2009, 35, 987–1004. [Google Scholar] [CrossRef]
- Lee, C.-G.; Fletcher, T.D.; Sun, G. Nitrogen removal in constructed wetland systems. Eng. Life Sci. 2009, 9, 11–22. [Google Scholar] [CrossRef]
- Mina, I.A.-P.; Costa, M.; Matos, A.; Calheiros, C.S.C.; Castro, P.M.L. Polishing Domestic Wastewater on a Subsurface Flow Constructed Wetland: Organic Matter Removal and Microbial Monitoring. Int. J. Phytoremediation 2011, 13, 947–958. [Google Scholar] [CrossRef]
- Micek, A.; Jóźwiakowski, K.; Marzec, M.; Listosz, A. Technological Reliability and Efficiency of Wastewater Treatment in Two Hybrid Constructed Wetlands in the Roztocze National Park (Poland). Water 2020, 12, 3435. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Carvalho, P.N.; Lv, T.; A Arias, C.; Brix, H.; Chen, Z. Microbial density and diversity in constructed wetland systems and the relation to pollutant removal efficiency. Water Sci. Technol. 2015, 73, 679–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jóźwiakowski, K.; Iglik, H.; Korniłłowicz-Kowalska, T. Removal Efficiency of Selected Groups of Microorganisms in the Bio-Logical System of Sewage Ponds. Gas, (Skuteczność Usuwania Wybranych Grup Drobnoustrojów w Systemie Biologicznych Stawów Ściekowych. Gaz, Woda i Technika Sanitarna); Water and Sanitary Engineering 2: Warsaw, Poland, 2012; pp. 77–80. (In Polish) [Google Scholar]
- Cirelli, G.; Consoli, S.; Di Grande, V.; Milani, M.; Toscano, A. Subsurface constructed wetlands for wastewater treatment and reuse in agriculture: Five years of experiences in Sicily, Italy. Water Sci. Technol. 2007, 56, 183–191. [Google Scholar] [CrossRef]
- Ghermandi, A.; Bixio, D.; Traverso, P.; Cersosimo, I.; Thoeye, C. The removal of pathogens in surface-flow constructed wetlands and its implications for water reuse. Water Sci. Technol. 2007, 56, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Rajan, R.J.; Sudarsan, J.S.; Nithiyanantham, S. Microbial population dynamics in constructed wetlands: Review of recent advancements for wastewater treatment. Environ. Eng. Res. 2018, 24, 181–190. [Google Scholar] [CrossRef]
- Lambie, S.M.; Hunter, D.W. Microbial composition in different physical compartments of six constructed wetland systems in New Zealand. Ecol. Eng. 2021, 166, 106238. [Google Scholar] [CrossRef]
- Sleytr, K.; Tietz, A.; Langergraber, G.; Haberl, R. Investigation of bacterial removal during the filtration process in constructed wetlands. Sci. Total Environ. 2007, 380, 173–180. [Google Scholar] [CrossRef]
- Stottmeister, U.; Wießner, A.; Kuschk, P.; Kappelmeyer, U.; Kästner, M.; Bederski, O.; Müller, R.; Moormann, H. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv. 2003, 22, 93–117. [Google Scholar] [CrossRef]
- Usharani, B. Metagenomics study of the microbes in constructed wetland system treating sewage. Int. Lett. Nat. Sci. 2019, 74, 26–48. [Google Scholar] [CrossRef]
- Kharitonov, S.; Shchegolkova, N.; Alexandrova, A.; Saynchuk, A.; Michel, P.; Maciejewski, K.; Gautier, M.; Gourdon, R.; Semenov, M.; Krasnov, G. Taxonomic Diversity of Fungi and Bacteria in Azoé-NP® Vertical Flow Constructed Wetlands. Water 2022, 14, 698. [Google Scholar] [CrossRef]
- Kacprzak, M.; Warchoł, M.; Widawska, U. Microfungal species composition in raw and treated wastewater from selected wastewater treatment plants. In Environmental Engineering Studies; Polish research on the way to the EU; Pawłowski, L., Dudzińska, R., Pawłowski, A., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2003; pp. 167–173. [Google Scholar]
- Kacprzak, M.; Neczaj, E.; Okoniewska, E. The comparative mycological analysis of wastewater and sewage sludges from selected wastewater treatment plants. Desalination 2005, 185, 363–370. [Google Scholar] [CrossRef]
- Coulibaly, L.; Gourène, G.; Agathos, N.S.; Lacina, C.; Germain, G.; Spiros, A.N. Utilization of fungi for biotreatment of raw wastewaters. Afr. J. Biotechnol. 2003, 2, 620–630. [Google Scholar] [CrossRef] [Green Version]
- Korniłłowicz-Kowalska, T.; Rybczyńska-Tkaczyk, K. Growth conditions, physiological properties, and selection of optimal parameters of biodegradation of anticancer drug daunomycin in industrial effluents by Bjerkandera adusta CCBAS930. Int. Microbiol. 2019, 23, 287–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korniłłowicz-Kowalska, T.; Bohacz, J. Biodegradation of keratin waste: Theory and practical aspects. Waste Manag. 2011, 31, 1689–1701. [Google Scholar] [CrossRef] [PubMed]
- Korniłłowicz-Kowalska, T.; Rybczyńska, K. Screening of microscopic fungi and their enzyme activities for decolorization and biotransformation of some aromatic compounds. Int. J. Environ. Sci. Technol. 2014, 12, 2673–2686. [Google Scholar] [CrossRef] [Green Version]
- Rybczyńska-Tkaczyk, K.; Korniłłowicz-Kowalska, T. Activities of Versatile Peroxidase in Cultures of Clonostachys rosea f. catenulata and Clonostachys rosea f. rosea during Biotransformation of Alkali Lignin. J. AOAC Int. 2018, 101, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- PN-74/C-04620/00; Water and Waste Water—Sampling. General Provision and Scope of the Standard. Woda i ścieki—Pobieranie próbek. Postanowienie ogólne i zakres normy. Polish Committee for Standardization: Warsaw, Poland, 1988. (In Polish)
- PN-EN 25667-2:1999; Water Quality—Sampling—Guidance on Sampling Techniques. Jakość wody—Pobieranie próbek—Wytyczne dotyczące technik pobierania próbek. Polish Committee for Standardization: Warsaw, Poland, 1999. (In Polish)
- PN 73/C-04537.01; Water and Wastewater. Determination of the Content of Phosphorus Compounds. General Provisions and Scope of the Standard. Polish Committee for Standardization: Warsaw, Poland. (In Polish)
- PN 73/C-04576.00; Water and Wastewater. Determination of the Nitrogen Content. Polish Committee for Standardization: Warsaw, Poland, 1973. (In Polish)
- Regulation of the Minister of the Environment of July 24, 2006 on the conditions to be met when discharging sewage into water or soil and on substances particularly harmful to the aquatic environment. (Rozporządzenie Ministra Środowiska z dn. 24 lipca 2006 r. w sprawie warunków jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego, Dz. U nr 137, poz. 984)., Journal of Laws No. 137, item 984; Ministry of the Environment: Warsaw, Poland, 2006. (In Polish)
- Martin, I.P. Use of acid rose bengal and streptomycin in plate method of estimating soil fungi. Soil Sci. 1950, 19, 215–233. [Google Scholar] [CrossRef]
- Dvořak, J.; Otčenášek, N. Mycological Diagnosis of Animal Dermatophytosis; Academia: Prague, Czech Republic, 1996; pp. 1–212. [Google Scholar]
- Domsch, K.H.; Gawis, W.; Anderson, T.H. Compendium of Soil Fungi. 2nd Edition Taxonomically Received by W. Games; JHW-Verlang: Eching, Germany, 2007; p. 672. [Google Scholar]
- Ellis, H.B. Dematiaceaus Hyphomycetes. Common-Wealth; Mycological Institute: Kew Surrey, England, 1971; pp. 1–608. [Google Scholar]
- Kreger-van Rij, N.J. The Yeasts. A Taxonomic Study; Elsevier Sci. Publ. B.U.: Amsterdam, The Netherlands, 1984; pp. 1–1052. [Google Scholar]
- Raper, K.B.; Thom, C.; Fennel, D.I. A Manual of Penicillia; Hafner: New York, NY, USA, 1986; pp. 1–875. [Google Scholar]
- Trojan, P. General Ecology. (Ekologia Ogólna); PWN: Warszawa, Poland, 1980; pp. 1–418. (In Polish) [Google Scholar]
- Korniłłowicz-Kowalska, T.; Wojdyło-Kotwica, B.; Bohacz, J.; Możejko, M.T. Biodiversity of Saprophytic Fungi of the Root Zone of Grasses and Clovers of a Permanent Meadow in the Post-Bog Habitat, Taking into Account the Growing Season and Fertilization (Zaklęsłość Sosnowicka, Polesie Zachodnie, Poland); Polesie, Ś.M., Mażajski, J.A.R., Rokoczyński, A.N., Wołoczek, A.A., Mieszyk, O.P., Jeznach, J., Eds.; SGGW: Warsaw, Poland, 2020; Volume 3, pp. 485–538. [Google Scholar]
- Szewczyk, W. Soil fungi communities from young Scots pine plantations affected with root rot. Acta Mycol. 2013, 42, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Krebs, C.J. Ecology: The Experimental Analysis of Distribution and Abundance, 2th Eds; Harper: New York, NY, USA, 1994; pp. 1–641. [Google Scholar]
- Nilsson, M.; Andreas, L.; Lagerkvist, A. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash. Waste Manag. 2016, 51, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Hoog, G.S. Risk assessment of fungi reported from humans and animals. Mycoses 1996, 39, 407–417. [Google Scholar] [CrossRef]
- Grabińska-Łoniewska, A.; Korniłłowicz-Kowalska, T.; Wardzyńska, G.; Boryn, K. Occurrence of fungi in water distribution system. Polish J. Environ. Stud. 2007, 16, 539–547. [Google Scholar]
- Fakhru’L-Razi, A.; Alam, M.Z.; Idris, A.; Abd-Aziz, S.; Molla, A.H. Filamentous fungi in indah water konsortium (iwk) sewage treatment plant for biological treatment of domestic wastewater sludge. J. Environ. Sci. Health Part A 2002, 37, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Kadhim, N.F.; Mohammed, W.J.; Al Hyssaini, J.M.; Al.-Saily, H.M.N.; Ali, R.N. The efficiency of some fungi species in wastewater treatment. J. Water Land Dev. 2021, 50, 248–254. [Google Scholar]
- Tyszkiewicz, Z. Soil fungi of selected poorly decomposed peat-muck soils in northern part of the Narew National Park. Wa-Ter-Environ.-Rural. Areas Woda-Sr.-Obsz. Wiej. 2010, 10, 211–218. (In Polish) [Google Scholar]
- Jóźwiakowski, K.; Korniłłowicz-Kowalska, T.; Iglik, H. Estimation of sanitary status of sewage treated in constructed wetland systems. In Sewage and Waste Materials in Environment. Contemporary Problems of Management and Environmental Protection; Sądej, W., Ed.; Univ. of Warmia and Mazury in Olsztyn: Poland, 2009; Volume 4, pp. 7–21. [Google Scholar]
- Korniłłowicz-Kowalska, T.; Jóźwiakowski, K.; Iglik, H. Characterization of the sanitary status of domestic sewage generated in households in rural areas. Teka. Kom. Ochr. Kszt. Środ. Przyrod. OL, PAN. 2010, 7, 154–162. [Google Scholar]
- Obarska-Pempkowiak, H.; Gajewska, M.; Wojciechowska, E. Hydrophytic Wastewater and Sewage Treatment Plants; PWN: Warsaw, Poland, 2010; p. 305. (In Polish) [Google Scholar]
- Rybczyńska, K.; Korniłłowicz-Kowalska, T. Evaluation of dye compounds’ decolorization capacity of selected H. haematococca and T. harzianum strains by Principal Component Analysis (PCA). Water Air Soil Pollut. 2015, 226, 228. [Google Scholar] [CrossRef] [Green Version]
- Rybczyńska-Tkaczyk, K.; Korniłłowicz-Kowalska, T. Biotransformation and ecotoxicity evaluation of alkali lignin in optimized cultures of microscopic fungi. Int. Biodeterior. Biodegradation 2017, 117, 131–140. [Google Scholar] [CrossRef]
- Bohacz, J.; Korniłłowicz-Kowalska, T. Modification of post-industrial lignin by fungal strains of the genus Trichoderma isolated from different composting stages. J. Environ. Manag. 2020, 266, 110573. [Google Scholar] [CrossRef]
- Balaji, V.; Arulazhangen, P.; Ebenezer, P. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia en-riched from petroleum contaminated soil and oil seeds. J. Environ. Biol. 2014, 35, 521–529. [Google Scholar]
- Chang, Y.-T.; Lee, J.-F.; Liu, K.-H.; Liao, Y.-F.; Yang, V. Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: Application to PAH degradation. Environ. Sci. Pollut. Res. 2015, 23, 4024–4035. [Google Scholar] [CrossRef]
- Jung, K.; Kim, Y.; Lee, H.; Kim, J.-T. Aspergillus fumigatus infection in two wild Eurasian black vultures (Aegypius monachus Linnaeus) with carbofuran insecticide poisoning: A case report. Vet. J. 2009, 179, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.; Faria, T.; Gomes, A.Q.; Sabino, R.; Seco, A.; Viegas, S. Fungal Contamination in Two Portuguese Wastewater Treatment Plants. J. Toxicol. Environ. Health Part A 2014, 77, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Lang, X.; Xu, A.; Wang, Y.; Song, Z. Seasonal variation of aerosol fungal community structure in reed constructed wetlands. Environ. Sci. Pollut. Res. 2021, 29, 19420–19431. [Google Scholar] [CrossRef] [PubMed]
- Eduard, W. Fungal spores: A critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Crit. Rev. Toxicol. 2009, 39, 799–864. [Google Scholar] [CrossRef]
- Tell, L.A. Aspergillosis in mammals and birds: Impact on veterinary medicine. Med. Mycol. 2005, 43, 71–73. [Google Scholar] [CrossRef]
Technological Parameters | Number and Name of the Object | |||||
---|---|---|---|---|---|---|
(I) Leitnie | (II) Ludwin | (III) Jastków | (IV) Dąbrowica | (V) Janów | (VI) Sobieszyn | |
Capacity (m3/d) | 150 | 137 | 1.2 | 0.6 | 0.45 | 38 |
Plants | reed Phragmites australis car. Trin. Ex Steud | - | willow Salix vinimalis L. | reed Phragmites australis car. Trin. Ex Steud and willow Salix vinimalis L. | reed Phragmites australis car. Trin. Ex Steud and willow Salix vinimalis L. | reed Phragmites australis car. Trin. Ex Steud |
Active capacity of septic tank [m3] | - | - | 13.7 | 4.6 | 8.5 | 75.0 |
Number of beds/ponds | 2 beds | 4 ponds | 1 bed | 4 beds | 2 beds | 4 beds |
Area of beds/ponds [m2] | A—800 B—4000 | A—2030 B—666 C—666 D—2611 | 186 | (A) VF-HF—48 (B) HF-VF—48 | VF = 18 HF = 30 | A—307 B—328 C—331 D—321 |
Depth of bed/pond [m] | 0.8 | A—3.0 B—3.0 C—3.0 D—1.8 | 1.1 | VF = 0.8 HF = 1.0 | VF = 0.8 HF = 1.0 | 0.8 |
Method of wastewater inflow | gravitational | pump | gravitational | pump | pump | pump |
Wastewater receiver | drainage ditch | drainage ditch | pond | soil | soil | drainage ditch |
Average hydraulic load [m3/m2/d] | 0.031 | - | 0.007 | 0.012 | 0.037 | 0.014 |
Hydraulic retention time in the bed [day] | 8 | in summer—49 in winter—98 | 36 | VF = 9.6 HF = 16 | VF = 9.6 HF = 13.4 | 23 |
Treatment Plants (No.) | Type of Wastewater | Sample Number |
---|---|---|
Leitnie (I) | raw wastewater | 1 |
treated wastewater | 2 | |
Ludwin (II) | raw wastewater | 3 |
Wastewater—1 pond (anaerobic) | 4 | |
wastewater post biological stage—post 2nd oxygen pond | 5 | |
treated wastewater—sedimentation pond | 6 | |
Jastków (III) | raw wastewater | 7 |
wastewater post mechanical stage (settler) | 8 | |
wastewater post biological stage (bed with willow) | 9 | |
wastewater post chemical stage (carbonate silica rock—opoka) | 10 | |
pond water inflow—inflow from a deposit with carbonate silica rock—opoka | 11 | |
pond water outflow—outflow to the river | 12 | |
Dąbrowica (IV) | raw wastewater | 13 |
wastewater post mechanical stage (settler) | 14 | |
wastewater post biological stage—bed A with willow (system I) | 15 | |
wastewater post biological stage—bed B with reed (system I) | 16 | |
wastewater post biological stage—bed C with reed (system II) | 17 | |
wastewater post biological stage—bed D with willow (system II) | 18 | |
wastewater post chemical stage (carbonate silica rock—opoka) | 19 | |
Janów (V) | raw wastewater | 20 |
wastewater post mechanical stage | - | |
wastewater post biological stage—bed A with reed | 22 | |
wastewater post biological stage—bed B with willow | 23 | |
wastewater post chemical stage—bed with (carbonate silica rock—opoka) | 24 | |
Sobieszyn (VI) | raw wastewater | 25 |
treated wastewater | 26 |
Parameters | Number and Name of the Object | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Leitnie (I), (n = 11) | Ludwin (II), (n = 11) | Jastków (III), (n = 11) | Dąbrowica (IV), (n = 11) | Janów (V), (n = 10) | Sobieszyn (VI), (n = 11) | |||||||
A | B | A | B | A | B | A | B | A | B | A | B | |
temperature | 17.0 ± 4.7 | 17.9 ± 4.3 | 17.3 ± 4.7 | 16.9 ± 5.4 | 17.0 ± 4.4 | 15.7 ± 4.6 | 16.8 ± 4.2 | 15.2 ± 4.5 | 17.4 ± 4.1 | 16.0 ± 4.8 | 17.1 ± 4.3 | 14.8 ± 3.3 |
pH | 1 2 7.07–8.30 ± 0.39 | 1 2 7.15–8.04 ± 0.33 | 1 2 7.00–7.65 ± 0.20 | 1 2 7.79–8.26 ± 0.14 | 1 2 6.89–7.21 ± 0.12 | 1 2 7.17–8.33 ± 0.31 | 1 2 7.10–8.04 ± 0.30 | 1 2 7.17–9.65 ± 0.96 | 1 2 7.18–7.98 ± 0.25 | 1 2 7.08–9.45 ± 0.70 | 1 2 7.08–7.55 ± 0.14 | 1 2 7.18–7.83 ± 0.21 |
O2 (mg · dcm−3) | 0.22 ± 0.18 | 2.17 ± 2.63 | 0.41 ± 0.33 | 6.18 ± 3.02 | 0.27 ± 0.09 | 2.58 ± 1.41 | 0.29 ± 0.15 | 7.14 ± 2.84 | 0.30 ± 0.13 | 3.40 ± 1.55 | 0.29 ± 0.16 | 7.08 ± 1.52 |
general suspensions (mg · dcm−3) | 1302 ± 1777 | 155 ± 132 | 164 ± 50 | 28.6 ± 23.5 | 360 ± 337 | 21.9 ± 15.3 | 284 ± 127 | 17.3 ± 11.0 | 226 ± 212 | 12.5 ± 8.1 | 155 ± 90 | 32.9 ± 22.9 |
BOD5 (mgO2 · dcm−3) | 525 ± 200 | 116 ± 70 | 191 ± 79 | 19.5 ± 12.5 | 341 ± 185 | 14.1 ± 6.8 | 267 ± 69 | 6.8 ± 10.1 | 279 ± 79 | 7.2 ± 11.5 | 181 ± 57 | 22.6 ± 23.0 |
COD (mgO2 · dcm−3) | 1065 ± 422 | 300 ± 244 | 372 ± 80 | 90 ± 27 | 639 ± 289 | 46.4 ± 20.5 | 593 ± 214 | 31.6 ± 23.8 | 500 ± 100 | 30.7 ± 26.5 | 381 ± 145 | 63 ± 37 |
N og. (mg · dcm−3) | 179 ± 47 | 74 ± 38 | 98 ± 16 | 63 ± 18 | 97 ± 31 | 36.9 ± 16.8 | 171 ± 36 | 58 ± 23 | 81 ± 17 | 24 ± 7 | 73 ± 28 | 39.5 ± 22.0 |
N-NH4 (mg · dcm−3) | 127 ± 32.9 | 43 ± 33 | 80 ± 21.2 | 10.77 ± 11.85 | 66.4 ± 16.4 | 2.78 ± 6.3 | 129 ± 20.3 | 9.7 ± 13.5 | 63.3 ± 19.0 | 6.6 ± 7.6 | 55.4 ± 18.4 | 29.5 ± 17.9 |
N-NO3 (mg · dcm−3) | 1.29 ± 3.12 | 15.62 ± 25.48 | 0.38 ± 0.37 | 10.77 ± 11.85 | 1.10 ± 0.88 | 0.89 ± 1.26 | 0.91 ± 0.86 | 38.8 ± 21.9 | 1.34 ± 1.17 | 14.2 ± 8.6 | 0.21 ± 0.18 | 9.95 ± 14.10 |
P og.(mg · dcm−3) | 61.3 ± 17.7 | 33.8 ± 17.8 | 29.9 ± 3.9 | 10.2 ± 3.1 | 37.1 ± 11.0 | 7.6 ± 2.2 | 48.0 ± 6.9 | 4.4 ± 4.1 | 28.9 ± 5.7 | 1.0 ± 1.0 | 27.8 ± 18.9 | 8.7 ± 4.9 |
No. | Strains | Wastewater Treatment Plants (No.) | Total | % | ||||||
---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | |||||
1. | Aspergillus fumigatus | 1 2 3 | 0 17 0 | 5 42 6 | 15 41 13 | 58 7 9 | 31 33 26 | 0 40 20 | 109 180 74 | 3.61 |
363 | ||||||||||
2. | Fusarium solani | 1 2 3 | 15 4 4 | 29 2 40 | 9 11 63 | 0 0 146 | 0 0 49 | 15 18 63 | 68 35 365 | 4.370 |
468 | ||||||||||
3. | Geotrichum candidum | 1 2 3 | 38 34 22 | 25 37 11 | 99 13 63 | 189 113 38 | 0 44 11 | 44 21 21 | 395 262 166 | 8.19 |
823 | ||||||||||
4. | Penicillium chrysogenum | 1 2 3 | 7 0 0 | 19 0 31 | 39 15 121 | 71 14 44 | 1 10 64 | 6 0 23 | 143 39 283 | 4.62 |
465 | ||||||||||
5. | P. expansum | 1 2 3 | 9 6 0 | 27 68 74 | 30 18 216 | 52 36 55 | 1 21 27 | 11 0 16 | 130 149 388 | 6.64 |
667 | ||||||||||
6. | P. verrucosum | 1 2 3 | 8 28 0 | 28 49 13 | 54 114 101 | 35 47 37 | 0 89 0 | 19 8 5 | 144 335 156 | 6.32 |
635 | ||||||||||
7. | Phoma herbarum | 1 23 | 0 15 0 | 0 49 0 | 0 211 0 | 0 83 0 | 0 126 0 | 5 148 0 | 5 722 0 | 7.23 |
727 | ||||||||||
8. | Trichoderma viride | 1 2 2 | 53 27 93 | 109 194 72 | 254 29 139 | 66 16 61 | 133 90 90 | 56 5 21 | 671 361 476 | 15.01 |
1508 | ||||||||||
9. | Verticillium lecanii | 1 23 | 9 10 0 | 101 0 65 | 38 0 0 | 90 0 17 | 14 4 0 | 5 0 0 | 257 14 82 | 3.51 |
353 | ||||||||||
TOTAL | 489 | 1096 | 1706 | 1284 | 864 | 570 | 6009 | 59.83 |
Wastewater Treatment Plant | Analysis (Month) | Means | Total for Analysis | |||
---|---|---|---|---|---|---|
February | May | August | November | |||
I–II | 28.6 * | 36.4 | 43.8 | 21.7 | 32.6 | 34.4 |
I–III | 35.5 | 50.0 | 26.7 | 26.1 | 36.4 | 45.0 |
I–IV | 20.6 | 33.4 | 21.1 | 18.9 | 23.5 | 34.3 |
I–V | 13.0 | 32.1 | 16.7 | 22.2 | 21.0 | 37.5 |
I–VI | 47.8 | 32.0 | 22.2 | 35.0 | 34.3 | 44.7 |
II–III | 34.2 | 34.2 | 38.7 | 30.0 | 34.3 | 43.4 |
II–IV | 35.1 | 25.6 | 32.4 | 28.6 | 30.4 | 43.2 |
II–V | 20.7 | 18.0 | 32.0 | 26.5 | 24.3 | 35.1 |
II–VI | 30.3 | 27.3 | 42.1 | 21.6 | 30.3 | 38.5 |
III–IV | 34.3 | 43.7 | 42.9 | 41.0 | 40.5 | 56.0 |
III–V | 20.0 | 26.5 | 26.3 | 22.2 | 23.8 | 47.0 |
III–VI | 48.1 | 30.0 | 31.3 | 35.6 | 36.3 | 46.8 |
IV–V | 19.2 | 24.2 | 31.2 | 28.3 | 25.8 | 40.8 |
IV–VI | 30.0 | 19.4 | 29.4 | 32.5 | 27.8 | 36.1 |
V–VI | 33.4 | 21.4 | 18.5 | 35.5 | 27.2 | 44.6 |
Wastewater Treatment Plants/Type of Wastewater | Saprotrophic Fungi—Martin Medium | Potentially Pathogenic Fungi—Sabouraud Medium | ||||
---|---|---|---|---|---|---|
2008—Means for: | 2009—Means for: | 2008—Means for: | ||||
Analysis | Wastewater Treatment Plants | Analysis | Wastewater Treatment Plants | Analysis | Wastewater Treatment Plants | |
Leitnie (I) | 0.989 | 0.977 | 0.998 | |||
1 | 0.993 | 0.992 | 0.998 | |||
2 | 0.499 | 0.996 | 0.250 | |||
Ludwin (II) | 0.975 | 0.968 | 0.980 | |||
3 | 0.998 | 0.997 | 0.990 | |||
4 | 0.998 | 0.998 | 0.998 | |||
5 | 0.998 | 0.998 | 0.998 | |||
6 | 0.998 | 0.998 | 0.998 | |||
Jastków (III) | 0.937 | 0.961 | 0.870 | |||
7 | 0.996 | 0.998 | 0.997 | |||
8 | 0.997 | 0.997 | 0.998 | |||
9 | 1.000 | 0.999 | 0.998 | |||
10 | 0.999 | 0.999 | 0.993 | |||
11 | 0.998 | 0.499 | 0.995 | |||
12 | 0.997 | 0.498 | 0.991 | |||
Dąbrowica (IV) | 0.909 | 0.948 | 0.932 | |||
13 | 0.996 | 0.997 | 0.996 | |||
14 | 0.997 | 0.998 | 1.000 | |||
15 | 0.998 | 0.999 | 0.999 | |||
16 | 0.999 | 0.999 | 1.000 | |||
17 | 0.998 | 0.998 | 0.996 | |||
18 | 0.996 | 0.930 | 0.999 | |||
19 | 0.500 | 0.750 | 0.500 | |||
Janów (V) | 0.733 | 0.972 | 0.976 | |||
20 | 0.998 | 0.998 | 0.996 | |||
22 | 0.998 | 0.998 | 0.998 | |||
23 | 0.999 | 0.999 | 1.000 | |||
24 | 1.000 | 1.000 | 1.000 | |||
Sobieszyn (VI) | 0.990 | 0.987 | 0.993 | |||
25 | 0.996 | 0.992 | 0.997 | |||
26 | 0.998 | 0.992 | 0.997 |
Wastewater Treatment Plant (No.)/Type of Wastewater | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mycological Parameters/Year | I | II | III | IV | V | VI | |||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
Number of species—Martin medium | |||||||||||||||||||||||||
2008 | 22 | 4 | 16 | 16 | 7 | 9 | 14 | 10 | 11 | 8 | 6 | 9 | 9 | 13 | 8 | 10 | 10 | 12 | 4 | 5 | 12 | 10 | 9 | 13 | 13 |
2009 | 14 | 13 | 12 | 12 | 10 | 7 | 12 | 13 | 9 | 6 | 7 | 6 | 11 | 7 | 10 | 10 | 12 | 12 | 9 | 12 | 6 | 9 | 5 | 14 | 11 |
Total | 34 | 14 (59) * | 24 | 20 | 16 | 16 (34) * | 23 | 19 | 17 | 11 | 13 | 13 (44) * | 15 | 15 | 15 | 17 | 18 | 19 | 10 (33) * | 18 | 13 | 18 | 13 (28) * | 20 | 19 (5) * |
Number of species—Sabouraud medium | |||||||||||||||||||||||||
2009 | 9 | 5 (44) * | 13 | 13 | 13 | 9 (31) * | 13 | 12 | 13 | 14 | 12 | 10 (23) * | 10 | 12 | 4 | 11 | 12 | 13 | 4 (60) * | 12 | 12 | 9 | 8 (33) * | 13 | 11 (15) * |
Number of fungi—Martin medium | |||||||||||||||||||||||||
2008 | 262 | 101 | 125 | 134 | 142 | 142 | 210 | 178 | 84 | 91 | 123 | 161 | 212 | 178 | 146 | 97 | 102 | 162 | 9 | 166 | 129 | 61 | 32 | 212 | 127 |
2009 | 258 | 177 | 164 | 141 | 158 | 132 | 155 | 162 | 104 | 88 | 70 | 109 | 150 | 123 | 91 | 110 | 142 | 103 | 64 | 139 | 140 | 98 | 118 | 122 | 119 |
Total Mean from 2 years | 260 | 139 | 145 | 138 | 150 | 137 | 183 | 170 | 94 | 90 | 97 | 135 | 181 | 151 | 119 | 104 | 122 | 133 | 37 | 153 | 135 | 80 | 75 | 167 | 123 |
(46) * | (5) * | (26) * | (80) * | (51) * | (26) * | ||||||||||||||||||||
*** | n | hijkl | ijk | hijkl | jkl | ghijk | m | m | cd | bcd | d | ghij | m | kl | fg | de | fg | fghi | a | lł | be | b | b | łm | fgh |
Number of fungi—Sabouraud medium | |||||||||||||||||||||||||
2009 | 153 | 28 | 106 | 127 | 162 | 127 | 196 | 148 | 149 | 277 | 208 | 290 | 205 | 162 | 135 | 70 | 212 | 134 | 9 | 217 | 151 | 79 | 34 | 186 | 112 |
(82) * | (20) ** | (48) ** | (96) * | (84) * | (40) * |
Wastewater Treatment Plant (No.)/Treatment Stage | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fungal Species | I | II | III | IV | V | VI | |||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 22 | 23 | 24 | 25 | 26 | |
Geotrichum Candidum -Martin medium (means from 2 years) -Sabouraud medium | 34 | 2 (94%) * | 22 | 7 | 3 | 0 | 34 | 21 | 2 | 0 | 0 | 0 | 46 | 56 | 7 | 16 | 24 | 0 | 3 | 8 | 1 | 0 | 0 | 36 | 0 |
22 | 0 | 11 | 0 | 0 | 0 | 25 | 5 | 27 | 0 | 6 | 0 | 18 | 20 | 0 | 0 | 0 | 0 | 0 | 11 | 1 | 0 | 0 | 21 | 0 | |
Phoma herbarum Martin medium 2009 | 42 | 63 | 18 | 5 | 9 | 17 | 17 | 20 | 25 | 36 | 40 | 73 | 0 | 0 | 11 | 8 | 44 | 20 | 0 | 16 | 33 | 47 | 30 | 69 | 79 |
Penicillium expansum -Martin medium (means from 2 years) -Sabouraud medium | 5 | 3 | 7 | 7 | 5 | 29 | 4 | 10 | 1 | 0 | 4 | 6 | 17 | 15 | 1 | 0 | 12 | 10 | 0 | 1 | 0 | 0 | 2 | 1 | 8 |
0 | 0 | 11 | 1 | 29 | 33 | 33 | 2 | 38 | 10 | 2 | 131 | 39 | 15 | 0 | 1 | 0 | 0 | 0 | 22 | 0 | 5 | 0 | 2 | 14 | |
Trichoderma viride -Martin medium (means from 2 years) -Sabouraud medium | 29 | 11 (62%) | 28 | 40 | 53 | 31 | 11 | 20 | 12 | 31 | 44 | 26 | 3 | 16 | 7 | 5 | 10 | 0 | 2 | 52 | 43 | 9 | 7 | 23 (86.5%) | 10 (56.5%) |
89 | 4 (95.5%) | 10 | 19 | 29 | 14 | 21 | 27 | 9 | 6 | 71 | 5 (76.2%) | 0 | 50 | 0 | 2 | 9 | 0 | 0 | 52 | 23 | 10 | 5 | 21 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korniłłowicz-Kowalska, T.; Bohacz, J.; Rybczyńska-Tkaczyk, K.; Jóźwiakowski, K. Evaluation of the Richness, Species Diversity, and Biosafety of Saprotrophic Fungal Communities in Constructed Wetlands and Biological Wastewater Ponds. Water 2023, 15, 31. https://doi.org/10.3390/w15010031
Korniłłowicz-Kowalska T, Bohacz J, Rybczyńska-Tkaczyk K, Jóźwiakowski K. Evaluation of the Richness, Species Diversity, and Biosafety of Saprotrophic Fungal Communities in Constructed Wetlands and Biological Wastewater Ponds. Water. 2023; 15(1):31. https://doi.org/10.3390/w15010031
Chicago/Turabian StyleKorniłłowicz-Kowalska, Teresa, Justyna Bohacz, Kamila Rybczyńska-Tkaczyk, and Krzysztof Jóźwiakowski. 2023. "Evaluation of the Richness, Species Diversity, and Biosafety of Saprotrophic Fungal Communities in Constructed Wetlands and Biological Wastewater Ponds" Water 15, no. 1: 31. https://doi.org/10.3390/w15010031
APA StyleKorniłłowicz-Kowalska, T., Bohacz, J., Rybczyńska-Tkaczyk, K., & Jóźwiakowski, K. (2023). Evaluation of the Richness, Species Diversity, and Biosafety of Saprotrophic Fungal Communities in Constructed Wetlands and Biological Wastewater Ponds. Water, 15(1), 31. https://doi.org/10.3390/w15010031