Impacts of Human Activities and Climate Change on Freshwater Fish—Volume II
Introduction
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Quirino, B.; Thomaz, S.; Jeppesen, E.; Søndergaard, M.; Dainez-Filho, M.; Fugi, R. Aquatic Macrophytes Shape the Foraging Efficiency, Trophic Niche Breadth, and Overlap among Small Fish in a Neotropical River. Water 2022, 14, 3543. https://doi.org/10.3390/w14213543.
- Ríos, M.J.; Teixeira de Mello, F.; De Feo, B.; Krojmal, E.; Vidal, C.; Loza-Argote, V.; Scheibler, E. Occurrence of microplastics in Fish from Mendoza River: First Insights into Plastic Pollution in the Central Andes, Argentina. Water 2022, 14, 3905. https://doi.org/10.3390/w14233905.
- MacLaren, R. Environmentally Realistic Waterborne Atrazine Exposure Affects Behavior in Poecilia latipinna. Water 2023, 15, 306. https://doi.org/10.3390/w15020306.
- Quadroni, S.; De Santis, V.; Carosi, A.; Vanetti, I.; Zaccara, S.; Lorenzoni, M. Past and Present Environmental Factors Differentially Influence Genetic and Morphological Traits of Italian Barbels (Pisces: Cyprinidae). Water 2023, 15, 325. https://doi.org/10.3390/w15020325.
- Tongnunui, S.; Sooksawat, T.; Chotwiwatthanakun, C.; Supiwong, W.; Wattanakornsiri, A.; Beamish, F. Seasonal Changes in Upper Thermal Tolerances of Freshwater Thai Fishes. Water 2023, 15, 350. https://doi.org/10.3390/w15020350.
- Ramírez-García, A.; Jeppesen, E.; Moncayo-Estrada, R.; Mercado-Silva, N.; Domínguez-Domínguez, O. Diet and Trophic Structure of the Fish Community in a Small Sub-Tropical Lake in Central Mexico. Water 2023, 15, 1301. https://doi.org/10.3390/w15071301.
- Korkmaz, M.; Mangıt, F.; Dumlupınar, İ.; Çolak, M.; Akpınar, M.; Koru, M.; Pacheco, J.; Ramírez-García, A.; Yılmaz, G.; Amorim, C.; et al. Effects of Climate Change on the Habitat Suitability and Distribution of Endemic Freshwater Fish Species in Semi-Arid Central Anatolian Ecoregion in Türkiye. Water 2023, 15, 1619. https://doi.org/10.3390/w15081619.
- Menezes, R.; Svenning, J.; Fu, H.; De Meester, L.; Lauridsen, T.; Søndergaard, M.; Conde-Porcuna, J.; Jeppesen, E. Fish Beta Diversity Patterns across Environmental Gradients in 63 European Shallow Lakes: Effects of Turbidity, Nutrient Enrichment, and Exotic Species. Water 2023, 15, 1831. https://doi.org/10.3390/w15101831.
- Boll, T.; Erdoğan, Ş.; Aslan Bıçkı, Ü.; Filiz, N.; Özen, A.; Levi, E.; Brucet, S.; Jeppesen, E.; Beklioğlu, M. Fish Size Structure as an Indicator of Fish Diversity: A Study of 40 Lakes in Türkiye. Water 2023, 15, 2147. https://doi.org/10.3390/w15122147.
- Tongnunui, S.; Beamish, F.; Sooksawat, T.; Wattanakornsiri, A.; Chotwiwatthanakun, C.; Supiwong, W.; Intacharoen, P.; Sudtongkong, C. Temporal Changes in Water Quality with Increasing Ambient Temperatures Affect the Distribution and Relative Abundance of 10 Species of Balitorid Fishes in Small Streams of Eastern Thailand. Water 2023, 15, 2791. https://doi.org/10.3390/w15152791.
References
- Albert, J.S.; Destouni, G.; Duke-Sylvester, S.M.; Magurran, A.E.; Oberdorff, T.; Reis, R.E.; Winemiller, K.O.; Ripple, W.J. Scientists’ Warning to Humanity on the Freshwater Biodiversity Crisis. Ambio 2021, 50, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K. The World’s Forgotten Fishes; World Wide Fund for Nature (WWF): Gland, Switzerland, 2021; p. 47. [Google Scholar]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater Biodiversity: Importance, Threats, Status and Conservation Challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Munday, P.L.; Jarrold, M.D.; Nagelkerken, I. Ecological Effects of Elevated CO2 on Marine and Freshwater Fishes: From Individual to Community Effects. In Fish Physiology; Grosell, M., Munday, P.L., Farrell, A.P., Brauner, C.J., Eds.; Carbon Dioxide; Academic Press: Cambridge, MA, USA, 2019; Volume 37, pp. 323–368. [Google Scholar]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging Threats and Persistent Conservation Challenges for Freshwater Biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, E.; Brucet, S.; Naselli-Flores, L.; Papastergiadou, E.; Stefanidis, K.; Nõges, T.; Nõges, P.; Attayde, J.L.; Zohary, T.; Coppens, J.; et al. Ecological Impacts of Global Warming and Water Abstraction on Lakes and Reservoirs Due to Changes in Water Level and Related Changes in Salinity. Hydrobiologia 2015, 750, 201–227. [Google Scholar] [CrossRef]
- Barbarossa, V.; Bosmans, J.; Wanders, N.; King, H.; Bierkens, M.F.P.; Huijbregts, M.A.J.; Schipper, A.M. Threats of Global Warming to the World’s Freshwater Fishes. Nat. Commun. 2021, 12, 1701. [Google Scholar] [CrossRef]
- Tickner, D.; Opperman, J.J.; Abell, R.; Acreman, M.; Arthington, A.H.; Bunn, S.E.; Cooke, S.J.; Dalton, J.; Darwall, W.; Edwards, G.; et al. Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. BioScience 2020, 70, 330–342. [Google Scholar] [CrossRef]
- Volta, P.; Jeppesen, E. Impacts of Human Activities and Climate Change on Freshwater Fish. Water 2021, 13, 3068. [Google Scholar] [CrossRef]
- Jeppesen, E.; Søndergaard, M.; Søndergaard, M.; Christoffersen, K. The Structuring Role of Submerged Macrophytes in Lakes; Springer Science & Business Media: New York City, NY, USA, 2012; ISBN 978-1-4612-0695-8. [Google Scholar]
- Thomaz, S.M.; da Cunha, E.R. The Role of Macrophytes in Habitat Structuring in Aquatic Ecosystems: Methods of Measurement, Causes and Consequences on Animal Assemblages’ Composition and Biodiversity. Acta Limnol. Bras. 2010, 22, 218–236. [Google Scholar] [CrossRef]
- Carniatto, N.; Cunha, E.R.; Thomaz, S.M.; Quirino, B.A.; Fugi, R. Feeding of Fish Inhabiting Native and Non-Native Macrophyte Stands in a Neotropical Reservoir. Hydrobiologia 2020, 847, 1553–1563. [Google Scholar] [CrossRef]
- Pelicice, F.M.; Agostinho, A.A. Feeding Ecology of Fishes Associated with Egeria Spp. Patches in a Tropical Reservoir, Brazil. Ecol. Freshw. Fish 2006, 15, 10–19. [Google Scholar] [CrossRef]
- Mateus, L.; Ortega, J.; Mendes, A.; Penha, J. Nonlinear Effect of Density on Trophic Niche Width and Between-Individual Variation in Diet in a Neotropical Cichlid. Austral Ecol. 2016, 41, 492–500. [Google Scholar] [CrossRef]
- Kutralam-Muniasamy, G.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Shruti, V.C. How Well-Protected Are Protected Areas from Anthropogenic Microplastic Contamination? Review of Analytical Methods, Current Trends, and Prospects. Trends Environ. Anal. Chem. 2021, 32, e00147. [Google Scholar] [CrossRef]
- Qiang, L.; Cheng, J. Exposure to Microplastics Decreases Swimming Competence in Larval Zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2019, 176, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, M.; Wang, J.; Huang, J.; Wang, J. Polystyrene Nanoplastics Cause Growth Inhibition, Morphological Damage and Physiological Disturbance in the Marine Microalga Platymonas helgolandica. Mar. Pollut. Bull. 2020, 158, 111403. [Google Scholar] [CrossRef] [PubMed]
- Galafassi, S.; Campanale, C.; Massarelli, C.; Uricchio, V.F.; Volta, P. Do Freshwater Fish Eat Microplastics? A Review with A Focus on Effects on Fish Health and Predictive Traits of MPs Ingestion. Water 2021, 13, 2214. [Google Scholar] [CrossRef]
- Graymore, M.; Stagnitti, F.; Allinson, G. Impacts of Atrazine in Aquatic Ecosystems. Environ. Int. 2001, 26, 483–495. [Google Scholar] [CrossRef]
- Barr, D.B.; Panuwet, P.; Nguyen, J.V.; Udunka, S.; Needham, L.L. Assessing Exposure to Atrazine and Its Metabolites Using Biomonitoring. Environ. Health Perspect. 2007, 115, 1474–1478. [Google Scholar] [CrossRef]
- Horzmann, K.A.; Reidenbach, L.S.; Thanki, D.H.; Winchester, A.E.; Qualizza, B.A.; Ryan, G.A.; Egan, K.E.; Hedrick, V.E.; Sobreira, T.J.P.; Peterson, S.M.; et al. Embryonic Atrazine Exposure Elicits Proteomic, Behavioral, and Brain Abnormalities with Developmental Time Specific Gene Expression Signatures. J. Proteom. 2018, 186, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Clotfelter, E.D.; Rodriguez, A.C. Behavioral Changes in Fish Exposed to Phytoestrogens. Environ. Pollut. 2006, 144, 833–839. [Google Scholar] [CrossRef]
- Barlow, G.W. Causes and Significance of Morphological Variation in Fishes. Syst. Zool. 1961, 10, 105. [Google Scholar] [CrossRef]
- Osborne, M.J.; Perkin, J.S.; Gido, K.B.; Turner, T.F. Comparative Riverscape Genetics Reveals Reservoirs of Genetic Diversity for Conservation and Restoration of Great Plains Fishes. Mol. Ecol. 2014, 23, 5663–5679. [Google Scholar] [CrossRef] [PubMed]
- De Santis, V.; Quadroni, S.; Britton, R.J.; Carosi, A.; Gutmann Roberts, C.; Lorenzoni, M.; Crosa, G.; Zaccara, S. Biological and Trophic Consequences of Genetic Introgression between Endemic and Invasive Barbus Fishes. Biol. Invasions 2021, 23, 3351–3368. [Google Scholar] [CrossRef] [PubMed]
- Radojkovic, N.; Marinovic, Z.; Miloskovic, A.; Radenkovic, M.; Duretanovic, S.; Lujic, J.; Simic, V. Effects of Stream Damming on Morphological Variability of Fish: Case Study on Large Spot Barbell Barbus balcanicus. Turk. J. Fish. Aquat. Sci. 2019, 19, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Machado, C.B.; Braga-Silva, A.; Freitas, P.D.; Galetti, P.M., Jr. Damming Shapes Genetic Patterns and May Affect the Persistence of Freshwater Fish Populations. Freshw. Biol. 2022, 67, 603–618. [Google Scholar] [CrossRef]
- Berbel-Filho, W.M.; Martinez, P.A.; Ramos, T.P.A.; Torres, R.A.; Lima, S.M.Q. Inter- and Intra-Basin Phenotypic Variation in Two Riverine Cichlids from Northeastern Brazil: Potential Eco-Evolutionary Damages of São Francisco Interbasin Water Transfer. Hydrobiologia 2016, 766, 43–56. [Google Scholar] [CrossRef]
- Persson, L. Temperature-Induced Shift in Foraging Ability in Two Fish Species, Roach (Rutilus rutilus) and Perch (Perca fluviatilis): Implications for Coexistence between Poikilotherms. J. Anim. Ecol. 1986, 55, 829–839. [Google Scholar] [CrossRef]
- Beitinger, T.L.; Bennett, W.A.; McCauley, R.W. Temperature Tolerances of North American Freshwater Fishes Exposed to Dynamic Changes in Temperature. Environ. Biol. Fishes 2000, 58, 237–275. [Google Scholar] [CrossRef]
- Vander Zanden, M.J.; Vadeboncoeur, Y.; Chandra, S. Fish Reliance on Littoral–Benthic Resources and the Distribution of Primary Production in Lakes. Ecosystems 2011, 14, 894–903. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Kitchell, J.F. (Eds.) . The Trophic Cascade in Lakes; Cambridge Studies in Ecology; Cambridge University Press: Cambridge, UK, 1993; ISBN 978-0-521-43145-3. [Google Scholar]
- Yousefi, M.; Jouladeh-Roudbar, A.; Kafash, A. Using Endemic Freshwater Fishes as Proxies of Their Ecosystems to Identify High Priority Rivers for Conservation under Climate Change. Ecol. Indic. 2020, 112, 106137. [Google Scholar] [CrossRef]
- Hanna, L.J. Climate Change Biology, 3rd ed.; Academic Press: Amsterdam, The Netherlands, 2021; ISBN 978-0-08-102975-6. [Google Scholar]
- Pearson, R.G.; Dawson, T.P. Predicting the Impacts of Climate Change on the Distribution of Species: Are Bioclimate Envelope Models Useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Yılmaz, G.; Çolak, M.A.; Özgencil, İ.K.; Metin, M.; Korkmaz, M.; Ertuğrul, S.; Soyluer, M.; Bucak, T.; Tavşanoğlu, Ü.N.; Özkan, K.; et al. Decadal Changes in Size, Salinity, Waterbirds, and Fish in Lakes of the Konya Closed Basin, Turkey, Associated with Climate Change and Increasing Water Abstraction for Agriculture. Inland Waters 2021, 11, 538–555. [Google Scholar] [CrossRef]
- Fischer, A.G. Latitudinal Variations in Organic Diversity. Evolution 1960, 14, 64–81. [Google Scholar] [CrossRef]
- Gaston, K.J. Global Patterns in Biodiversity. Nature 2000, 405, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Hillebrand, H. On the Generality of the Latitudinal Diversity Gradient. Am. Nat. 2004, 163, 192–211. [Google Scholar] [CrossRef] [PubMed]
- Woodward, G.; Ebenman, B.; Emmerson, M.; Montoya, J.M.; Olesen, J.M.; Valido, A.; Warren, P.H. Body Size in Ecological Networks. Trends Ecol. Evol. 2005, 20, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Brucet, S.; Boix, D.; López-Flores, R.; Badosa, A.; Quintana, X.D. Size and Species Diversity of Zooplankton Communities in Fluctuating Mediterranean Salt Marshes. Estuar. Coast. Shelf Sci. 2006, 67, 424–432. [Google Scholar] [CrossRef]
- Ye, L.; Chang, C.-Y.; García-Comas, C.; Gong, G.-C.; Hsieh, C. Increasing Zooplankton Size Diversity Enhances the Strength of Top-down Control on Phytoplankton through Diet Niche Partitioning. J. Anim. Ecol. 2013, 82, 1052–1061. [Google Scholar] [CrossRef]
- García-Comas, C.; Sastri, A.R.; Ye, L.; Chang, C.-Y.; Lin, F.-S.; Su, M.-S.; Gong, G.-C.; Hsieh, C. Prey Size Diversity Hinders Biomass Trophic Transfer and Predator Size Diversity Promotes It in Planktonic Communities. Proc. R. Soc. B Biol. Sci. 2016, 283, 20152129. [Google Scholar] [CrossRef]
Contribution No. | Biological Organization Level | Main Research Focus | Connected Human Threat(s) | Country | Ecosystem Type | Type of Study |
---|---|---|---|---|---|---|
1 | Community | Trophic ecology; habitat complexity gradient | Habitat alteration; climate change | Brazil | Tropical and subtropical upland rivers | Field study |
2 | Population | Microplastic occurrence and abundance; fish biological traits | Plastic pollution | Argentina | Andean river | Field study |
3 | Individual | Exposure to Atrazine; behavioral alterations | Pesticides | USA | NA | Experimental study |
4 | Population | Morphological and genetic variations; latitudinal gradient | Habitat alteration; climate change | Italy | Mediterranean rivers | Field study |
5 | Population | Critical maximum temperature | Climate change | Thailand | Tropical headwater stream | Field and experimental study |
6 | Community | Interspecific trophic interaction; native vs. non-native species | Non-native species | Mexico | Subtropical lake | Field study |
7 | Population | Habitat suitability; species distribution models; forecasting | Climate change | Türkiye | Freshwaters (rivers and lakes) of the Central Anatolian ecoregion | Field and modelling study |
8 | Community | Beta diversity of fish; latitudinal gradient; habitat disturbances | Habitat alteration; non-native species | Denmark, Belgium, The Netherlands and Spain | Small and shallow lakes | Field study |
9 | Community | Investigating how body size influences fish diversity across a latitudinal and environmental gradient | Habitat alteration; climate change | Türkiye | Lakes from continental and dry cold steppe to Mediterranean climates | Field study |
10 | Population | Balitorid fish ecological preferences; responses to habitat alteration | Habitat alteration; climate change | Thailand | Tropical streams and small rivers | Field study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Santis, V.; Jeppesen, E.; Volta, P.; Korkmaz, M. Impacts of Human Activities and Climate Change on Freshwater Fish—Volume II. Water 2023, 15, 4166. https://doi.org/10.3390/w15234166
De Santis V, Jeppesen E, Volta P, Korkmaz M. Impacts of Human Activities and Climate Change on Freshwater Fish—Volume II. Water. 2023; 15(23):4166. https://doi.org/10.3390/w15234166
Chicago/Turabian StyleDe Santis, Vanessa, Erik Jeppesen, Pietro Volta, and Mustafa Korkmaz. 2023. "Impacts of Human Activities and Climate Change on Freshwater Fish—Volume II" Water 15, no. 23: 4166. https://doi.org/10.3390/w15234166
APA StyleDe Santis, V., Jeppesen, E., Volta, P., & Korkmaz, M. (2023). Impacts of Human Activities and Climate Change on Freshwater Fish—Volume II. Water, 15(23), 4166. https://doi.org/10.3390/w15234166