Small Island City Flood Risk Assessment: The Case of Kingston, Jamaica
Abstract
:1. Introduction
2. History of Flooding in Jamaica and Kingston: Hazards and Impacts
Studies on Flood Risk in Jamaica
3. Materials and Methods
3.1. Study Area
3.2. Assessing Flood Risk Using inVEST Models
3.3. Coastal Exposure
3.4. Urban Flood Risk
4. Results
4.1. Coastal Exposure
4.2. Urban Flood Risk
5. Discussion
5.1. Coastal Flood Risk
Coastal Protection: Current State and Recommendations
5.2. Urban Flood Risk: Spatial Gradients and Causes
Mitigating Urban Flood Risk
5.3. Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. About Small Island Developing States. Available online: https://www.un.org/ohrlls/content/about-small-island-developing-states (accessed on 24 July 2023).
- Keo, K.; Jo, Y. The State of Climate Ambition: Small Island Developing States (SIDS). Available online: https://climatepromise.undp.org/sites/default/files/research_report_document/Climate%20Ambition-SIDS%20v2.pdf (accessed on 3 September 2023).
- Pelling, M.; Uitto, J.I. Small island developing states: Natural disaster vulnerability and global change. Environ. Hazards 2001, 3, 49–62. [Google Scholar]
- Mycoo, M.; Wairiu, M.; Campbell, D.; Duvat, V.; Golbuu, Y.; Maharaj, S.; Nalau, J.; Nunn, P.; Pinnegar, J.; Warrick, O. Small Islands. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Portner, H.O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegria, A., Craig, M., Langsdorf, S., Loschke, S., Moller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022; pp. 2043–2121. [Google Scholar]
- Burgess, C.; Taylor, M.; Stephenson, T.; Mandal, A. Frequency analysis, infilling and trends for extreme precipitation for Jamaica (1895–2100). J. Hydrol. Reg. Stud. 2015, 3, 424–443. [Google Scholar] [CrossRef]
- Stennett-Brown, R.K.; Stephenson, T.S.; Taylor, M.A. Caribbean climate change vulnerability: Lessons from an aggregate index approach. PLoS ONE 2019, 14, e0219250. [Google Scholar] [CrossRef]
- Climate Studies Group Mona. State of the Jamaican Climate 2019: Information for Resilience Building (Second draft). 2020. Available online: https://www.pioj.gov.jm/product/the-state-of-thejamaican-climate-2019-historical-and-future-climate-changes-for-jamaica/ (accessed on 2 September 2023).
- The World Bank. Jamaica Hurricanes and Earthquakes Risk Profile. Available online: https://documents1.worldbank.org/curated/en/859361493272944514/pdf/114621-WP-PUBLIC-drp-jamaica.pdf (accessed on 23 July 2023).
- UNDESA Population Division. World Population Prospects. 2022. Available online: https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/388 (accessed on 20 July 2023).
- Wikipedia Contributors. Norman Manley International Airport. Wikipedia. Available online: https://en.wikipedia.org/wiki/Norman_Manley_International_Airport (accessed on 20 September 2023).
- Monioudi, I.Ν.; Asariotis, R.; Becker, A.; Bhat, C.; Dowding-Gooden, D.; Esteban, M.; Feyen, L.; Mentaschi, L.; Nikolaou, A.; Nurse, L.; et al. Climate change impacts on critical international transportation assets of Caribbean small island developing states (SIDS): The case of Jamaica and Saint Lucia. Reg. Environ. Chang. 2018, 18, 2211–2225. [Google Scholar] [CrossRef]
- Planning Institute of Jamaica. Jamaica Macro Socio-Economic and Environmental Assessment of the Damage and Loss Caused by Hurricane Sandy. Available online: https://www.pioj.gov.jm/product/damage-and-loss-assessments-2013-pioj-report-hurricane-sandy/ (accessed on 25 July 2023).
- Nandi, A.; Mandal, A.; Wilson, M.; Smith, D. Flood hazard mapping in Jamaica using principal component analysis and logistic regression. Environ. Earth Sci. 2016, 75, 465. [Google Scholar] [CrossRef]
- Burgess, C.P.; Taylor, M.A.; Stephenson, T.; Mandal, A.; Powell, L. A macro-scale flood risk model for Jamaica with impact of climate variability. Nat. Hazards 2015, 78, 231–256. [Google Scholar] [CrossRef]
- Glas, H.; Jonckheere, M.; Mandal, A.; James-Williamson, S.; De Maeyer, P.; Deruyter, G. A GIS-based tool for flood damage assessment and delineation of a methodology for future risk assessment: Case study for Annotto Bay, Jamaica. Nat. Hazards 2017, 88, 1867–1891. [Google Scholar] [CrossRef]
- Glas, H.; Deruyter, G.; De Maeyer, P.; Mandal, A.; James-Williamson, S. Analyzing the sensitivity of a flood risk assessment model towards its input data. Nat. Hazards Earth Syst. Sci. 2016, 16, 2529–2542. [Google Scholar] [CrossRef]
- Zermoglio, M.F.; Scott, O. Vulnerability Assessment of Jamaica’s Transport Sector. Available online: https://www.climatelinks.org/sites/default/files/asset/document/20180328_USAID-ATLAS_Vulnerability-Assessment-of-Jamaica-Transport-Sector_final.pdf (accessed on 20 July 2023).
- Ortega, S.T.; Losada, I.J.; Espejo, A.; Abad, S.; Narayan, S.; Beck, M.W. The flood protection benefits and restoration costs for mangroves in Jamaica. Available online: https://elibrary.worldbank.org/doi/epdf/10.1596/35166 (accessed on 30 July 2023).
- Taylor, M.A.; Mandal, A.; Burgess, C. Flooding in Jamaica: Causes and Controls. In Flooding and Climate Change Sectorial Impacts and Adaptation Strategies for the Caribbean Region; Chadee, D.D., Sutherland, J.M., Agard, J.B., Eds.; Nova Publishers: New York, NY, USA, 2014; pp. 163–185. [Google Scholar]
- Rhiney, K. Geographies of Caribbean vulnerability in a changing climate: Issues and trends. Geogr. Compass 2015, 9, 97–114. [Google Scholar] [CrossRef]
- Mandal, A.; Stephenson, T.; Campbell, J.; Taylor, M.; Watson, S.; Clarke, L.; Smith, D.; Darsan, J.; Wilson, M. An assessment of the impact of 1.5 versus 2 and 2.5 °C global temperature increase on flooding in Jamaica: A case study from the Hope watershed. Philos. Trans. Royal Soc. A 2022, 380, 20210141. [Google Scholar] [CrossRef] [PubMed]
- Altink, H. The politics of infrastructure in inner-city communities in Kingston, Jamaica, from 1962 to 2020. J. Urban Hist. 2022. advanced online publication. [Google Scholar] [CrossRef]
- Dodman, D.R. community perspectives on urban environmental problems in Kingston, Jamaica. Soc. Econ. Stud. 2004, 53, 31–59. [Google Scholar]
- Joseph, M.; Wang, F.; Wang, L. GIS-based assessment of urban environmental quality in Port-au-Prince, Haiti. Habitat Int. 2014, 41, 33–40. [Google Scholar] [CrossRef]
- National Library of Jamaica. History of Hurricanes and Floods. Available online: https://www.nlj.gov.jm/history-notes/History%20of%20Hurricanes%20and%20Floods%20in%20Jamaica.pdf (accessed on 30 July 2023).
- Economic Commission for Latin America. Jamaica Macro-Socio-Economic and Environmental Assessment of the Damage Done by Hurricane Ivan. Available online: https://www.pioj.gov.jm/product/damage-and-loss-assessments-2004-pioj-report-hurricane-ivan/ (accessed on 18 August 2023).
- Caribbean Development Bank. Eight Cluster Project Completion Validation Reports with Management Response. Available online: https://www.caribank.org/sites/default/files/publication-resources/NDMclusterPCVRsRRL%26IRLsVols1%262.pdf (accessed on 2 September 2023).
- Robinson, C. Kingston Exposed. Available online: https://www.pressreader.com/jamaica/jamaica-gleaner/20210523/281547998796116 (accessed on 10 July 2023).
- Avalon-Cullen, C.; Caudill, C.; Newlands, N.K.; Enenkel, M. Big data, small island: Earth observations for improving flood and landslide risk assessment in Jamaica. Geosci. J. 2023, 13, 64. [Google Scholar] [CrossRef]
- Junger, L.; Hohensinner, S.; Schroll, K.; Wagner, K.; Seher, W. Land use in flood-prone areas and its significance for flood risk management: A case study of alpine regions in Austria. Land 2022, 11, 392. [Google Scholar] [CrossRef]
- Wheater, H.; Evans, E. Land use, water management and future flood risk. Land Use Policy 2009, 26, S251–S264. [Google Scholar] [CrossRef]
- Palmer, S.E.; Burn, M.J.; Holmes, J. A multiproxy analysis of extreme wave deposits in a tropical coastal lagoon in Jamaica, West Indies. Nat. Hazards 2020, 104, 2531–2560. [Google Scholar] [CrossRef]
- Stanford University Natural Capital Project. InVEST. Available online: https://naturalcapitalproject.stanford.edu/software/invest (accessed on 1 September 2023).
- Silver, J.M.; Arkema, K.K.; Griffin, R.M.; Lashley, B.; Lemay, M.; Maldonado, S.; Moultrie, S.H.; Ruckelshaus, M.; Schill, S.; Thomas, A.; et al. Advancing coastal risk reduction science and implementation by accounting for climate, ecosystems, and people. Front. Mar. Sci. 2019, 6, 556. [Google Scholar] [CrossRef]
- Weiskopf, S.R.; Rubenstein, M.A.; Crozier, L.G.; Gaichas, S.; Griffis, R.; Halofsky, J.E.; Hyde, K.J.W.; Morelli, T.L.; Morisette, J.T.; Muñoz, R.C. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 2020, 733, 137782. [Google Scholar] [CrossRef] [PubMed]
- Sandifer, P.A.; Sutton-Grier, A.E.; Ward, B.P. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef]
- Mao, Y.; Harris, D.L.; Xie, Z.; Phinn, S. Global coastal geomorphology – integrating earth observation and geospatial data. Remote Sens. Environ. 2022, 278, 113082. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Allen Coral Atlas. Available online: https://www.allencoralatlas.org/ (accessed on 18 August 2023).
- Sayre, R.; Noble, S.; Hamann, S.; Smith, R.; Wright, D.; Breyer, S.; Butler, K.; Van Graafeiland, K.; Frye, C.; Karagulle, D.; et al. A New 30 Meter Resolution Global Shoreline Vector and Associated Global Islands Database for the Development of Standardized Ecological Coastal Units. J. Oper. Oceanogr. 2019, 12, S47–S56. [Google Scholar] [CrossRef]
- Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdόttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; et al. Ocean, cryosphere and sea level change. In Climate Change 2021: The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 1211–1361. [Google Scholar]
- Garner, G.G.; Hermans, T.; Kopp, R.E.; Slagen, A.B.A.; Edwards, T.L. IPCC AR6 Sea-Level Rise Projections. Version 20210809. 2021. Available online: https://podaac.jpl.nasa.gov/announcements/2021-08-09-Sea-level-projections-from-the-IPCC-6th-Assessment-Report (accessed on 19 August 2023).
- Kopp, R.; Garner, G.G.; Tim, H.J.; Jha, S.; Prabhash, K.; Slangen, A.B.A.; Turilli, M.; Edwards, T.; Gregory, J.M.; Koubbe, G.; et al. The Framework for Assessing Changes to Sea-Level (FACTS) V1.0-Rc: A Platform for Characterizing Parametric and Structural Uncertainty in Future Global, Relative, and Extreme Sea-Level Change. EGUsphere 2023, 2023, 1–34. [Google Scholar]
- Al-Ruheili, A.; Boluwade, A. Towards quantifying the coastal vulnerability due to natural hazards using the InVEST coastal vulnerability model. Water 2023, 15, 380. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, T.; Arkema, K.K.; Han, B.; Lu, F.; Ruckelshaus, M.; Ouyang, Z. Coastal vulnerability to climate change in China’s Bohai Economic Rim. Environ. Int. 2021, 147, 106359. [Google Scholar] [CrossRef]
- Ai, B.; Tian, Y.; Wang, P.; Gan, Y.; Luo, F.; Shi, Q. Vulnerability Analysis of Coastal Zone Based on InVEST Model in Jiaozhou Bay, China. Sustainability 2022, 14, 6913. [Google Scholar] [CrossRef]
- Barbier, E.B.; Koch, E.W.; Silliman, B.R.; Hacker, S.D.; Wolanski, E.; Primavera, J.; Granek, E.F.; Polasky, S.; Aswani, S.; Cramer, L.A. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 2008, 319, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Hopper, T.; Meixler, M.S. Modeling coastal vulnerability through space and time. PLoS ONE 2016, 11, e0163495. [Google Scholar] [CrossRef]
- Quagliolo, C.; Comino, E.; Pezzoli, A. Experimental flash floods assessment through urban flood risk mitigation (UFRM) model: The case study of Ligurian coastal cities. Front. Water 2021, 3, 663378. [Google Scholar] [CrossRef]
- Sebastiani, A.; Fares, S. Spatial prioritization of ecosystem services for land conservation: The case study of Central Italy. Forests 2023, 14, 145. [Google Scholar] [CrossRef]
- Salata, S.; Arslan, B. Designing with ecosystem modelling: The sponge district application in İzmir, Turkey. Sustain. Sci. 2022, 14, 3420. [Google Scholar] [CrossRef]
- Al-Ruheili, A.M. A tale of Shaheen’s cyclone consequences in Al Khaboura City, Oman. Water 2022, 14, 340. [Google Scholar] [CrossRef]
- Kadaverugu, A.; Kadaverugu, R.; Chintala, N.R.; Gorthi, K.V. Flood vulnerability assessment of urban micro-watersheds using multi-criteria decision making and InVEST model: A case of Hyderabad City, India. Model. Earth Syst. Environ. 2022, 8, 3447–3459. [Google Scholar] [CrossRef]
- Bose, S.; Mazumdar, A. Urban flood risk assessment and mitigation with InVEST-UFRM model: A case study on Kolkata City, West Bengal State (India). Arab. J. Geosci. 2023, 16, 320. [Google Scholar] [CrossRef]
- Hamel, P.; Guerry, A.D.; Polasky, S.; Han, B.; Douglass, J.A.; Hamann, M.; Janke, B.; Kuiper, J.J.; Levrel, H.; Liu, H.; et al. Mapping the benefits of nature in cities with the InVEST software. Npj Urban Sustain. 2021, 1, 25. [Google Scholar] [CrossRef]
- Planet OSM. Available online: https://planet.openstreetmap.org/ (accessed on 15 July 2023).
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S. ESA WorldCover 10m v200. Available online: https://developers.google.com/earth-engine/datasets/catalog/ESA_WorldCover_v200 (accessed on 18 August 2023).
- Bondarenko, M.; Kerr, D.; Sorichetta, A.; Tatem, A.J. Census/Projection-Disaggregated Gridded Population Datasets for 189 Countries in 2020 Using Built-Settlement Growth Model (BSGM) Outputs. 2020. Available online: https://hub.worldpop.org/doi/10.5258/SOTON/WP00684 (accessed on 18 August 2023).
- Center for International Earth Science Information Network, Columbia University. Global Gridded Relative Deprivation Index (GRDI), v1 (2010–2020). Available online: https://sedac.ciesin.columbia.edu/data/set/povmap-grdi-v1/metadata (accessed on 2 September 2023).
- Ranger, N.; Hallegatte, S.; Bhattacharya, S.; Bachu, M.; Priya, S.; Dhore, K.; Rafique, F.; Mathur, P.; Naville, N.; Henriet, F. An assessment of the potential impact of climate change on flood risk in Mumbai. Clim. Chang. 2011, 104, 139–167. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Lugeri, N.; Dankers, R.; Hirabayashi, Y.; Döll, P.; Pińskwar, I.; Dysarz, T.; Hochrainer, S.; Matczak, P. Assessing river flood risk and adaptation in Europe: Review of projections for the future. Mitig. Adapt. Strat. Glob. Chang. 2010, 15, 641–656. [Google Scholar] [CrossRef]
- Moreira, L.L.; De Brito, M.M.; Kobiyama, M. Review article: A systematic review and future prospects of flood vulnerability indices. Nat. Hazard. Earth Syst. Sci. 2021, 21, 1513–1530. [Google Scholar] [CrossRef]
- Rufat, S.; Tate, E.; Burton, C.G.; Maroof, A.S. Social vulnerability to floods: Review of case studies and implications for measurement. Int. J. Disaster Risk Reduct. 2015, 14, 470–486. [Google Scholar] [CrossRef]
- QGIS Project. QGIS User Guide. Available online: https://docs.qgis.org/3.28/en/docs/user_manual/index.html (accessed on 3 September 2023).
- Ajibade, I.; McBean, G.; Bezner-Kerr, R. Urban flooding in Lagos, Nigeria: Patterns of vulnerability and resilience among women. Glob. Environ. Chang. 2013, 23, 1714–1725. [Google Scholar] [CrossRef]
- Nasiri, H.; Mohd Yusof, M.J.; Mohammad Ali, T.A. An overview to flood vulnerability assessment methods. Sustain. Water Res. Manag. 2016, 2, 331–336. [Google Scholar] [CrossRef]
- De Brito, M.M.; Evers, M.; Delos Santos Almoradie, A. Participatory flood vulnerability assessment: A multi-criteria approach. Hydrol. Earth Syst. Sci. 2018, 22, 373–390. [Google Scholar] [CrossRef]
- Fekete, A. Spatial disaster vulnerability and risk assessments: Challenges in their quality and acceptance. Nat. Hazards 2012, 61, 1161–1178. [Google Scholar] [CrossRef]
- Spalding, M.D.; Ruffo, S.; Lacambra, C.; Meliane, I.; Hale, L.Z.; Shepard, C.C.; Beck, M.W. The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean Coast. Manag. 2014, 90, 50–57. [Google Scholar] [CrossRef]
- Beck, M.W.; Losada, I.J.; Menéndez, P.; Reguero, B.G.; Díaz-Simal, P.; Fernández, F. The global flood protection savings provided by coral reefs. Nat. Commun. 2018, 9, 2186. [Google Scholar] [CrossRef]
- Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, I.J.; van Wesenbeeck, B.; Pontee, N.; Sanchirico, J.N.; Ingram, J.C.; Lange, G.-M.; Burks-Copes, K.A. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 2016, 11, e0154735. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- World Meteorological Organization. Global Annual to Decadal Climate Update (Target Years: 2023–2027). Available online: https://reliefweb.int/report/world/wmo-global-annual-decadal-climate-update-target-years-2023-2027#:~:text=There%20is%20a%2066%25%20likelihood,be%20the%20warmest%20on%20record (accessed on 3 September 2023).
- Arkema, K.K.; Guannel, G.; Verutes, G.; Wood, S.A.; Guerry, A.; Ruckelshaus, M.; Kareiva, P.; Lacayo, M.; Silver, J.M. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Chang. 2013, 3, 913–918. [Google Scholar] [CrossRef]
- Oxoli, D.; Prestifilippo, G.; Bertocchi, D. Enabling spatial autocorrelation mapping in QGIS: The hotspot analysis Plugin. GEAM. Geoing. Ambient. E Mineraria 2017, 151, 45–50. [Google Scholar]
- Kadaverugu, A.; Nageshwar Rao, C.; Viswanadh, G.K. Quantification of flood mitigation services by urban green spaces using InVEST model: A case study of Hyderabad city, India. Model. Earth Syst. Environ. 2021, 7, 589–602. [Google Scholar] [CrossRef]
- Thouret, J.; Ettinger, S.; Guitton, M.; Santoni, O.; Magill, C.; Martelli, K.; Zuccaro, G.; Revilla, V.; Charca, J.A.; Arguedas, A. Assessing physical vulnerability in large cities exposed to flash floods and debris flows: The case of Arequipa (Peru). Nat. Hazards 2014, 73, 1771–1815. [Google Scholar] [CrossRef]
- Qin, Y. Urban flooding mitigation techniques: A systematic review and future studies. Water 2020, 12, 3579. [Google Scholar] [CrossRef]
- Sanyal, J.; Lu, X.X. GIS-based flood hazard mapping at different administrative scales: A case study in Gangetic West Bengal, India. Singap. J. Trop. Geogr. 2006, 27, 207–220. [Google Scholar] [CrossRef]
- Feller, G. Investment flows into Jamaica – Will the Kingston’s Container Terminal upgrade help? Am. J. Transp. Insights 2019. Available online: https://www.ajot.com/insights/full/ai-investment-flows-into-jamaica-will-the-kingstonscontainer-terminal-upgrade-help (accessed on 26 July 2023).
- Trench, C.; Small, H.; Morrison, L.; Webber, D.; Webber, M. Coral and algal community primary succession on new vertical substrate at Rackham’s Cay, Port Royal, Jamaica. Rev. Biol. Trop. 2014, 62, 330–337. [Google Scholar] [CrossRef]
- National Environment & Planning Agency. Kingston Harbour, Bring back the Life! 2020. Available online: https://websitearchive2020.nepa.gov.jm/new/services_products/publications/brochures/docs/kgn_harbour2_white.pdf (accessed on 26 July 2023).
- Jamaica Observer. The Dream of a Clean, Healthy Kingston Harbour. Available online: https://www.jamaicaobserver.com/editorial/the-dream-of-a-clean-healthy-kingston-harbour/ (accessed on 26 July 2023).
- Liu, H.A.; Broomfield, S.A.; Duncan, A.F.; Grant, L.O.; Francis, P.A.; Webber, D.F.; Webber, M.K. Assessing the phytoplankton and water quality of Kingston Harbour and Hellshire coast, Jamaica, after the implementation of a waste water treatment facility. Int. J. Trop. Biol. 2014, 62, 241–248. [Google Scholar]
- Rose, D.; Webber, M. Characterization of microplastics in the surface waters of Kingston Harbour. Sci. Total Environ. 2019, 664, 753–760. [Google Scholar] [CrossRef]
- Lee, S.; Hall, G.; Trench, C. The role of Nature-based Solutions in disaster resilience in coastal Jamaica: Current and potential applications for ‘building back better’. Disasters 2022, 46, S78–S100. [Google Scholar] [CrossRef]
- Serju, C. Seawall Project to Offer Benefits to Communities. Available online: https://jamaica-gleaner.com/article/news/20200930/seawall-project-offer-benefits-communities (accessed on 12 July 2023).
- Cross, J. US$280 Million to Save Kingston from Storm Surges. Available online: https://www.jamaicaobserver.com/news/us280-million-to-save-kingston-from-storm-surges/ (accessed on 18 August 2023).
- Sutton-Grier, A.E.; Wowk, K.; Bamford, H. Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 2015, 51, 137–148. [Google Scholar] [CrossRef]
- Morris, R.L.; Konlechner, T.M.; Ghisalberti, M.; Swearer, S.E. From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defence. Glob. Chang. Biol. 2018, 24, 1827–1842. [Google Scholar] [CrossRef]
- Schoonees, T.; Gijón Mancheño, A.; Scheres, B.; Bouma, T.J.; Silva, R.; Schlurmann, T.; Schüttrumpf, H. Hard structures for coastal protection, towards greener designs. Estuaries Coasts 2019, 42, 1709–1729. [Google Scholar] [CrossRef]
- Spalding, M.D.; McIvor, A.L.; Beck, M.W.; Koch, E.W.; Möller, I.; Reed, D.J.; Rubinoff, P.; Spencer, T.; Tolhurst, T.J.; Wamsley, T.V. Coastal ecosystems: A critical element of risk reduction. Conserv. Lett. 2014, 7, 293–301. [Google Scholar] [CrossRef]
- Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Perrette, M.; Nicholls, R.J.; Tol, R.S.J.; Marzeion, B.; Fettweis, X.; Ionescu, C.; Levermann, A. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. USA 2014, 111, 3292–3297. [Google Scholar] [CrossRef]
- Firth, L.B.; Thompson, R.C.; Bohn, K.; Abbiati, M.; Airoldi, L.; Bouma, T.J.; Bozzeda, F.; Ceccherelli, V.U.; Colangelo, M.A.; Evans, A.; et al. Between a rock and a hard place: Environmental and engineering considerations when designing coastal defence structures. Coast. Eng. 2014, 87, 122–135. [Google Scholar] [CrossRef]
- Dyson, K.; Yocom, K. Ecological design for urban waterfronts. Urban Ecosyst. 2015, 18, 189–208. [Google Scholar] [CrossRef]
- Liu, N.; Salauddin, M.; Yeganeh-Bakhtiari, A.; Pearson, J.; Abolfathi, S. The impact of eco-retrofitting on coastal resilience enhancement: A physical modelling study. In Proceedings of the 9th International Conference on Coastal and Ocean Engineering (ICCOE 2022), Online, 8–10 April 2022; Volume 1072, p. 012005. [Google Scholar]
- Salauddin, M.; O’Sullivan, J.J.; Abolfathi, S.; Pearson, J.M. Eco-engineering of seawalls: An opportunity for enhanced climate resilience from increased topographic complexity. Front. Mar. Sci. 2021, 8, 674630. [Google Scholar] [CrossRef]
- South Florida Caribbean News. Kingston Harbour Walk Set to Revitalize Waterfront. Available online: https://sflcn.com/kingston-harbour-walk-set-to-revitalize-waterfront/ (accessed on 31 July 2023).
- He, Q.; Silliman, B.R. Climate change, human impacts, and coastal ecosystems in the Anthropocene. Curr. Biol. 2019, 29, R1021–R1035. [Google Scholar] [CrossRef]
- Jamaica, K. The Climate and Ocean Risk Vulnerability Index. 2020. Available online: http://www.jstor.org/stable/resrep30855.10 (accessed on 18 August 2023).
- Tindigarukayo, J. An attempt to empower Jamaican squatters. Environ. Urban. 2004, 16, 199–210. [Google Scholar] [CrossRef]
- Planning Institute of Jamaica. Voluntary National Review Report on the 2030 Agenda and the Sustainable Development Goals. Available online: https://www.pioj.gov.jm/product/voluntary-national-review-report-on-the-2030-agenda-and-the-sustainable-development-goals/#:~:text=It%20includes%20the%20main%20VNR,localization%20and%20Corporate%20Social%20Responsibility (accessed on 3 September 2023).
- Kinlocke, R.; Ferguson, T.; Thomas-Hope, E. The Urban Food System of Kingston, Jamaica. Available online: https://www.researchgate.net/publication/335210014_The_Urban_Food_System_of_Kingston_Jamaica (accessed on 18 August 2023).
- Walker, K. Two Washed Away in Flooded Sandy Gully. Available online: https://www.jamaicaobserver.com/news/two-washed-away-in-flooded-sandy-gully/ (accessed on 18 August 2023).
- Lewis, E. Flooding Exposes Jamaica’s Poor Planning and Environmental Practices. Available online: http://www.sela.org/es/prensa/servicio-informativo/20170524/si/25388/flooding-exposes-jamaica-s-poor-planning (accessed on 18 August 2023).
- Magnan, A.K.; Schipper, E.L.F.; Burkett, M.; Bharwani, S.; Burton, I.; Eriksen, S.; Gemenne, F.; Schaar, J.; Ziervogel, G. Addressing the risk of maladaptation to climate change. Clim. Chang. 2016, 7, 646–665. [Google Scholar] [CrossRef]
- Schipper, E.L.F. Maladaptation: When adaptation to climate change goes very wrong. One Earth 2020, 3, 409–414. [Google Scholar] [CrossRef]
- Green, D.; O’Donnell, E.; Johnson, M.; Slater, L.; Thorne, C.; Zheng, S.; Stirling, R.; Chan, F.K.S.; Li, L.; Boothroyd, R.J. Green infrastructure: The future of urban flood risk management. Water 2021, 8, e1560. [Google Scholar] [CrossRef]
- Astuti, I.S.; Sahoo, K.; Milewski, A.; Mishra, D.R. Impact of land use land cover (LULC) change on surface runoff in an increasingly urbanized tropical watershed. Water Resour. Manag. 2019, 33, 4087–4103. [Google Scholar] [CrossRef]
- Parkinson, J.; Tayler, K.; Mark, O. Planning and design of urban drainage systems in informal settlements in developing countries. Urban Water J. 2007, 4, 137–149. [Google Scholar] [CrossRef]
- Armitage, N.; Beauclair, R.; Ashipala, N.; Spiegel, A. Draining the shantytowns: Lessons from Kosovo informal settlement, Cape Town, South Africa. In Proceedings of the Novatech 2010-7ème Conférence Internationale sur les Techniques et Stratégies Durables Pour la Gestion des Eaux Urbaines par Temps de pluie/7th International Conference on Sustainable Techniques and Strategies for Urban Water Management, Lyon, France, 28 June–1 July 2010; Graie: Lyon, France, 2011; pp. 1–8. [Google Scholar]
- Erena, S.H.; Worku, H. Flood risk analysis: Causes and landscape based mitigation strategies in Dire Dawa City, Ethiopia. Geoenviron. Disasters 2018, 5, 16. [Google Scholar] [CrossRef]
- Cools, J.; Innocenti, D.; O’Brien, S. Lessons from flood early warning systems. Environ. Sci. Policy 2016, 58, 117–122. [Google Scholar] [CrossRef]
- Rana, I.A.; Bhatti, S.S.; Jamshed, A. Effectiveness of flood early warning system from the perspective of experts and three affected communities in urban areas of Pakistan. Environ. Hazards 2021, 20, 209–228. [Google Scholar] [CrossRef]
- Garcia, C.; Fearnley, C.J. Evaluating critical links in early warning systems for natural hazards. Environ. Hazards 2012, 11, 123–137. [Google Scholar] [CrossRef]
- Kiptum, A.; Mwangi, E.; Otieno, G.; Njogu, A.; Kilavi, M.; Mwai, Z.; MacLeod, D.; Neal, J.; Hawker, L.; O’Shea, T.; et al. Advancing operational flood forecasting, early warning and risk management with new emerging science: Gaps, opportunities and barriers in Kenya. J. Flood Risk Manag. 2023, e12884. [Google Scholar] [CrossRef]
- Hall, A. Harbour View Flooded, Again. Available online: https://jamaica-gleaner.com/gleaner/20100928/lead/lead5.html (accessed on 22 August 2023).
- Morgan-Lindo, S. Harbour View Residents in Fear: Say Flooding in Unfinished Gully Threatening Their Homes. Available online: https://jamaica-star.com/article/news/20190927/harbour-view-residents-fear-say-flooding-unfinished-gully-threatening-their (accessed on 22 August 2023).
- Reisinger, A.; Howden, M.; Vera, C.; Garschagen, M.; Hurlbert, M.; Kreibiehl, S.; Mach, K.J.; Mintenbeck, K.; O’neill, B.; Pathak, M.; et al. The Concept of Risk in the IPCC Sixth Assessment Report: A Summary of Cross-Working Group Discussions. Available online: https://www.ipcc.ch/site/assets/uploads/2021/02/Risk-guidance-FINAL_15Feb2021.pdf (accessed on 17 July 2023).
- Merz, B.; Blöschl, G.; Vorogushyn, S.; Dottori, F.; Aerts, J.C.J.H.; Bates, P.; Bertola, M.; Kemter, M.; Kreibich, H.; Lall, U.; et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2021, 2, 592–609. [Google Scholar] [CrossRef]
- Ross, C.W.; Prihodko, L.; Anchang, J.; Kumar, S.; Ji, W.; Hanan, N.P. HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling. Sci. Data 2018, 5, 180091. [Google Scholar] [CrossRef] [PubMed]
Data | Source | Resolution |
---|---|---|
Coastal geomorphology | Mao et. al (2022) [37] | 10 m |
Digital Elevation Model | Shuttle Radar Topography Mission [38] | 30 m |
Coastal and marine natural habitats | Global Mangrove Watch [39]; Allen Coral Atlas [40] | 25 m; 5 m |
Sea level rise projections | IPCC AR6 [41,42,43] | 111 km |
Exposure to wind and waves | NOAA WAVEWATCH3 (embedded in model) | 50 km |
Distance from continental shelf (storm surge potential) | Embedded in model | Vector |
Exposure Rank | |||||
---|---|---|---|---|---|
Variable | 1—Very Low Exposure | 2—Low | 3—Moderate | 4—High | 5—Very High |
Natural habitats | Coral reef, mangroves | - | - | Sea grass | Bare |
Shoreline type (geomorphology) | - | - | Bedrock, revetment | Wetland | Beach |
Elevation | First quantile | Second | Third | Fourth | Fifth |
Wave exposure | First quantile | Second | Third | Fourth | Fifth |
Wind exposure | First quantile | Second | Third | Fourth | Fifth |
Surge potential | First quantile | Second | Third | Fourth | Fifth |
Sea level rise | 0–13 cm | 13–26 cm | 26–39 cm | 39–52 cm | 52–65 cm |
Data | Source | Resolution |
---|---|---|
Runoff retention index | inVEST UFRM model [34] | Vector |
Building density | OpenStreetMap [57] | Vector |
Road density | OpenStreetMap [57] | Vector |
Tree cover | Zanaga et al. (2022) [58] | 10 m |
Population density | Bondarenko et al. (2020) [59] | 100 m |
Deprivation index | CIESIN (2022) [60] | 1000 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivosecchi, A.; Singh, M. Small Island City Flood Risk Assessment: The Case of Kingston, Jamaica. Water 2023, 15, 3936. https://doi.org/10.3390/w15223936
Rivosecchi A, Singh M. Small Island City Flood Risk Assessment: The Case of Kingston, Jamaica. Water. 2023; 15(22):3936. https://doi.org/10.3390/w15223936
Chicago/Turabian StyleRivosecchi, Andrea, and Minerva Singh. 2023. "Small Island City Flood Risk Assessment: The Case of Kingston, Jamaica" Water 15, no. 22: 3936. https://doi.org/10.3390/w15223936
APA StyleRivosecchi, A., & Singh, M. (2023). Small Island City Flood Risk Assessment: The Case of Kingston, Jamaica. Water, 15(22), 3936. https://doi.org/10.3390/w15223936