Tea-Waste-Mediated Magnetic Oxide Nanoparticles as a Potential Low-Cost Adsorbent for Phosphate (PO43−) Anion Remediation
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Methods
2.2. Preparation of TW-Fe3O4 Adsorbent
2.3. Characterization
2.4. Determination of Point of Charge Ratio (PZC)
2.5. Batch Adsorption Experiments
2.5.1. Effect of Contact Time
2.5.2. Effect of Adsorbate Concentration
2.5.3. Influence of pH Values
2.5.4. Influence of Adsorbent Dosage and Temperature
2.5.5. Regeneration of TW-Fe3O4 Adsorbent
2.5.6. Phosphate Determination
2.5.7. Analytical Figures of Merit
3. Results
3.1. Characterization Results
3.1.1. FTIR
3.1.2. XRD
3.1.3. SEM/EDX, FESEM and TEM
3.1.4. BET
3.2. Adsorption Studies
3.2.1. PZC
3.2.2. Influence of pH
3.2.3. Influence of Adsorbent Dosage
3.2.4. Effect of Contact Time
Application of Kinetic Models
3.2.5. Effect of Temperature
3.2.6. Effect of Adsorbate Concentration
3.2.7. Application of Adsorption Isotherm Models
3.3. Regeneration of Adsorbent
3.4. Comparison of Adsorbent with Other Adsorbents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, S.; Yang, L.; Shi, S.; Zhou, Y.; Long, M.; Zhang, W.; Cai, S.; Huang, C.; Liu, T.; Zou, B. A Two-in-One Annealing Enables Dopant Free Block Copolymer Based Organic Solar Cells with over 16% Efficiency. Chin. J. Chem. 2023, 41, 672–678. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, K.; Ma, R.; Zhang, L.; Huang, C.; Luo, Z.; Zhu, H.; Yao, S.; Yang, C.; Zou, B.; et al. Multifunctional all-polymer photovoltaic blend with simultaneously improved efficiency (18.04%), stability and mechanical durability. Aggregate 2023, 4, e308. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Huang, B.; Mao, Z.; Wang, R.; He, B.; Gong, Y.; Wang, H. Abundant Heterointerfaces in Mof-Derived Hollow Cos2–Mos2 Nanosheet Array Electrocatalysts for Overall Water Splitting. J. Energy Chem. 2021, 57, 99–108. [Google Scholar] [CrossRef]
- Das, J.; Patra, B.S.; Baliarsingh, N.; Parida, K.M. Adsorption of Phosphate by Layered Double Hydroxides in Aqueous Solutions. Appl. Clay Sci. 2006, 32, 252–260. [Google Scholar] [CrossRef]
- Onyango, M.S.; Kuchar, D.; Kubota, M.; Matsuda, H. Adsorptive Removal of Phosphate Ions from Aqueous Solution Using Synthetic Zeolite. Ind. Eng. Chem. Res. 2007, 46, 894–900. [Google Scholar] [CrossRef]
- Su, Y.; Cui, H.; Li, Q.; Gao, S.; Shang, J.K. Strong Adsorption of Phosphate by Amorphous Zirconium Oxide Nanoparticles. Water Res. 2013, 47, 5018–5026. [Google Scholar] [CrossRef]
- Vasudevan, S.; Lakshmi, J. The Adsorption of Phosphate by Graphene from Aqueous Solution. RSC Adv. 2012, 2, 5234–5242. [Google Scholar] [CrossRef]
- Zhang, Y.; Desmidt, E.; Van Looveren, A.; Pinoy, L.; Meesschaert, B.; Van der Bruggen, B. Phosphate Separation and Recovery from Wastewater by Novel Electrodialysis. Environ. Sci. Technol. 2013, 47, 5888–5895. [Google Scholar] [CrossRef]
- Chen, X.; Kong, H.; Wu, D.; Wang, X.; Lin, Y. Phosphate Removal and Recovery through Crystallization of Hydroxyapatite Using Xonotlite as Seed Crystal. J. Environ. Sci. 2009, 21, 575–580. [Google Scholar] [CrossRef]
- Blaney, L.M.; Cinar, S.; SenGupta, A.K. Hybrid Anion Exchanger for Trace Phosphate Removal from Water and Wastewater. Water Res. 2007, 41, 1603–1613. [Google Scholar] [CrossRef]
- Nassef, E. Removal of Phosphates from Industrial Waste Water by Chemical Precipitation. Eng. Sci. Technol. Int. J. 2012, 2, 409–413. [Google Scholar]
- Edzwald, J.K.; Toensing, D.C.; Leung, M.C.Y. Phosphate Adsorption Reactions with Clay Minerals. Environ. Sci. Technol. 1976, 10, 485–490. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Morad, N.; Tan, K.A. Magnetic Nanoparticle (Fe3o4) Impregnated onto Tea Waste for the Removal of Nickel (Ii) from Aqueous Solution. J. Hazard. Mater. 2011, 186, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Debnath, B.; Haldar, D.; Purkait, M.K. Environmental Remediation by Tea Waste and Its Derivative Products: A Review on Present Status and Technological Advancements. Chemosphere 2022, 300, 134480. [Google Scholar] [CrossRef]
- Liu, J.; Yu, Y.; Zhu, S.; Yang, J.; Song, J.; Fan, W.; Yu, H.; Bian, D.; Huo, M. Synthesis and Characterization of a Magnetic Adsorbent from Negatively-Valued Iron Mud for Methylene Blue Adsorption. PLoS ONE 2018, 13, e0191229. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Y.; Li, Y.; Tang, J.; Wang, Z.; Tang, J.; Li, X.; Hu, K. Facile Synthesis of Tea Waste/Fe3O4 Nanoparticle Composite for Hexavalent Chromium Removal from Aqueous Solution. RSC Adv. 2017, 7, 7576–7590. [Google Scholar] [CrossRef]
- Shah, K.H.; Fahad, M.; Ali, S.; Batool, A.; Shah, I.; Farooq, U.; Shahzad, A. Potential of Natural Ferruginous Manganese (Nfm) Ore as a Natural Adsorbent for as (Iii) Removal at Low Concentration. Int. J. Environ. Anal. Chem. 2021, 1–18. [Google Scholar] [CrossRef]
- Batool, A.; Shah, K.H.; Hussain, S.; Hussain, Z.; Naqvi, S.A.R.; Sherazi, T.A. L-Histidine Immobilized Montmorillonite for As (III) Adsorption and Statistical Verification of Data by PDF, AICcorrected and AADR Models. Appl. Water Sci. 2022, 12, 258. [Google Scholar] [CrossRef]
- Sahu, U.K.; Zhang, Y.; Huang, W.; Ma, H.; Mandal, S.; Sahu, S.; Sahu, M.K.; Patel, R.K.; Pu, S. Nanoceria-Loaded Tea Waste as Bio-Sorbent for Cr (Vi) Removal. Mater. Chem. Phys. 2022, 290, 126563. [Google Scholar] [CrossRef]
- Zaib, Q.; Kyung, D. Optimized Removal of Hexavalent Chromium from Water Using Spent Tea Leaves Treated with Ascorbic Acid. Sci. Rep. 2022, 12, 8845. [Google Scholar] [CrossRef]
- Qiao, H.; Mei, L.; Chen, G.; Liu, H.; Peng, C.; Ke, F.; Hou, R.; Wan, X.; Cai, H. Adsorption of Nitrate and Phosphate from Aqueous Solution Using Amine Cross-Linked Tea Wastes. Appl. Surf. Sci. 2019, 483, 114–122. [Google Scholar] [CrossRef]
- Wen, T.; Wang, J.; Yu, S.; Chen, Z.; Hayat, T.; Wang, X. Magnetic Porous Carbonaceous Material Produced from Tea Waste for Efficient Removal of as (V), Cr (Vi), Humic Acid, and Dyes. ACS Sustain. Chem. Eng. 2017, 5, 4371–4380. [Google Scholar] [CrossRef]
- Mustafa, S.M.; Barzinjy, A.A.; Hamad, A.H. An environmentally friendly green synthesis of Co2+ and Mn2+ ion doped ZnO nanoparticles to improve solar cell efficiency. J. Environ. Chem. Eng. 2023, 11, 109514. [Google Scholar] [CrossRef]
- Barzinjy, A.A.; Hamad, S.M.; Esmaeel, M.M.; Aydın, S.K.; Hussain, F.H.S. Biosynthesis and characterisation of zinc oxide nanoparticles from Punica granatum (pomegranate) juice extract and its application in thin films preparation by spin-coating method. Micro Nano Lett. 2020, 15, 415–420. [Google Scholar] [CrossRef]
- Mustafa, S.M.; Barzinjy, A.A.; Hamad, A.H.; Hamad, S.M. Biosynthesis of quantum dots and their usage in solar cells: Insight from the novel researches. Int. Nano Lett. 2022, 12, 139–151. [Google Scholar] [CrossRef]
- Barzinjy, A.A.; Hamad, S.M.; Aydın, S.; Ahmed, M.H.; Hussain, F.H. Green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation. J. Mater. Sci. Mater. Electron. 2020, 31, 11303–11316. [Google Scholar] [CrossRef]
- Azeeza, H.H.; Barzinjya, A.A. Biosynthesis zinc oxide nanoparticles using Apium graveolens L. leaf extract and its use in removing the organic pollutants in water. Desalin. Water Treat 2020, 190, 179–192. [Google Scholar] [CrossRef]
- Barzinjy, A.A.; Azeez, H.H. Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Appl. Sci. 2020, 2, 991. [Google Scholar] [CrossRef]
- Barzinjy, A.A. Structure, synthesis and applications of ZnO nanoparticles: A review. Jordan J. Phys. 2020, 13, 123–135. [Google Scholar]
- Aspoukeh, P.K.; Barzinjy, A.A.; Hamad, S.M. Synthesis, properties and uses of ZnO nanorods: A mini review. Int. Nano Lett. 2022, 12, 153–168. [Google Scholar] [CrossRef]
- Jaabbar, K.Q.; Barzinjy, A.A.; Hamad, S.M. Iron oxide nanoparticles: Preparation methods, functions, adsorption and coagulation/flocculation in wastewater treatment. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100661. [Google Scholar] [CrossRef]
- Piro, N.S.; Hamad, S.M.; Mohammed, A.S.; Barzinjy, A.A. Green Synthesis Magnetite (Fe₃O₄) Nanoparticles From Rhus coriaria Extract: A Characteristic Comparison with a Conventional Chemical Method. IEEE Trans. NanoBiosci. 2023, 22, 308–317. [Google Scholar] [CrossRef]
- Khanna, M.; Mathur, A.; Dubey, A.K.; McLaughlin, J.; Moirangthem, I.; Wadhwa, S.; Singh, D.; Kumar, R. Rapid Removal of Lead (Ii) Ions from Water Using Iron Oxide–Tea Waste Nanocomposite—A Kinetic Study. IET Nanobiotechnol. 2020, 14, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Lunge, S.; Singh, S.; Sinha, A. Magnetic Iron Oxide (Fe3o4) Nanoparticles from Tea Waste for Arsenic Removal. J. Magn. Magn. Mater. 2014, 356, 21–31. [Google Scholar] [CrossRef]
- Dermawan, D.; Hieu, V.T.; Wang, Y.F.; You, S.J. A Novel Magnetic Fe3o4 Carbon-Shell (Mfc) Functionalization with Lanthanum as an Adsorbent for Phosphate Removal from Aqueous Solution. Int. J. Environ. Sci. Technol. 2023, 20, 3861–3874. [Google Scholar] [CrossRef]
- Zach-Maor, A.; Semiat, R.; Shemer, H. Adsorption–Desorption Mechanism of Phosphate by Immobilized Nano-Sized Magnetite Layer: Interface and Bulk Interactions. J. Colloid Interface Sci. 2011, 363, 608–614. [Google Scholar] [CrossRef]
- Yang, A.L.; Yang, S.-Y.; Zhu, Y.-K. Magnetic modification of used tea leaves for uranium adsorption. New Carbon Mater. 2021, 36, 821–826. [Google Scholar] [CrossRef]
- Guo, S.; Xiao, F.; Huang, S.; Yang, P. Preparation of Magnetically Responsive Carbonized Tea Waste and Its Efficient Adsorption of Uranyl Ions. J. Radioanal. Nucl. Chem. 2022, 331, 2667–2677. [Google Scholar] [CrossRef]
- Altaf, A.R.; Teng, H.; Zheng, M.; Ashraf, I.; Arsalan, M.; Rehman, A.U.; Gang, L.; Wang, P.; Ren, Y.; Li, X. One-Step Synthesis of Renewable Magnetic Tea-Biochar Derived from Waste Tea Leaves for the Removal of Hg0 from Coal-Syngas. J. Environ. Chem. Eng. 2021, 9, 105313. [Google Scholar] [CrossRef]
- Mahmood, T.; Aslam, M.; Naeem, A.; Siddique, T.; Din, S.U. Adsorption of as (Iii) from Aqueous Solution onto Iron Impregnated Used Tea Activated Carbon: Equilibrium, Kinetic and Thermodynamic Study. J. Chil. Chem. Soc. 2018, 63, 3855–3866. [Google Scholar] [CrossRef]
- Yeo, S.Y.; Choi, S.; Dien, V.; Sow-Peh, Y.K.; Qi, G.; Hatton, T.A.; Doyle, P.S.; Thio, B.J.R. Using Magnetically Responsive Tea Waste to Remove Lead in Waters under Environmentally Relevant Conditions. PLoS ONE 2013, 8, e66648. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Annath, H.; Chen, H.; Mangwandi, C. Upcycling Tea Waste Particles into Magnetic Adsorbent Materials for Removal of Cr (Vi) from Aqueous Solutions. Particuology 2023, 80, 115–126. [Google Scholar] [CrossRef]
- Yilmaz Camoglu, A.; Ozdes, D.; Duran, C. Adsorption Behaviour of Edta Modified Magnetic Fe3o4 Coated Brewed Tea Waste on Cr (Vi) Removal. Chem. Afr. 2023, 6, 921–931. [Google Scholar] [CrossRef]
- Ashraf, I.; Li, R.; Chen, B.; Al-Ansari, N.; Rizwan Aslam, M.; Altaf, A.R.; Elbeltagi, A. Nanoarchitectonics and Kinetics Insights into Fluoride Removal from Drinking Water Using Magnetic Tea Biochar. Int. J. Environ. Res. Public Health 2022, 19, 13092. [Google Scholar] [CrossRef]
- Mangwandi, C.; Chen, H.; Wu, J. Production and Optimisation of Adsorbent Materials from Teawaste for Heavy Metal Removal from Aqueous Solution: Feasibility of Hexavalent Chromium Removal–Kinetics, Thermodynamics and Isotherm Study. Water Pract. Technol. 2022, 17, 1866–1880. [Google Scholar] [CrossRef]
- Karunakaran, C.; Vinayagamoorthy, P.; Jayabharathi, J. Nonquenching of Charge Carriers by Fe3o4 Core in Fe3o4/Zno Nanosheet Photocatalyst. Langmuir 2014, 30, 15031–15039. [Google Scholar] [CrossRef]
- Salem, N.M.; Ahmad, A.; Awwad, A. New route for synthesis magnetite nanoparticles from ferrous ions and Pistachio leaf extract. Nanosci. Nanotechnol. 2013, 3, 48–51. [Google Scholar]
- Sun, X.; Yang, L.; Li, Q.; Zhao, J.; Li, X.; Wang, X.; Liu, H. Amino-Functionalized Magnetic Cellulose Nanocomposite as Adsorbent for Removal of Cr (Vi): Synthesis and Adsorption Studies. Chem. Eng. J. 2014, 241, 175–183. [Google Scholar] [CrossRef]
- Hamedi, A.; Trotta, F.; Borhani Zarandi, M.; Zanetti, M.; Caldera, F.; Anceschi, A.; Nateghi, M.R. In Situ Synthesis of Mil-100 (Fe) at the Surface of Fe3o4@Ac as Highly Efficient Dye Adsorbing Nanocomposite. Int. J. Mol. Sci. 2019, 20, 5612. [Google Scholar] [CrossRef]
- Zhu, Z.; Zeng, H.; Zhu, Y.; Yang, F.; Zhu, H.; Qin, H.; Wei, W. Kinetics and Thermodynamic Study of Phosphate Adsorption on the Porous Biomorph-Genetic Composite of A-Fe2o3/Fe3o4/C with Eucalyptus Wood Microstructure. Sep. Purif. Technol. 2013, 117, 124–130. [Google Scholar] [CrossRef]
- Ahmed, S.; Ashiq, M.N.; Li, D.; Tang, P.; Leroux, F.; Feng, Y. Recent Progress on Adsorption Materials for Phosphate Removal. Recent Pat. Nanotechnol. 2019, 13, 3–16. [Google Scholar] [CrossRef]
- Atnafu, T.; Leta, S. Plasticized Magnetic Starch-Based Fe3o4 Clay Polymer Nanocomposites for Phosphate Adsorption from Aqueous Solution. Heliyon 2021, 7, e07973. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.; Thanh, N.T.; Toan, P.V.; Minh, H.V.T.; Kumar, P. Removal of Arsenic in Groundwater Using Fe (Iii) Oxyhydroxide Coated Sand: A Case Study in Mekong Delta, Vietnam. Hydrology 2022, 9, 15. [Google Scholar] [CrossRef]
- Özcan, A.; Öncü, E.M.; Özcan, A.S. Kinetics, Isotherm and Thermodynamic Studies of Adsorption of Acid Blue 193 from Aqueous Solutions onto Natural Sepiolite. Colloids Surf. A Physicochem. Eng. Asp. 2006, 277, 90–97. [Google Scholar] [CrossRef]
- Palanivell, P.; Ahmed, O.H.; Latifah, O.; Abdul Majid, N.M. Adsorption and Desorption of Nitrogen, Phosphorus, Potassium, and Soil Buffering Capacity Following Application of Chicken Litter Biochar to an Acid Soil. Appl. Sci. 2020, 10, 295. [Google Scholar] [CrossRef]
- Khatri, N.; Tyagi, S.; Rawtani, D. Recent Strategies for the Removal of Iron from Water: A Review. J. Water Process Eng. 2017, 19, 291–304. [Google Scholar] [CrossRef]
- Shrestha, A.; Poudel, B.R.; Silwal, M.; Pokhrel, M.R. Adsorptive Removal of Phosphate onto Iron Loaded Litchi Chinensis Seed Waste. J. Inst. Sci. Technol. 2018, 23, 81–87. [Google Scholar] [CrossRef]
- Biswas, B.K.; Inoue, K.; Ghimire, K.N.; Harada, H.; Ohto, K.; Kawakita, H. Removal and Recovery of Phosphorus from Water by Means of Adsorption onto Orange Waste Gel Loaded with Zirconium. Bioresour. Technol. 2008, 99, 8685–8690. [Google Scholar] [CrossRef]
- Zong, E.; Liu, X.; Jiang, J.; Fu, S.; Chu, F. Preparation and Characterization of Zirconia-Loaded Lignocellulosic Butanol Residue as a Biosorbent for Phosphate Removal from Aqueous Solution. Appl. Surface Sci. 2016, 387, 419–430. [Google Scholar] [CrossRef]
- Krishnan, K.A.; Haridas, A. Removal of Phosphate from Aqueous Solutions and Sewage Using Natural and Surface Modified Coir Pith. J. Hazard. Mater. 2008, 152, 527–535. [Google Scholar] [CrossRef]
- Xu, X.; Gao, B.; Yue, Q.; Zhong, Q. Sorption of Phosphate onto Giant Reed Based Adsorbent: Ftir, Raman Spectrum Analysis and Dynamic Sorption/Desorption Properties in Filter Bed. Bioresour. Technol. 2011, 102, 5278–5282. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Gao, Y.; Gao, B.; Tan, X.; Zhao, Y.Q.; Yue, Q.; Wang, Y. Characteristics of Diethylenetriamine-Crosslinked Cotton Stalk/Wheat Stalk and Their Biosorption Capacities for Phosphate. J. Hazard. Mater. 2011, 192, 1690–1696. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Li, X.; Liu, J. Adsorptive Removal of Phosphate from Aqueous Solutions Using Iron Oxide Tailings. Water Res. 2004, 38, 1318–1326. [Google Scholar] [CrossRef]
- Mezenner, N.Y.; Bensmaili, A. Kinetics and Thermodynamic Study of Phosphate Adsorption on Iron Hydroxide-Eggshell Waste. Chem. Eng. J. 2009, 147, 87–96. [Google Scholar] [CrossRef]
- Kostura, B.; Kulveitova, H.; Leško, J. Blast Furnace Slags as Sorbents of Phosphate from Water Solutions. Water Res. 2005, 39, 1795–1802. [Google Scholar] [CrossRef]
- Shin, E.W.; Karthikeyan, K.G.; Tshabalala, M.A. Orthophosphate Sorption onto Lanthanum-Treated Lignocellulosic Sorbents. Environ. Sci. Technol. 2005, 39, 6273–6279. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Luan, Z.; Peng, X.; Zhu, C.; Chen, Z.; Zhang, Z.; Fan, J.; Jia, Z. Phosphate Removal from Aqueous Solutions Using Raw and Activated Red Mud and Fly Ash. J. Hazard. Mater. 2006, 137, 374–383. [Google Scholar] [CrossRef]
Material | Surface Area (m2/g) | Pore Radius (A°) BJH | Pore Volume (cc/g) BJH | |
---|---|---|---|---|
BET | BJH | |||
TW | 20.17 | 11.58 | 13.01 | 0.010 |
TW-Fe3O4 | 45.13 | 22.85 | 9.27 | 0.020 |
Reaction Order | Parameters | Values |
---|---|---|
Ci (mg/L) | 5 | |
Pseudo first order | k1 (min−1) | 3.27 × 10−2 |
qe.cal (mg/g) | 81.23 | |
R2 | 0.9197 | |
Pseudo second order | k2 (g·mg−1·min−1) | 1.73 × 10−4 |
qe.cal (mg/g) | 82.64 | |
R2 | 0.9889 | |
Intra-particle Diffusion | kp (min−1) | 1.73 × 10−4 |
qe.cal (mg/g) | 81.23 | |
R2 | 0.9197 |
Temperature (K) | ∆G (kJ/mol) | ∆H (kJ/mol) | ∆S (J/Kmol) |
---|---|---|---|
298 | −1.6141 | ||
303 | −1.9100 | 4.2664 | 19.733 |
313 | −2.1073 | ||
323 | −2.3046 |
Adsorbents | Adsorption Capacity qe (mg/g) | References |
---|---|---|
Fe-loaded litchi Chinese seed waste | 100 | [57] |
Orange waste gel loaded with zirconium | 57 | [58] |
Zirconia-loaded lignocellulosic butanol residue | 7.17 | [59] |
Iron-impregnated coir pith | 70.90 | [60] |
Giant reed-based adsorbent | 54.67 | [61] |
Amine-crosslinked wheat stalk | 60.61 | [62] |
Amine-crosslinked cotton stalk | 51.15 | [62] |
Iron oxide tailing | 8.21 | [63] |
Iron hydroxide eggshell | 14.4 | [64] |
Blast furnace slag | 8.00 | [65] |
Lanthanum-treated lignocellulosic sorbent | 20.04 | [66] |
Activated fly ash | 58.92 | [67] |
Magnetic-oxide-impregnated tea waste (TW-Fe3O4) | 226.76 | Present Study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, K.H.; Fareed, M.; Waseem, M.; Shahida, S.; Hatshan, M.R.; Sarfraz, S.; Batool, A.; Fahad, M.; Ahmad, T.; Shah, N.S.; et al. Tea-Waste-Mediated Magnetic Oxide Nanoparticles as a Potential Low-Cost Adsorbent for Phosphate (PO43−) Anion Remediation. Water 2023, 15, 3541. https://doi.org/10.3390/w15203541
Shah KH, Fareed M, Waseem M, Shahida S, Hatshan MR, Sarfraz S, Batool A, Fahad M, Ahmad T, Shah NS, et al. Tea-Waste-Mediated Magnetic Oxide Nanoparticles as a Potential Low-Cost Adsorbent for Phosphate (PO43−) Anion Remediation. Water. 2023; 15(20):3541. https://doi.org/10.3390/w15203541
Chicago/Turabian StyleShah, Khizar Hussain, Misbah Fareed, Muhammad Waseem, Shabnam Shahida, Mohammad Rafe Hatshan, Sadaf Sarfraz, Aneeqa Batool, Muhammad Fahad, Tauqeer Ahmad, Noor S. Shah, and et al. 2023. "Tea-Waste-Mediated Magnetic Oxide Nanoparticles as a Potential Low-Cost Adsorbent for Phosphate (PO43−) Anion Remediation" Water 15, no. 20: 3541. https://doi.org/10.3390/w15203541