Spatiotemporal Variations in Actual Evapotranspiration Based on LPJ Model and Its Driving Mechanism in the Three Gorges Reservoir Area
Abstract
:1. Introduction
2. Material and Methodology
2.1. Study Area
2.2. LPJ Model
2.2.1. Model Description
2.2.2. Model Input
2.2.3. Accuracy Validation
2.3. Analysis Methods
2.3.1. Change Characteristics Analysis
2.3.2. Driving Mechanism of AET
3. Results
3.1. Validation of AET Simulation Results
3.2. Spatial and Temporal Characteristics of Variations in AET
3.3. Analysis of Driving Mechanism for AET in the TGRA
3.3.1. Correlation Analysis
3.3.2. Change Characteristics of Key Climatic Factors
3.3.3. Sensitivity Analysis
3.3.4. Contribution of Driving Factors to the Change in AET
4. Discussion
4.1. Reliability of the Simulated AET
4.2. Distribution and Variations in AET Components
4.3. Limitations and Future Improvements
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, B.; Yan, N.; Xiong, J.; Bastiaanssen, W.G.M.; Zhu, W.; Stein, A. Validation of ETWatch using field measurements at diverse landscapes: A case study in Hai Basin of China. J. Hydrol. 2012, 436-437, 67–80. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Gan, T.Y. Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data. Agric. Water Manag. 2019, 212, 35–47. [Google Scholar] [CrossRef]
- Wu, B.; Zhu, W.; Yan, N.; Xing, Q.; Xu, J.; Ma, Z.; Wang, L. Regional Actual Evapotranspiration Estimation with Land and Meteorological Variables Derived from Multi-Source Satellite Data. Remote Sens. 2020, 12, 332. [Google Scholar] [CrossRef]
- Su, W.; Shao, H.; Xian, W.; Xie, Z.; Zhang, C.; Yang, H. Quantification of Spatiotemporal Variability of Evapotranspiration (ET) and the Contribution of Influencing Factors for Different Land Cover Types in the Yunnan Province. Water 2023, 15, 3309. [Google Scholar] [CrossRef]
- Yao, J.; Mao, W.; Yang, Q.; Xu, X.; Liu, Z. Annual actual evapotranspiration in inland river catchments of China based on the Budyko framework. Stoch. Environ. Res. Risk Assess. 2016, 31, 1409–1421. [Google Scholar] [CrossRef]
- Shi, Z.; Xu, L.; Yang, X.; Guo, H.; Dong, L.; Song, A.; Zhang, X.; Shan, N. Trends in reference evapotranspiration and its attribution over the past 50 years in the Loess Plateau, China: Implications for ecological projects and agricultural production. Stoch. Environ. Res. Risk Assess. 2017, 31, 257–273. [Google Scholar] [CrossRef]
- Ji, Y.; Tang, Q.; Yan, L.; Wu, S.; Yan, L.; Tan, D.; Chen, J.; Chen, Q. Spatiotemporal Variations and Influencing Factors of Terrestrial Evapotranspiration and Its Components during Different Impoundment Periods in the Three Gorges Reservoir Area. Water 2021, 13, 2111. [Google Scholar] [CrossRef]
- Jiao, P.; Hu, S. Estimation of Evapotranspiration in the Desert–Oasis Transition Zone Using the Water Balance Method and Groundwater Level Fluctuation Method—Taking the Haloxylon ammodendron Forest at the Edge of the Gurbantunggut Desert as an Example. Water 2023, 15, 1210. [Google Scholar] [CrossRef]
- Wei, L.; Duan, K.; Liu, X.; Lin, Y.; Chen, X.; Wang, X. Assessing human-induced evapotranspiration change based on multi-source data and Bayesian model averaging at the basin scale. Shuili Xuebao 2022, 53, 433–444. [Google Scholar] [CrossRef]
- Duan, K.; Sun, G.; Liu, N. A review of research on watershed water-carbon balance evolution in a changing environment. Shuili Xuebao 2021, 52, 300–309. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, G.; Shang, S.; Qin, W.; Zhang, Y.; Su, Y.; Zhang, K.; Zhu, Y.; Xu, C. Uncertainties in partitioning evapotranspiration by two remote sensing-based models. J. Hydrol. 2022, 604, 127223. [Google Scholar] [CrossRef]
- Mekonnen, K.; Melesse, A.M.; Woldesenbet, T.A. How suitable are satellite rainfall estimates in simulating high flows and actual evapotranspiration in MelkaKunitre catchment, Upper Awash Basin, Ethiopia? Sci. Total Environ. 2022, 806, 150443. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Duan, Y.; Duan, J.; Jian, D.; Ma, Z. A daily drought index based on evapotranspiration and its application in regional drought analyses. Sci. China Earth Sci. 2022, 65, 317–336. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, L.; Geurink, J.S.; Parajuli, K.; Wang, D. Climatic Control on Mean Annual Groundwater Evapotranspiration in a Three-Stage Precipitation Partitioning Framework. Water Resour. Res. 2023, 59, e2022WR034167. [Google Scholar] [CrossRef]
- Chen, H.; Liu, H.; Chen, X.; Qiao, Y. Analysis on impacts of hydro-climatic changes and human activities on available water changes in Central Asia. Sci. Total Environ. 2020, 737, 139779. [Google Scholar] [CrossRef]
- Sitch, S.; Huntingford, C.; Gedney, N.; Levy, P.E.; Lomas, M.; Piao, S.L.; Betts, R.; Ciais, P.; Cox, P.; Friedlingstein, P.; et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Chang. Biol. 2008, 14, 2015–2039. [Google Scholar] [CrossRef]
- Che, M.; Chen, B.; Wang, Y.; Guo, X. Review of dynamic global vegetation models (DGVMs). Chin. J. Appl. Ecol. 2014, 25, 263–271. [Google Scholar]
- Wang, G.; Qian, J.; Cheng, G. Current situation and prospet of the ecological hydrology. Adv. Earth Sci. 2001, 16, 314–323. [Google Scholar]
- Smith, B.; Sykes, P.M.T. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space. Glob. Ecol. Biogeogr. 2001, 10, 621–637. [Google Scholar] [CrossRef]
- Bonan, G.; Levis, S.; Sitch, S.; Vertenstein, M.; Oleson, K. A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics. Glob. Chang. Biol. 2003, 9, 1543–1566. [Google Scholar] [CrossRef]
- Thonicke, K.; Venevsky, S.; Sitch, S.; Cramer, W. The role of fire disturbance for global vegetation dynamics: Coupling fire into a Dynamic Global Vegetation Model. Glob. Ecol. Biogeogr. 2001, 10, 661–677. [Google Scholar] [CrossRef]
- Venevsky, S.; Maksyutov, S. SEVER: A modification of the LPJ global dynamic vegetation model for daily time step and parallel computation. Environ. Model. Softw. 2007, 22, 104–109. [Google Scholar] [CrossRef]
- Renwick, K.M.; Fellows, A.; Flerchinger, G.N.; Lohse, K.A.; Clark, P.E.; Smith, W.K.; Emmett, K.; Poulter, B. Modeling phenological controls on carbon dynamics in dryland sagebrush ecosystems. Agric. For. Meteorol. 2019, 274, 85–94. [Google Scholar] [CrossRef]
- Sitch, S.; Smith, B.; Prentice, I.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.; Levis, S.; Lucht, W.; Sykes, M.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Zhao, M.; Yue, T.; Zhao, N.; Sun, X.; Zhang, X. Combining LPJ-GUESS and HASM to simulate the spatial distribution of forest vegetation carbon stock in China. J. Geogr. Sci. 2014, 24, 249–268. [Google Scholar] [CrossRef]
- Sun, G.; Mu, M. Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model. Clim. Chang. 2013, 120, 755–769. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Z.; Tian, J.; Huang, R.; Kong, R.; Zhu, B.; Zhu, M.; Wang, Y.; Chen, X. Forest NPP simulation in the Yangtze River Basin and its response to climate change. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2021, 45, 175–181. [Google Scholar]
- Zhao, D.; Wu, S.; Yin, Y. Variation trends of natural vegetation net primary productivity in China under climate change scenario. Chin. J. Appl. Ecol. 2011, 22, 897–904. [Google Scholar] [CrossRef]
- Hao, B.; Yang, H.; Ma, M.; Hao, D.; Liu, Y.; Han, X.; Li, S.; Lai, P. Variation in Land Use and Land Surface Parameters in the Three Gorges Reservoir Catchment Based on Google Earth Engine. Resour. Environ. Yangtze Basin 2020, 29, 1343–1355. [Google Scholar]
- Luo, R.; Luo, D.; Xiao, J. A Brief Analysis of the Categories and Characteristics of Reservoir Area Towns’ Cityscape Changes along the River in the Post Three Gorges Period: Case Studies of Wanzhou, Wushan and Yunyang. Ecol. Environ. Landsc. 2020, 38, 5–11+43. [Google Scholar]
- Lv, S. Study on Land Use Change and Ecological Service Value in the Three Gorges Reservoir Area. Master’s Thesis, Southwest University, Chongqing, China, 2019. [Google Scholar]
- Shao, P.; Zeng, X. Progress in the study of the effects of land use and Land cover change on the climate system. Clim. Environ. Res. 2012, 17, 103–111. [Google Scholar]
- Zhai, J.; Liu, R.; Liu, J.; Zhao, G.; Huang, L. Radiative forcing over China due to albedo change caused by land cover change during 1990–2010. J. Geogr. Sci. 2013, 68, 875–885. [Google Scholar] [CrossRef]
- Liu, F.; Tao, F.; Xiao, D.; Zhang, S.; Wang, M.; Zhang, H. Influence of land use change on surface energy balance and climate: Results from SiB2 model simulation. Prog. Geogr. 2014, 33, 815–824. [Google Scholar]
- Ding, X.; Zhou, H.; Wang, Y.; Lei, X. Prediction and evaluation on status of water cycle elements within area of Three Gorges Reservoir. Water Resour. Hydropower Eng. 2011, 42, 1–5. [Google Scholar]
- Yang, H.; Wang, G.; Wang, L.; Zheng, B. Impact of land use changes on water quality in headwaters of the Three Gorges Reservoir. Environ. Sci. Pollut. Res. Int. 2016, 23, 11448–11460. [Google Scholar] [CrossRef] [PubMed]
- Webber, M.; Li, M.T.; Chen, J.; Finlayson, B.; Chen, D.; Chen, Z.Y.; Wang, M.; Barnett, J. Impact of the Three Gorges Dam, the South–North Water Transfer Project and water abstractions on the duration and intensity of salt intrusions in the Yangtze River estuary. Hydrol. Earth Syst. Sci. 2015, 19, 4411–4425. [Google Scholar] [CrossRef]
- Yue, P. Land Use/Cover Change and it’s Eco-Environment Effect of Typical Districts in the Three Gorges Reservoir Region (Chongqing). Ph.D. Thesis, Southwest University, Chongqing, China, 2010. [Google Scholar]
- Nakayama, T.; Shankman, D. Impact of the Three-Gorges Dam and water transfer project on Changjiang floods. Glob. Planet. Chang. 2013, 100, 38–50. [Google Scholar] [CrossRef]
- Xiao, Q.; Hu, D.; Xiao, Y. Assessing changes in soil conservation ecosystem services and causal factors in the Three Gorges Reservoir region of China. J. Clean. Prod. 2017, 163, 172–180. [Google Scholar] [CrossRef]
- Meng, H.; Zhou, Q.; Li, M.; Chen, P.; Tan, M. Topographic Distribution Characteristics of Vegetation Cover Change in the Three Gorges Reservoir Area Based on MODIS Pixel Scale. Resour. Environ. Yangtze Basin 2020, 29, 1790–1799. [Google Scholar]
- Li, Y.C.; Liu, C.X.; Min, J.; Wang, C.J.; Zhang, H.; Wang, Y. RS/GIS-based integrated evaluation of the ecosystem services of the Three Gorges Reservoir area (Chongqing section). Acta Ecol. Sin. 2013, 33, 168–178. [Google Scholar]
- Bonan, G.; Levis, S.; Kergoat, L.; Oleson, K. Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Glob. Biogeochem. Cycles 2002, 16, 5–1–5-23. [Google Scholar] [CrossRef]
- Huang, W. Impacts of Climate Change on Typical Ecohydrological Variables in the Upper-Middle Reaches of Heihe River Basin. Master’s Thesis, China University of Geosciences, Qinhuangdao, China, 2018. [Google Scholar]
- Chen, Y.; Yang, K.; Tang, W.; Li, X.; Lu, H.; He, J.; Qin, J. China meteorological forcing dataset (1979–2018). Natl. Tibet. Plateau Data Cent. 2015. [Google Scholar] [CrossRef]
- Sen, P. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Güçlü, Y.S. Improved visualization for trend analysis by comparing with classical Mann-Kendall test and ITA. J. Hydrol. 2020, 584, 124674. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra Rao, A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Güçlü, Y.S. Multiple Şen-innovative trend analyses and partial Mann-Kendall test. J. Hydrol. 2018, 566, 685–704. [Google Scholar] [CrossRef]
- Beven, K. A Sensitivity Analysis of the Penman-Monteith Actual Evapotranspiration Estimates. J. Hydrol. 1979, 44, 169–190. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, Z.; Zuo, D.; Wang, X. Temporal variations of reference evapotranspiration and its sensitivity to meteorological factors in Heihe River Basin, China. Water Sci. Eng. 2015, 8, 1–8. [Google Scholar] [CrossRef]
- Yang, S.Y.; Meng, D.; Li, X.J.; Wu, X.L. Multi-scale responses of vegetation changes relative to the SPEI meteorological drought index in North China in 2001–2014. Acta Ecol. Sin. 2018, 38, 1028–1039. [Google Scholar]
- Yan, R.; Li, L. Exploring the Influence of Seasonal Cropland Abandonment on Evapotranspiration and Water Resources in the Humid Lowland Region, Southern China. Water Resour. Res. 2022, 58, e2021WR031888. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, W.; Zhao, Y.; Wang, Y.; Hou, B.; Zhou, Y.; Yang, H.; Zhang, X.; Cui, H. The Spatiotemporal Variability of Evapotranspiration and Its Response to Climate Change and Land Use/Land Cover Change in the Three Gorges Reservoir. Water 2019, 11, 1739. [Google Scholar] [CrossRef]
- Cui, H.; Wang, L.; Wang, H.; Xiao, W.; Hou, B.; Gao, B. Temporal and Spatial Changes of Actual Evapotranspiration and Its Relationship with Meteorological Factors in the Three Gorges Reservoir Area. Res. Soil Water Conserv. 2021, 28, 193–202. [Google Scholar] [CrossRef]
- Cao, X.; Xing, W.; Fu, Q.; Yang, L. Evolution characteristics and driving mechanism of actual evapotranspiration in the middle and lower reaches of the Yangtze River. J. North China Univ. Water Resour. Electr. Power (Nat. Sci. Ed.) 2023, 1–11. [Google Scholar]
- Song, Z.; Liang, S.; Feng, L.; He, T.; Song, X.-P.; Zhang, L. Temperature changes in Three Gorges Reservoir Area and linkage with Three Gorges Project. J. Geophys. Res. Atmos. 2017, 122, 4866–4879. [Google Scholar] [CrossRef]
- Gao, L.; Chen, H.; Sun, S. Impacts of Three Gorges Project on Land Surface Temperature Based on MODIS Dataset. Progress. Inquisitionesde Mutat. Clim. 2014, 10, 226–234. [Google Scholar]
- Tao, Y.; Wang, Y.; Rhoads, B.; Wang, D.; Ni, L.; Wu, J. Quantifying the impacts of the Three Gorges Reservoir on water temperature in the middle reach of the Yangtze River. J. Hydrol. 2020, 582, 124476. [Google Scholar] [CrossRef]
PFT (Unit) | Tc_min | Tc_max | GDD5_min | Tw_min | Tw_max | Leaflong | Rootdist |
---|---|---|---|---|---|---|---|
Tropical rainforest | 12 | - | - | - | - | 0.5 | 0.7/0.3 |
Tropical broadleaved evergreen tree | 12 | - | - | - | - | 2 | 0.85/0.15 |
Temperate needleleaved evergreen tree | −2 | 22 | 900 | - | - | 2 | 0.6/0.4 |
Temperate broadleaved evergreen tree | 0 | 14 | 1500 | - | - | 1 | 0.7/0.3 |
Temperate broadleaved deciduous tree | −17 | 0 | 1500 | - | - | 0.5 | 0.65/0.35 |
Northern needleleaved evergreen tree | 0 | −25 | 550 | 23 | - | 0.5 | 0.9/0.1 |
Northern needleleaved deciduous tree | - | −2 | 350 | 23 | 43 | 2 | 0.9/0.1 |
Northern broadleaved deciduous tree | - | −15 | 350 | 23 | - | 0.5 | 0.9/0.1 |
Temperate desert scrub | - | −5 | 350 | 23 | - | 1 | 0.9/0.1 |
Tropical herb | 15 | - | - | 12 | - | 1 | 0.9/0.1 |
Temperate herb | ·- | −8 | - | - | - | 1 | 0.9/0.1 |
Cold herb | - | −12 | - | - | - | 1 | 0.9/0.1 |
Data Type | Source | Website | Resolution | Time Scale |
---|---|---|---|---|
Monthly temperature (T) | China meteorological forcing dataset [45] | https://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49/ (accessed on 1 January 2023) | 0.1°/3 h | January 1981~December 2018 |
Monthly precipitation (P) | China meteorological forcing dataset [45] | https://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49/ (accessed on 1 January 2023) | 0.1°/3 h | January 1981~December 2018 |
Monthly cloud cover | CRU TS Version 4.07 | https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.07/cruts.2304141047.v4.07/ (accessed on 1 January 2023) | 0.5° | January 1981~December 2020 |
Monthly wet days | CRU TS Version 4.07 | https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.07/cruts.2304141047.v4.07/ (accessed on 1 January 2023) | 0.5° | January 1981~December 2020 |
Soil texture | Geographic data platform of Peking university | https://geodata.pku.edu.cn (accessed on 1 January 2023) | 1:106 | 2009 |
Annual CO2 | Earth’s CO2 | https://www.co2.earth (accessed on 1 January 2023) | Northern Hemisphere/Annually | 1981~2020 |
Evaluation Index | Spring | Summer | Autumn | Winter | Annual Average |
---|---|---|---|---|---|
R2 | 0.83 | 0.76 | 0.86 | 0.75 | 0.89 |
NSE | 0.72 | 0.63 | 0.74 | 0.67 | 0.76 |
MRE | 6.39% | 17.68% | 7.49% | 9.59% | 4.32% |
Fitting Relation | P | T | Rs |
---|---|---|---|
Linear correlation | 0.74 | 0.96 | 0.91 |
Exponential correlation | 0.78 | 0.97 | 0.94 |
P (mm) | T (°C) | Rs (MJ/m2) | |
---|---|---|---|
Sen’s slope | 11.86 * | 0.31 ** | −2.75 |
Time Interval | P | T | Rs |
---|---|---|---|
1981–2002 | 0.07 | 0.09 * | −0.03 * |
2003–2020 | 0.15 | −0.03 | −0.08 * |
1981–2020 | 0.01 | 0.03 * | −0.10 ** |
Time Interval | P | T | Rs |
---|---|---|---|
1981–2002 | 5.54 | 0.24 | 0.03 |
2003–2020 | 4.46 | 0.17 | −0.04 |
1981–2020 | 4.59 | 0.19 | −0.06 |
Time Interval | AET | Climate Change | Human Activity | ||
---|---|---|---|---|---|
Total Change Rate/% | Contribution/% | Rate/% | Contribution/% | Rate/% | |
1981–2002 | 5.60 | 5.81 | 103.75 | −0.21 | −3.75 |
2003–2020 | 6.28 | 4.59 | 73.09 | 1.69 | 26.91 |
1981–2020 | 5.28 | 4.72 | 89.39 | 0.56 | 10.61 |
Research | Study Area and Period | Methods | Their Values (mm) | This Study’s Values (mm) | Relative Error (%) |
---|---|---|---|---|---|
Wang et al. [54] | TGRA/1993–2013 | CLM4.5 | 606.00 | 655.11 | 7.50 |
Cui et al. [55] | TGRA/1990–2015 | CLM4.5 | 590.75 | 650.41 | 9.17 |
Cao et al. [55] | middle and lower reaches of Yangtze River/1992–2015 | water balance and remote sensed data | 728.70 | 651.70 | 10.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wang, G.; Wang, H. Spatiotemporal Variations in Actual Evapotranspiration Based on LPJ Model and Its Driving Mechanism in the Three Gorges Reservoir Area. Water 2023, 15, 4105. https://doi.org/10.3390/w15234105
Zhang X, Wang G, Wang H. Spatiotemporal Variations in Actual Evapotranspiration Based on LPJ Model and Its Driving Mechanism in the Three Gorges Reservoir Area. Water. 2023; 15(23):4105. https://doi.org/10.3390/w15234105
Chicago/Turabian StyleZhang, Xuelei, Gaopeng Wang, and Hejia Wang. 2023. "Spatiotemporal Variations in Actual Evapotranspiration Based on LPJ Model and Its Driving Mechanism in the Three Gorges Reservoir Area" Water 15, no. 23: 4105. https://doi.org/10.3390/w15234105
APA StyleZhang, X., Wang, G., & Wang, H. (2023). Spatiotemporal Variations in Actual Evapotranspiration Based on LPJ Model and Its Driving Mechanism in the Three Gorges Reservoir Area. Water, 15(23), 4105. https://doi.org/10.3390/w15234105