Groundwater Management for Agricultural Purposes Using Fuzzy Logic Technique in an Arid Region
Abstract
:1. Introduction
Study Aims and Objectives
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Geospatial Analysis Using Fuzzy Membership
3. Results and Discussion
3.1. Hydrochemistry
3.2. Mechanism Controlling the Type and Chemistry of the Groundwater
3.3. Saturation Index
3.4. Irrigation Suitability Plot
3.5. Fuzzy GIS Maps and Irrigation Groundwater Quality Indices
3.6. Final Fuzzy Overlay Map
3.7. Livestock Suitability
3.8. Management of Brackish Groundwater
3.9. Fit for Purpose (FFP)
4. Conclusions and Limitations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahdian, M.; Hosseinzadeh, M.; Siadatmousavi, S.M.; Chalipa, Z.; Delavar, M.; Guo, M.; Abolfathi, S.; Noori, R. Modelling Impacts of Climate Change and Anthropogenic Activities on Inflows and Sediment Loads of Wetlands: Case Study of the Anzali Wetland. Sci. Rep. 2023, 13, 5399. [Google Scholar] [CrossRef] [PubMed]
- Malekmohammadi, B.; Uvo, C.B.; Moghadam, N.T.; Noori, R.; Abolfathi, S. Environmental Risk Assessment of Wetland Ecosystems Using Bayesian Belief Networks. Hydrology 2023, 10, 16. [Google Scholar] [CrossRef]
- Khosravi, K.; Rezaie, F.; Cooper, J.; Kalantari, Z.; Abolfathi, S.; Hatamiafkoueieh, J. Soil Water Erosion Susceptibility Assessment Using Deep Learning Algorithms. J. Hydrol. 2023, 618, 129229. [Google Scholar] [CrossRef]
- Bouwer, H. Integrated Water Management: Emerging Issues and Challenges. Agric. Water Manag. 2000, 45, 217–228. [Google Scholar] [CrossRef]
- Rajendiran, T.; Sabarathinam, C.; Panda, B.; Elumalai, V. Influence of Dissolved Oxygen, Water Level and Temperature on Dissolved Organic Carbon in Coastal Groundwater. Hydrology 2023, 10, 85. [Google Scholar] [CrossRef]
- Kolahchi, Z.; Jalali, M. Effect of Water Quality on the Leaching of Potassium from Sandy Soil. J. Arid Environ. 2007, 68, 624–639. [Google Scholar] [CrossRef]
- Tewari, R. Management of Declining Groundwater Resources and the Role of Policy Planning in Semi-Arid Economies: The Case of Texas High Plains. In Emerging Issues in Groundwater Resources. Advances in Water Security; Springer: Cham, Switzerland, 2016; pp. 365–381. [Google Scholar] [CrossRef]
- Freeze, A.R.; Cherry, J.A. Groundwater; Prentice Hall, Inc.: Englewood Cliffs, NJ, USA, 1979. [Google Scholar]
- Tanninen, J.; Kamppinen, L.; Nystrom, M. Pre-Treatment and Hybrid Processes: Nanofiltration-Principles and Application; Elsevier: Oxford, UK, 2005; pp. 253–254. [Google Scholar]
- Pimentel, D.; Bailey, O.; Kim, P.; Mullaney, E.; Calabrese, J.; Walman, L.; Nelson, F.; Yao, X. Will Limits of the Earth’s Resources Control Human Numbers? Environ. Dev. Sustain. 1999, 1, 19–39. [Google Scholar] [CrossRef]
- Qadir, M.; Ghafoor, A.; Murtaza, G. Use of Saline–Sodic Waters through Phytoremediation of Calcareous Saline–Sodic Soils. Agric. Water Manag. 2001, 50, 197–210. [Google Scholar] [CrossRef]
- Ayars, J.E.; Tanji, K.K. Effects of Drainage on Water Quality in Arid and Semiarid Irrigated Lands. Agric. Drain. 1999, 38, 831–867. [Google Scholar] [CrossRef]
- Steward, D.R.; Bruss, P.J.; Yang, X.; Staggenborg, S.A.; Welch, S.M.; Apley, M.D. Tapping Unsustainable Groundwater Stores for Agricultural Production in the High Plains Aquifer of Kansas, Projections to 2110. Proc. Natl. Acad. Sci. USA 2013, 110, E3477–E3486. [Google Scholar] [CrossRef]
- Marston, L.; Konar, M.; Cai, X.; Troy, T.J. Virtual Groundwater Transfers from Overexploited Aquifers in the United States. Proc. Natl. Acad. Sci. USA 2015, 112, 8561–8566. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.F.; Liu, X.; Suddarth, S.R.P.; Nguyen, C.; Sandhu, D. NaCl Accumulation, Shoot Biomass, Antioxidant Capacity, and Gene Expression of Passiflora edulis f. Flavicarpa Deg. in Response to Irrigation Waters of Moderate to High Salinity. Agriculture 2022, 12, 1856. [Google Scholar] [CrossRef]
- Azimi, R.; Borzelabad, M.J.; Feizi, H.; Azimi, A. Interaction of SiO Nanoparticles with Seed Prechilling on Germination and Early Seedling Growth of Tall Wheatgrass (Agropyron elongatum L.). Pol. J. Chem. Technol. 2014, 16, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Flores, A.; Schutte, B.; Shukla, M.; Picchioni, G.; Ulery, A. Time-Integrated Measurements of Seed Germination for Salttolerant Plant Species. Seed Sci. Technol. 2015, 43, 541–547. [Google Scholar] [CrossRef]
- Robinson, B.W.; Al Ruwaih, F. The Stable-Isotopic Composition of Water and Sulfate from the Raudhatain and Umm Al Aish Freshwater Fields, Kuwait. Chem. Geol. Isot. Geosci. Sect. 1985, 58, 129–136. [Google Scholar] [CrossRef]
- Kwarteng, A.; Viswanathan, M.; Al-Senafy, M.; Rashid, T. Formation of Fresh Ground-Water Lenses in Northern Kuwait. J. Arid Environ. 2000, 46, 137–155. [Google Scholar] [CrossRef]
- Akber, A.; Viswanathan, M.; Al Senafy, M.; Rashed, T. Assessment of Long-Term Pollution for the Groundwater of Raudhatain and Umm Al-Aish Areas (Phase II); Kuwait Institute for Scientific Research: Kuwait City, Kuwait, 2002. [Google Scholar]
- Akber, A.; Al-Murad, M.; Mukhopadhyay, A.; Rashid, A.; Al-Qallaf, H.; Al-Haddad, A.; Bhandary, H.; Marzouk, F.; Al-Salman, B. Long-Term Monitoring and Remediation Strategy for Hydrocarbon Pollutants in the Groundwater of Raudhatain and Umm Al-Aish Fields; Report No. KISR9902; Kuwait Institute for Scientific Research: Kuwait City, Kuwait, 2009. [Google Scholar]
- Mukhopadhyay, A.; Akber, A.; Rashed, T.; Kotwicki, V.; Uddin, S.; Bushehri, A. Establishing a Baseline to Evaluate Future Impacts to Groundwater Resources in North Kuwait. Environ. Earth Sci. 2016, 75, 324. [Google Scholar] [CrossRef]
- Al-Rashed, M.; Mukhopadhyay, A.; AlSenafy, M.; Ghoneim, H. Effect of Seawater Discharge on Groundwater Quality in the Northern Kuwait; Kuwait Institute for Scientific Research: Kuwait City, Kuwait, 2002. [Google Scholar]
- Mukhopadhyay, A.; Quinn, M.; Al-Haddad, A.; Al-Khalid, A.; Al-Qallaf, H.; Rashed, T.; Bhandary, H.; Al-Salman, B.; Bushehri, A.; Boota, A. Pollution of Fresh Groundwater from Damaged Oil Wells, North Kuwait. Environ. Earth Sci. 2017, 76, 145. [Google Scholar] [CrossRef]
- Tjandra, F.L.; Kondhoh, A.; Mohammed, M. A Conceptual Database Design for Hydrology Using GIS. In Proceedings of the Asia Pacific Association of Hydrology and Water Resources, Kyoto, Japan, 13–15 March 2003; pp. 13–15. [Google Scholar]
- Selvam, S.; Dar, F.A.; Magesh, N.; Singaraja, C.; Venkatramanan, S.; Chung, S. Application of Remote Sensing and GIS for Delineating Groundwater Recharge Potential Zones of Kovilpatti Municipality, Tamil Nadu Using IF Technique. Earth Sci. Inform. 2016, 9, 137–150. [Google Scholar] [CrossRef]
- Naseem, S.; Hamza, S.; Bashir, E. Groundwater Geochemistry of Winder Agricultural Farms, Balochistan, Pakistan and Assessment for Irrigation Water Quality. Eur. Water 2010, 31, 21–32. [Google Scholar]
- Kumarasamy, P.; Dahms, H.-U.; Jeon, H.-J.; Rajendran, A.; Arthur James, R. Irrigation Water Quality Assessment—An Example from the Tamiraparani River, Southern India. Arab. J. Geosci. 2014, 7, 5209–5220. [Google Scholar] [CrossRef]
- Vadiati, M.; Nalley, D.; Adamowski, J.; Nakhaei, M.; Asghari-Moghaddam, A. A Comparative Study of Fuzzy Logic-Based Models for Groundwater Quality Evaluation Based on Irrigation Indices. J. Water Land Dev. 2019, 43, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Chidambaram, S.; Prasanna, M.; Venkatramanan, S.; Nepolian, M.; Pradeep, K.; Panda, B.; Thivya, C.; Thilagavathi, R. Groundwater Quality Assessment for Irrigation by Adopting New Suitability Plot and Spatial Analysis Based on Fuzzy Logic Technique. Environ. Res. 2022, 204, 111729. [Google Scholar] [CrossRef]
- Purnamasari, R.A.; Noguchi, R.; Ahamed, T. Land Suitability Assessments for Yield Prediction of Cassava Using Geospatial Fuzzy Expert Systems and Remote Sensing. Comput. Electron. Agric. 2019, 166, 105018. [Google Scholar] [CrossRef]
- Ostovari, Y.; Beigi-Harchegani, H.; Asgari, K. A Fuzzy Logic Approach for Assessment and Mapping of Groundwater Irrigation Quality: A Case Study of Marvdasht Aquifer, Iran. Arch. Agron. Soil Sci. 2015, 61, 711–723. [Google Scholar] [CrossRef]
- Tafreshi, A.M.; Tafreshi, G.M. A New Approach in Qualitative Zoning of Groundwater to Assessment Suitable Irrigation Water Using Fuzzy Logic Spatial Modeling via GIS. Res. Sq. 2022. preprint. [Google Scholar] [CrossRef]
- Jha, M.K.; Shekhar, A.; Jenifer, M.A. Assessing Groundwater Quality for Drinking Water Supply Using Hybrid Fuzzy-GIS-Based Water Quality Index. Water Res. 2020, 179, 115867. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Dixon, B. Groundwater Vulnerability Mapping: A GIS and Fuzzy Rule Based Integrated Tool. Appl. Geogr. 2005, 25, 327–347. [Google Scholar] [CrossRef]
- Brahim, F.B.; Boughariou, E.; Bouri, S. Multicriteria-Analysis of Deep Groundwater Quality Using WQI and Fuzzy Logic Tool in GIS: A Case Study of Kebilli Region, SW Tunisia. J. Afr. Earth Sci. 2021, 180, 104224. [Google Scholar] [CrossRef]
- Dhaoui, O.; Agoubi, B.; Antunes, I.M.; Tlig, L.; Kharroubi, A. Groundwater Quality for Irrigation in an Arid Region—Application of Fuzzy Logic Techniques. Environ. Sci. Pollut. Res. 2023, 30, 29773–29789. [Google Scholar] [CrossRef]
- Misak, R.; Hussain, W. Groundwater in Kuwait. In The Geology of Kuwait; Springer: Cham, Switzerland, 2022; pp. 199–214. [Google Scholar] [CrossRef]
- Umar, A.; Umar, R.; Ahmad, M. Hydrogeological and Hydrochemical Framework of Regional Aquifer System in Kali-Ganga Sub-Basin, India. Environ. Geol. 2001, 40, 602–611. [Google Scholar] [CrossRef]
- Samayamanthula, D.R.; Sabarathinam, C.; Alayyadhi, N.A. Trace Elements and Their Variation with PH in Rain Water in Arid Environment. Arch. Environ. Contam. Toxicol. 2021, 80, 331–349. [Google Scholar] [CrossRef]
- Radha, S.D.; Sabarathinam, C.; Al Otaibi, F.; Al-Sabti, B.T. Variation of Centennial Precipitation Patterns in Kuwait and Their Relation to Climate Change. Environ. Monit. Assess. 2023, 195, 20. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.; Nasr, S.N. Stratigraphy of the Kuwait-Basra Area: Middle East. In Habitat of Oil; American Association of Petroleum Geologists: Tulsa, OK, USA, 1958. [Google Scholar]
- Edgell, H. Aquifers of Saudi Arabia and Their Geological Framework. Arab. J. Sci. Eng. 1997, 22, 3–31. [Google Scholar]
- Un-Escwa, B.; United Nations Economic and Social Commission for Western Asia. Bundesanstalt Für Geowissenschaften Und Rohstoffe; Inventory of Shared Water Resources in Western Asia: Beirut, Lebanon, 2013. [Google Scholar]
- Parson Corporation. Groundwater Resources of Kuwait, I–III; Ministry of Electricity and Water: Kuwait City, Kuwait, 1963. [Google Scholar]
- Bouwer, H.; Rice, R. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells. Water Resour. Res. 1976, 12, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Al-Ruwaih, F.M.; Shehata, M. Hydrochemical Processes and Environmental Isotopic Study of Groundwater in Kuwait. Water Int. 2004, 29, 158–166. [Google Scholar] [CrossRef]
- Sabarathinam, C.; Bhandary, H.; Hadi, K. CHIDAM-A Software for Chemical Interpretation of the Dissolved Ions in Aqueous Media. Groundw. Sustain. Dev. 2021, 13, 100496. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Thorstenson, D.C.; Plummer, L.N. PHREEQE: A Computer Program for Geochemical Calculations; US Geological Survey; Water Resources Division: Reston, VA, USA, 1982; Volume 80. [Google Scholar]
- Eaton, F.M. Significance of Carbonates in Irrigation Waters. Soil Sci. 1950, 69, 123–134. [Google Scholar] [CrossRef]
- Richard, L. Diagnosis and Improvement of Saline and Alkali Soils. In Agriculture Handbook; U.S. Government Printing Office: Washington, DC, USA, 1954; Volume 60, pp. 83–100. [Google Scholar]
- Kelly, W.P. Permissible Composition and Concentration of Irrigated Waters. Proc. Am. Soc. Civil Eng. 1940, 66, 607–613. [Google Scholar] [CrossRef]
- Szabolcs, I.; Darab, K. Radio-Active Technique for Examining the Improving Effect of CaCO3 on Alkali (Szik) Soils. Acta Agron. Hung 1964, 13, 93–101. [Google Scholar]
- Doneen, L. Water for Field and Truck Crops. Calif. Agric. 1948, 2, 9–16. [Google Scholar]
- Palacios, V.O.; Aceves, N.E. Instructions for Sampling, Data Recording and Interpretation of Water Quality for Agricultural Irrigation; Colegio de Postgraduados: Chapingo, Mexico, 1970. [Google Scholar]
- Todd, D.K.; Mays, L.W. Groundwater Hydrology; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 0-471-05937-4. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; Volume 29, Available online: https://www.fao.org/3/T0234E/T0234E00.htm (accessed on 28 May 2023).
- Zadeh, L.A. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 28–44. [Google Scholar] [CrossRef] [Green Version]
- Bonham-Carter, G. Geographic Information Systems for Geoscientists: Modelling with GIS; Elsevier: Amsterdam, The Netherlands, 1994; ISBN 0-08-042420-1. [Google Scholar]
- Tafreshi, A.M.; Tafreshi, G.M. A Novel GIS-Based Approach to Assessment Suitable Irrigation Water Using a Fuzzy-Multi Indices Method in Astaneh-Kuchesfahan Plain, Iran. Res. Sq. 2021, preprint. [Google Scholar] [CrossRef]
- Al-Alati, H.N.; Gad, M. Study The Seasonal Fluctuations of Groundwater Characteristics in Al-Raudhatain And Umm Al-Aish Depressions, North Kuwait. J. Eng. Res. Appl. 2018, 8, 43–56. [Google Scholar]
- Al-Homidy, A.A.; Dahim, M.H.; Abd El Aal, A.K. Improvement of Geotechnical Properties of Sabkha Soil Utilizing Cement Kiln Dust. J. Rock Mech. Geotech. Eng. 2017, 9, 749–760. [Google Scholar] [CrossRef]
- Al-Katheeri, E.; Howari, F.; Murad, A. Hydrogeochemistry and Pollution Assessment of Quaternary–Tertiary Aquifer in the Liwa Area, United Arab Emirates. Environ. Earth Sci. 2009, 59, 581–592. [Google Scholar] [CrossRef]
- Estévez, M.H.; Sanjulián, J.J.C.; Mendizábal, A.S. Evolución Geoquímica de Las Aguas Subterráneas En Una Cuenca Sedimentaria Semiárida: Acuífero de Baza-Caniles, Granada, España. Tierra Tecnol. Rev. Inf. Geol. 1995, 10, 39–48. [Google Scholar]
- Hidalgo, M.C.; Cruz-Sanjulián, J. Groundwater Composition, Hydrochemical Evolution and Mass Transfer in a Regional Detrital Aquifer (Baza Basin, Southern Spain). Appl. Geochem. 2001, 16, 745–758. [Google Scholar] [CrossRef] [Green Version]
- Tijani, M.N. Evolution of Saline Waters and Brines in the Benue-Trough, Nigeria. Appl. Geochem. 2004, 19, 1355–1365. [Google Scholar] [CrossRef]
- Sheikholeslami, R. Mixed Salts—Scaling Limits and Propensity. Desalination 2003, 154, 117–127. [Google Scholar] [CrossRef]
- Sheikholeslami, R. Nucleation and Kinetics of Mixed Salts in Scaling. AIChE J. 2003, 49, 194–202. [Google Scholar] [CrossRef]
- Nancollas, G.H.; Zieba, A. Constant Composition Kinetics Studies of the Simultaneous Crystal Growth of Some Alkaline Earth Carbonates and Phosphates. In Mineral Scale Formation and Inhibition; Springer: Boston, MA, USA, 1995; pp. 1–9. [Google Scholar] [CrossRef]
- Chidambaram, S.; Bhandary, H.; Al-Khalid, A. Modeling of Temperature Governed Saturation States and Metal Speciation in the Marine Waters of Kuwait Bay–Concern to the Desalination Process. Desalin Water Treat 2020, 176, 234–242. [Google Scholar] [CrossRef]
- Díaz, F.; Benes, S.; Grattan, S. Field Performance of Halophytic Species under Irrigation with Saline Drainage Water in the San Joaquin Valley of California. Agric. Water Manag. 2013, 118, 59–69. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Adhikari, P.; Shukla, M.; Mexal, J. Spatial Variability of Hydraulic Conductivity and Sodium Content of Desert Soils: Implications for Management of Irrigation Using Treated Wastewater. Trans. ASABE 2012, 55, 1711–1721. [Google Scholar] [CrossRef]
- Ozturk, O.F. Irrigation Using Brackish Groundwater and RO Concentrate: Effects on Germination, Emergence, and Growth of Halophytes. Ph.D. Thesis, New Mexico State University, Las Cruces, NM, USA, 2016. [Google Scholar]
- Wigley, T.; Plummer, L.; Pearson, F., Jr. Mass Transfer and Carbon Isotope Evolution in Natural Water Systems. Geochim. Cosmochim. Acta 1978, 42, 1117–1139. [Google Scholar] [CrossRef]
- Njitchoua, R.; Dever, L.; Fontes, J.C.; Naah, E. Geochemistry, Origin and Recharge Mechanisms of Groundwaters from the Garoua Sandstone Aquifer, Northen Cameroon. J. Hydrol. 1997, 190, 123–140. [Google Scholar] [CrossRef]
- Stigter, T.; Van Ooijen, S.; Post, V.; Appelo, C.; Dill, A.C. A Hydrogeological and Hydrochemical Explanation of the Groundwater Composition under Irrigated Land in a Mediterranean Environment, Algarve, Portugal. J. Hydrol. 1998, 208, 262–279. [Google Scholar] [CrossRef]
- Appelo, C.; Postma, D. Geochemistry, Groundwater and Pollution; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Jalali, M. Salinization of Groundwater in Arid and Semi-Arid Zones: An Example from Tajarak, Western Iran. Environ. Geol. 2007, 52, 1133–1149. [Google Scholar] [CrossRef]
- Bohn, H.; Brain, L.; George, A.; O’Connor, G. Soil Chemistry; John Wiley & Sons: New York, NY, USA, 1979; Volume 129, p. 389. [Google Scholar]
- Mukhopadhyay, A.; Al-Sulaimi, J.; Al-Awadi, E.; Al-Ruwaih, F. An Overview of the Tertiary Geology and Hydrogeology of the Northern Part of the Arabian Gulf Region with Special Reference to Kuwait. Earth-Sci. Rev. 1996, 40, 259–295. [Google Scholar] [CrossRef]
- Mokeddem, I.; Belhachemi, M.; Merzougui, T.; Nabbou, N.; Lachache, S. Hydrochemical Assessment and Groundwater Pollution Parameters in Arid Zone: Case of the Turonian Aquifer in Béchar Region, Southwestern Algeria. J. Water Land Dev. 2018, 39, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Sabarathinam, C.; Rashed, T.; Dashti, F.; Bhandary, H. Equilibrium States of Groundwater Chemistry in Coastal Region of Kuwait. Desalination Water Treat. 2022, 263, 248–256. [Google Scholar] [CrossRef]
- Wilcox, L. Classification and Use of Irrigation Waters; US Department of Agriculture: Washington, DC, USA, 1955. [Google Scholar]
- Khalid, S. An Assessment of Groundwater Quality for Irrigation and Drinking Purposes around Brick Kilns in Three Districts of Balochistan Province, Pakistan, through Water Quality Index and Multivariate Statistical Approaches. J. Geochem. Explor. 2019, 197, 14–26. [Google Scholar] [CrossRef]
- Jang, C.-S.; Chen, J.-S. Probabilistic Assessment of Groundwater Mixing with Surface Water for Agricultural Utilization. J. Hydrol. 2009, 376, 188–199. [Google Scholar] [CrossRef]
- Wu, J.; Li, P.; Qian, H.; Fang, Y. Assessment of Soil Salinization Based on a Low-Cost Method and Its Influencing Factors in a Semi-Arid Agricultural Area, Northwest China. Environ. Earth Sci. 2014, 71, 3465–3475. [Google Scholar] [CrossRef]
- Li, P.; Wu, J.; Qian, H. Hydrochemical Appraisal of Groundwater Quality for Drinking and Irrigation Purposes and the Major Influencing Factors: A Case Study in and around Hua County, China. Arab. J. Geosci. 2016, 9, 15. [Google Scholar] [CrossRef]
- Adhikari, P.; Shukla, M.K.; Mexal, J.G. Spatial Variability of Soil Properties in an Arid Ecosystem Irrigated with Treated Municipal and Industrial Wastewater. Soil Sci. 2012, 177, 458–469. [Google Scholar] [CrossRef]
- Nematollahi, M.J.; Ebrahimi, P.; Ebrahimi, M. Evaluating Hydrogeochemical Processes Regulating Groundwater Quality in an Unconfined Aquifer. Environ. Process. 2016, 3, 1021–1043. [Google Scholar] [CrossRef]
- Tahmasebi, P.; Mahmudy-Gharaie, M.H.; Ghassemzadeh, F.; Karimi Karouyeh, A. Assessment of Groundwater Suitability for Irrigation in a Gold Mine Surrounding Area, NE Iran. Environ. Earth Sci. 2018, 77, 766. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Q.; Lin, Y.; Fang, Y.; Qian, H.; Liu, R.; Ma, H. Hydrogeochemical Characteristics and Quality Assessment of Groundwater in an Irrigated Region, Northwest China. Water 2019, 11, 96. [Google Scholar] [CrossRef] [Green Version]
- Torres Mendonça, A.J.; Silva, A.A.R.d.; Lima, G.S.d.; Soares, L.A.d.A.; Nunes Oliveira, V.K.; Gheyi, H.R.; Lacerda, C.F.d.; Azevedo, C.A.V.d.; Lima, V.L.A.d.; Fernandes, P.D. Salicylic Acid Modulates Okra Tolerance to Salt Stress in Hydroponic System. Agriculture 2022, 12, 1687. [Google Scholar] [CrossRef]
- Paliwal, K.; Singh, S. Effect of Gypsum Application on the Quality of Irrigation Waters. Madras Agric. J. 1967, 59, 646–647. [Google Scholar]
- Subba Rao, N. Seasonal Variation of Groundwater Quality in a Part of Guntur District, Andhra Pradesh, India. Environ. Geol. 2006, 49, 413–429. [Google Scholar] [CrossRef]
- Hussain, Y.; Ullah, S.F.; Akhter, G.; Aslam, A.Q. Groundwater Quality Evaluation by Electrical Resistivity Method for Optimized Tubewell Site Selection in an Ago-Stressed Thal Doab Aquifer in Pakistan. Model. Earth Syst. Environ. 2017, 3, 15. [Google Scholar] [CrossRef]
- Ravikumar, P.; Somashekar, R.; Angami, M. Hydrochemistry and Evaluation of Groundwater Suitability for Irrigation and Drinking Purposes in the Markandeya River Basin, Belgaum District, Karnataka State, India. Environ. Monit. Assess. 2011, 173, 459–487. [Google Scholar] [CrossRef] [PubMed]
- Flores, A.M.; Shukla, M.K.; Schutte, B.J.; Picchioni, G.; Daniel, D. Physiologic Response of Six Plant Species Grown in Two Contrasting Soils and Irrigated with Brackish Groundwater and RO Concentrate. Arid Land Res. Manag. 2017, 31, 182–203. [Google Scholar] [CrossRef]
- Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Water; US Geological Survey; Department of the Interior: Reston, VA, USA, 1985; Volume 2254. [Google Scholar]
- Rao, N.S.; Rao, P.S.; Reddy, G.V.; Nagamani, M.; Vidyasagar, G.; Satyanarayana, N. Chemical Characteristics of Groundwater and Assessment of Groundwater Quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environ. Monit. Assess. 2012, 184, 5189–5214. [Google Scholar] [CrossRef] [PubMed]
- Narsimha, A.; Sudarshan, V. Assessment of Fluoride Contamination in Groundwater from Basara, Adilabad District, Telangana State, India. Appl. Water Sci. 2017, 7, 2717–2725. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.K.; Singh, A.K.; Singh, A.K.; Singh, M. Hydrogeochemical Analysis and Evaluation of Surface Water Quality of Pratapgarh District, Uttar Pradesh, India. Appl. Water Sci. 2017, 7, 1609–1623. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, J.W.; Heathcote, J. Natural Inorganic Hydrochemistry in Relation to Ground Water; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 1985. [Google Scholar]
- McNeal, B.; Layfield, D.; Norvell, W.; Rhoades, J. Factors Influencing Hydraulic Conductivity of Soils in the Presence of Mixed-salt Solutions. Soil Sci. Soc. Am. J. 1968, 32, 187–190. [Google Scholar] [CrossRef]
- Singaraja, C.; Chidambaram, S.; Anandhan, P.; Prasanna, M.; Thivya, C.; Thilagavathi, R.; Sarathidasan, J. Hydrochemistry of Groundwater in a Coastal Region and Its Repercussion on Quality, a Case Study—Thoothukudi District, Tamil Nadu, India. Arab. J. Geosci. 2014, 7, 939–950. [Google Scholar] [CrossRef]
- Tijani, M.N. Hydrogeochemical Assessment of Groundwater in Moro Area, Kwara State, Nigeria. Environ. Geol. 1994, 24, 194–202. [Google Scholar] [CrossRef]
- Singh, A.K.; Mondal, G.; Kumar, S.; Singh, T.; Tewary, B.; Sinha, A. Major Ion Chemistry, Weathering Processes and Water Quality Assessment in Upper Catchment of Damodar River Basin, India. Environ. Geol. 2008, 54, 745–758. [Google Scholar] [CrossRef]
- Doneen, L. Notes on Water Quality in Agriculture Published as a Water Science and Engineering; Department of Water Sciences and Engineering, Paper 4001; University of California: Berkeley, CA, USA, 1964. [Google Scholar]
- Islam, S.D.-U.; Majumder, R.K.; Uddin, M.J.; Khalil, M.I.; Ferdous Alam, M. Hydrochemical Characteristics and Quality Assessment of Groundwater in Patuakhali District, Southern Coastal Region of Bangladesh. Expo. Health 2017, 9, 43–60. [Google Scholar] [CrossRef]
- Davraz, A.; Özdemir, A. Groundwater Quality Assessment and Its Suitability in Çeltikçi Plain (Burdur/Turkey). Environ. Earth Sci. 2014, 72, 1167–1190. [Google Scholar] [CrossRef]
- Joshi, D.M.; Kumar, A.; Agrawal, N. Assessment of the Irrigation Water Quality of River Ganga in Haridwar District. Rasayan J. Chem. 2009, 2, 285–292. [Google Scholar] [CrossRef]
- Selvakumar, S.; Ramkumar, K.; Chandrasekar, N.; Magesh, N.; Kaliraj, S. Groundwater Quality and Its Suitability for Drinking and Irrigational Use in the Southern Tiruchirappalli District, Tamil Nadu, India. Appl. Water Sci. 2017, 7, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Manoj, S.; Thirumurugan, M.; Elango, L. An Integrated Approach for Assessment of Groundwater Quality in and around Uranium Mineralized Zone, Gogi Region, Karnataka, India. Arab. J. Geosci. 2017, 10, 557. [Google Scholar] [CrossRef]
- Elumalai, V.; Brindha, K.; Sithole, B.; Lakshmanan, E. Spatial Interpolation Methods and Geostatistics for Mapping Groundwater Contamination in a Coastal Area. Environ. Sci. Pollut. Res. 2017, 24, 11601–11617. [Google Scholar] [CrossRef]
- Mirzaei, R.; Sakizadeh, M. Comparison of Interpolation Methods for the Estimation of Groundwater Contamination in Andimeshk-Shush Plain, Southwest of Iran. Environ. Sci. Pollut. Res. 2016, 23, 2758–2769. [Google Scholar] [CrossRef]
- Rajmohan, N.; Niazi, B.A.; Masoud, M.H. Evaluation of a Brackish Groundwater Resource in the Wadi Al-Lusub Basin, Western Saudi Arabia. Environ. Earth Sci. 2019, 78, 451. [Google Scholar] [CrossRef]
- Drought Feeding and Management of Sheep A Guide for Farmers and Land Managers, 2015th ed.; Victorian Government Department of Primary Industries: Melbourne, Australia, 1997.
- Scarlett, T.; Carberry, P. Drought Feeding of Goats. New South Wales Agricultrue: Sydney. Available online: http//www.agric.nsw.gov.au/reader/5337 (accessed on 22 February 2002).
- Maplecroft Climate Change and Environmental Risk. Available online: http://maplecroft.com (accessed on 16 July 2023).
- World Health Organization. Guidelines for Drinking-Water Quality: Second Addendum. Vol. 1, Recommendations; World Health Organization: Geneva, Switzerland, 2008; ISBN 92-4-154760-X. [Google Scholar]
- Ladeiro, B. Saline Agriculture in the 21st Century: Using Salt Contaminated Resources to Cope Food Requirements. J. Bot. 2012, 2012, 310705. [Google Scholar] [CrossRef]
- Dalling, J.W.; Davis, A.S.; Schutte, B.J.; Elizabeth Arnold, A. Seed Survival in Soil: Interacting Effects of Predation, Dormancy and the Soil Microbial Community. J. Ecol. 2011, 99, 89–95. [Google Scholar] [CrossRef]
- Keiffer, C.H.; Ungar, I.A. Germination and Establishment of Halophytes on Brine-affected Soils. J. Appl. Ecol. 2002, 39, 402–415. [Google Scholar] [CrossRef]
- Santos, M.M.S.; Lacerda, C.F.; Neves, A.L.R.; de Sousa, C.H.C.; de Albuquerque Ribeiro, A.; Bezerra, M.A.; da Silva Araújo, I.C.; Gheyi, H.R. Ecophysiology of the Tall Coconut Growing under Different Coastal Areas of Northeastern Brazil. Agric. Water Manag. 2020, 232, 106047. [Google Scholar] [CrossRef]
- Ribeiro, A.D.A.; Lacerda, C.F.; Rocha Neves, A.L.; Sousa, C.H.C.D.; Braz, R.D.S.; Oliveira, A.C.D.; Pereira, J.M.G.; Ferreira, J.F.D.S. Uses and Losses of Nitrogen by Maize and Cotton Plants under Salt Stress. Arch. Agron. Soil Sci. 2021, 67, 1119–1133. [Google Scholar] [CrossRef]
- Dourado, P.R.M.; de Souza, E.R.; Santos, M.A.d.; Lins, C.M.T.; Monteiro, D.R.; Paulino, M.K.S.S.; Schaffer, B. Stomatal Regulation and Osmotic Adjustment in Sorghum in Response to Salinity. Agriculture 2022, 12, 658. [Google Scholar] [CrossRef]
- Panta, S.; Flowers, T.; Lane, P.; Doyle, R.; Haros, G.; Shabala, S. Halophyte Agriculture: Success Stories. Environ. Exp. Bot. 2014, 107, 71–83. [Google Scholar] [CrossRef]
- Miranda, K.R.D.; Dubeux, J.C.B.; Mello, A.C.L.D.; Silva, M.D.C.; Santos, M.V.F.D.; Santos, D.C.D. Forage Production and Mineral Composition of Cactus Intercropped with Legumes and Fertilized with Different Sources of Manure. Ciênc. Rural 2019, 49. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Brito, G.S.M.; Santos, E.M.; de Araújo, G.G.L.; de Oliveira, J.S.; Zanine, A.D.M.; Perazzo, A.F.; Campos, F.S.; de Oliveira Lima, A.G.V.; Cavalcanti, H.S. Mixed Silages of Cactus Pear and Gliricidia: Chemical Composition, Fermentation Characteristics, Microbial Population and Aerobic Stability. Sci. Rep. 2020, 10, 6834. [Google Scholar] [CrossRef] [Green Version]
- Lessa, C.I.N.; de Lacerda, C.F.; Cajazeiras, C.C.d.A.; Neves, A.L.R.; Lopes, F.B.; Silva, A.O.d.; Sousa, H.C.; Gheyi, H.R.; Nogueira, R.d.S.; Lima, S.C.R.V.; et al. Potential of Brackish Groundwater for Different Biosaline Agriculture Systems in the Brazilian Semi-Arid Region. Agriculture 2023, 13, 550. [Google Scholar] [CrossRef]
- Karim, A.; Gonzalez Cruz, M.; Hernandez, E.A.; Uddameri, V. A GIS-Based Fit for the Purpose Assessment of Brackish Groundwater Formations as an Alternative to Freshwater Aquifers. Water 2020, 12, 2299. [Google Scholar] [CrossRef]
- Wagner, J.; Williams, S.; Webster, C. Biomarkers and Surrogate End Points for Fit-for-purpose Development and Regulatory Evaluation of New Drugs. Clin. Pharmacol. Ther. 2007, 81, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, L.; Benn, S. The Corporation Is Ailing Social Technology: Creating a ‘Fit for Purpose’ Design for Sustainability. J. Bus. Ethics 2012, 111, 195–210. [Google Scholar] [CrossRef]
- Hurlimann, A.; McKay, J.M. What Attributes of Recycled Water Make It Fit for Residential Purposes? The Mawson Lakes Experience. Desalination 2006, 187, 167–177. [Google Scholar] [CrossRef]
- Muller, M. Fit for Purpose: Taking Integrated Water Resource Management Back to Basics. Irrig. Drain. Syst. 2010, 24, 161–175. [Google Scholar] [CrossRef]
- Thrysøe, C.; Arnbjerg-Nielsen, K.; Borup, M. Identifying Fit-for-Purpose Lumped Surrogate Models for Large Urban Drainage Systems Using GLUE. J. Hydrol. 2019, 568, 517–533. [Google Scholar] [CrossRef]
- Ries, M.; Trotz, M.; Vairavamoorthy, K. ‘Fit-for-Purpose’ Sustainability Index: A Simplified Approach for US Water Utility Sustainability Assessment. Water Pract. Technol. 2016, 11, 35–47. [Google Scholar] [CrossRef]
- Cecconet, D.; Callegari, A.; Hlavínek, P.; Capodaglio, A.G. Membrane Bioreactors for Sustainable, Fit-for-Purpose Greywater Treatment: A Critical Review. Clean Technol. Environ. Policy 2019, 21, 745–762. [Google Scholar] [CrossRef]
- Hötzl, H. Water resources management in the Middle East under aspects of climatic changes. In Climatic Changes and Water Resources in the Middle East and North Africa; Springer: Berlin/Heidelberg, Germany, 2008; pp. 77–92. [Google Scholar] [CrossRef]
Parameter | Rawdhatain (RA), n = 38 | Umm Al Aish (UA), n = 30 | ||||
---|---|---|---|---|---|---|
Max | Min | Avg | Max | Min | Avg | |
Ca2+ | 639 | 14.0 | 201 | 2802 | 35.3 | 349 |
Mg2+ | 121 | 1.10 | 30.0 | 365 | 1.10 | 48.8 |
Na+ | 2932 | 21.2 | 502 | 6828 | 16.0 | 666 |
K+ | 22.3 | 0.30 | 5.00 | 39.8 | 3.00 | 11.2 |
Cl− | 2385 | 16.0 | 514 | 15,244 | 30.0 | 1191 |
HCO3− | 318 | 19.0 | 131 | 420 | 13.0 | 168 |
NO3− | 113 | 1.50 | 38.1 | 94.3 | 1.20 | 23.0 |
PO43− | 1.10 | <0.01 | 0.10 | 1.70 | <0.01 | 0.20 |
SO42− | 5042 | 21.0 | 857 | 4039 | 72.1 | 761 |
TDS | 9040 | 328 | 2196 | 27,821 | 397 | 3078 |
EC | 14,130 | 512 | 3222 | 43,470 | 621 | 4809 |
pH | 9.20 | 6.80 | 7.70 | 8.80 | 6.90 | 7.60 |
Temperature | 32.0 | 26.0 | 29.4 | 31.0 | 28.0 | 30.0 |
Rawdhatain | Umm Al Aish | |||||
---|---|---|---|---|---|---|
Parameter | Result | Classification | Fuzzy Membership Classification | Result | Classification | Fuzzy Membership Classification |
EC | 512–750 | Good | <0.017 | <750 | Good | <0.003 |
750–2250 | Permissible | 0.003–0.037 | ||||
750–2250 | Permissible | 0.017–0.128 | 2250–5000 | Doubtful | 0.037–0.108 | |
>2250 | Doubtful | 0.128–1 | >5000 | Unsuitable | 0.108–1 | |
KR | <1 | Safe | <0.064 | <1 | Safe | <0.381 |
>1 | Unsafe | 0.064–1 | >1 | Unsafe | >0.381 | |
Na% | <20 | Excellent | <0.021 | <20 | Excellent | <0.200 |
20–40 | Good | 0.021–0.296 | 20–40 | Good | 0.200–0.512 | |
40–60 | Permissible | 0.296–0.560 | 40–60 | Permissible | 0.512–0.821 | |
60–80 | Doubtful | 0.560–0.836 | 60–80 | Doubtful | 0.821–1 | |
>80 | Unsuitable | 0.836–1 | ||||
PI | 51–75 | Good | 0.860–1 | 51–75 | Good | 0–0.552 |
>75 | Suitable | <0.860 | >75 | Suitable | >0.552 | |
PS | 1.3–3 | Suitable | <0.013 | <3 | Suitable | <0.003 |
3–15 | Moderate | 0.013–0.114 | 3–15 | Moderate | 0.003–0.027 | |
15–20 | Unsuitable | 0.114–0.157 | 15–20 | Unsuitable | 0.027–1 | |
20–120 | 0.157–1 | >20 | ||||
SAR | 0.6–10 | Excellent | <0.325 | <10 | Excellent | <0.301 |
10–18 | Good | 0.325–0.592 | 10–18 | Good | 0.301–0.554 | |
18–26 | Fair | 0.592–0.916 | 18–26 | Fair | 0.554–0.792 | |
26–29 | Poor | 0.915–1 | >26 | Poor | >0.792 | |
SSP | <20 | Excellent | <0.037 | <20 | Excellent | <0.210 |
20–40 | Good | 0.037–0.306 | 20–40 | Good | 0.210–0.517 | |
40–60 | Permissible | 0.306–0.570 | 40–60 | Permissible | 0.517–0.823 | |
60–80 | Doubtful | 0.507–0.834 | 60–80 | Doubtful | 0.823–1 | |
>80 | Unsuitable | 0.834–1 | ||||
MAR | 4.4–18 | Safe | 0 | 0.7–14 | Safe | 0 |
18–31 | 14–27 | |||||
RSC | <1.25 | Good | 0 | <0.2 | Good | 0 |
Category | Rawdhatain | Umm Al Aish | ||
---|---|---|---|---|
Area (sq km) | Percentage | Area (sq km) | Percentage | |
Excellent | 4.44 | 8.40% | 2.64 | 5.90% |
Good | 30.1 | 56.6% | 20.76 | 46.5% |
Medium | 17.1 | 32.2% | 13.25 | 29.7% |
Poor | 1.50 | 2.81% | 7.93 | 17.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Rashidi, A.; Sabarathinam, C.; Samayamanthula, D.R.; Alsabti, B.; Rashid, T. Groundwater Management for Agricultural Purposes Using Fuzzy Logic Technique in an Arid Region. Water 2023, 15, 2674. https://doi.org/10.3390/w15142674
Al-Rashidi A, Sabarathinam C, Samayamanthula DR, Alsabti B, Rashid T. Groundwater Management for Agricultural Purposes Using Fuzzy Logic Technique in an Arid Region. Water. 2023; 15(14):2674. https://doi.org/10.3390/w15142674
Chicago/Turabian StyleAl-Rashidi, Amjad, Chidambaram Sabarathinam, Dhanu Radha Samayamanthula, Bedour Alsabti, and Tariq Rashid. 2023. "Groundwater Management for Agricultural Purposes Using Fuzzy Logic Technique in an Arid Region" Water 15, no. 14: 2674. https://doi.org/10.3390/w15142674
APA StyleAl-Rashidi, A., Sabarathinam, C., Samayamanthula, D. R., Alsabti, B., & Rashid, T. (2023). Groundwater Management for Agricultural Purposes Using Fuzzy Logic Technique in an Arid Region. Water, 15(14), 2674. https://doi.org/10.3390/w15142674