Research on Subsidence Induced by the Dewatering–Curtain Interaction in the Deep Foundation Pit of the Shield Launching Shaft in Shenzhen, China
Abstract
:1. Introduction
2. Background
2.1. Engineering Background
2.2. Strata Distribution
2.3. Hydrogeological Conditions
3. Numerical Simulations
Mathematical Model
4. Numerical Model and Results
4.1. Numerical Model
4.2. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, L. The use of precipitation technology in the construction of deep foundation pits in buildings. Pop. Stand. 2022, 371, 149–150, 153. [Google Scholar]
- Wang, J.X.; Huang, T.R.; Sui, D.C. A Case Study on Stratified Settlement and Rebound Characteristics due to Dewatering in Shanghai Subway Station. Sci. World J. 2013, 2013, 213070. [Google Scholar] [CrossRef]
- Xu, Y.S.; Shen, S.L.; Ren, D.J.; Wu, H.N. Analysis of Factors in Land Subsidence in Shanghai: A View Based on a Strategic Environmental Assessment. Sustainability 2016, 8, 573. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.Y.; Zhang, Y.Y.; Li, X.; Shen, C. Research on the Deep Foundation Pit Dewatering Design by Three-dimensional Numerical Simulation. Urban Geotech. Investig. Surv. 2019, 1, 189–192. (In Chinese) [Google Scholar]
- Wang, J.; Huang, T.; Hu, J.; Wu, L.; Li, G.; Yang, P. Field experiments and numerical simulations of whirlpool foundation pit dewatering. Environ. Earth Sci. 2014, 71, 3245–3257. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Liu, X.; Yang, T.; Wang, H.; Zhu, Y. Areal subsidence under pumping well–curtain interaction in subway foundation pit dewatering: Conceptual model and numerical simulations. Environ. Earth Sci. 2016, 75, 198. [Google Scholar] [CrossRef]
- Katzenbach, R.; Leppla, S.; Ramm, H.; Seip, M.; Kuttig, H. Rolf KatzenbachSteffen LepplaHeiko Kuttig. Design and Construction of Deep Foundation Systems and Retaining Structures in Urban Areas in Difficult Soil and Groundwater Conditions. Procedia Eng. 2013, 57, 540–548. [Google Scholar] [CrossRef]
- Wang, J.; Feng, B.; Liu, Y.; Wu, L.; Zhu, Y.; Zhang, X.; Tang, Y. Controlling subsidence caused by de-watering in a deep foundation pit. Bull. Eng. Geol. Environ. 2012, 71, 545–555. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Guo, Y.C.; Fan, Q.H.; Zhang, Q.X. Calculation Method for Land Subsidence Induced by Dewatering of Foundation Pit with Suspended Waterproof Curtains. J. Northeast. Univ. Nat. Sci. 2021, 42, 1329–1334. (In Chinese) [Google Scholar]
- Mana, D.S.K.; Gourvenec, S.; Randolp, M.F. Numerical modelling of seepage beneath skirted foundations subjected to vertical uplift. Comput. Geotech. 2014, 55, 150–157. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Wei, M.; Wang, C.M. Numerical Simulation of Groundwater Seepage in Suspended. Geotech. Eng. 2021, 35, 146–150, 156. (In Chinese) [Google Scholar]
- Wang, X.W.; Yang, L.T.; Xu, S.Y.; Shen, S.L. Evaluation of optimized depth of waterproof curtain to mitigate negative impacts during dewatering. J. Hydrol. 2019, 577, 123969. [Google Scholar] [CrossRef]
- Li, W.; Tong, L.Y.; Wang, Z.S.; Liu, S.Y.; Zhang, M.F. Analysis of Impact of Dewatering on the Environment under Different Inserted Depth of Diaphragm Wall. Chin. J. Undergr. Space Eng. 2015, 11 (Suppl. 1), 272–277. (In Chinese) [Google Scholar]
- Yang, Q.Y.; Zhao, B.M. Experimental and theoretical study on the surface subsidence by dewatering of foundation pit in phreatic aquifer. Chin. J. Rock Mech. Eng. 2018, 37, 15061519. (In Chinese) [Google Scholar] [CrossRef]
- Li, Y.; He, Z.Z.; Yan, G.H.; Liao, Z.Y.; Liang, S.Y. Excavation dewatering and ground subsidence in dual structural stratum of Wuhan. Chin. J. Geotech. Eng. 2010, 34 (Suppl. 1), 767–772. (In Chinese) [Google Scholar]
- Zheng, G.; Zhao, Y.B.; Cheng, X.S.; Ha, D.; Li, Q.H. Strategy and analysis of the settlement and deformation caused by dewatering under complicated geological condition. Chin. J. Geotech. Eng. 2019, 52 (Suppl. 1), 135–142. [Google Scholar] [CrossRef]
- Zhu, Y.F. Mechanism and control analysis of strata deformation induced by confined water pumping and recharging. Shanghai Jiao Tong Univ. 2016. (In Chinese) [Google Scholar]
- Can, Z.H.U.; Zhang, Y.; Guofeng, H.E. In-situ tests of land subsidence caused by pumping in the Tianjin Binhai New Area. Hydrogeol. Eng. Geol. 2018, 45, 159–164. [Google Scholar]
- Chen, Z.H.; Huang, J.T.; Zhan, H.B.; Wang, J.G.; Dou, Z.; Zhang, C.J.; Chen, C.S.; Fu, Y.S. Optimization schemes for deep foundation pit dewatering under complicated hydrogeological conditions using MODFLOW-USG. Eng. Geol. 2022, 303, 106653. [Google Scholar] [CrossRef]
- Wang, J.X.; Liu, X.T.; Wu, Y.B.; Liu, S.L. Field experiment and numerical simulation of coupling non-Darcy flow caused by curtain and pumping well in foundation pit dewatering. J. Hydrol. 2017, 549, 277–293. [Google Scholar] [CrossRef]
- Zeng, C.F.; Wang, S.; Xue, X.L.; Zheng, G.; Mei, G.X. Evolution of deep ground settlement subject to groundwater drawdown during dewatering in a multi-layered aquifer-aquitard system: Insights from numerical modelling. J. Hydrol. 2021, 603, 127078. [Google Scholar] [CrossRef]
- Xu, Y.S.; Ma, L.; Shen, S.L.; Sun, W.J. Evaluation of land subsidence by considering underground structures that penetrate the aquifers of Shanghai, China. Hydrogeol. J. 2012, 20, 1623–1634. [Google Scholar] [CrossRef]
- Yang, K.F.; Xu, C.J.; Chi, M.L. Analytical Analysis of the Groundwater Drawdown Difference Induced by Foundation Pit Dewatering with a Suspended Waterproof Curtain. Appl. Sci. 2022, 12, 10301. [Google Scholar] [CrossRef]
- Zhao, S.Z.; Song, G. Application of ModFlow to precipitation simulation in extra deep foundation pit. Shanxi Archit. 2011, 37, 51–52. (In Chinese) [Google Scholar]
- Liu, Z.W. Three-dimensional Numerical Simulation Analysis of Deep Foundation Pit Dewatering of Metro Station. Urban Geotech. Investig. Surv. 2020, 6, 187–192. (In Chinese) [Google Scholar]
- Wang, J.; Feng, B.; Guo, T.; Wu, L.; Lou, R.; Zhou, Z. Using partial penetrating wells and curtains to lower the water level of confined aquifer of gravel. Eng. Geol. 2013, 161, 16–25. [Google Scholar] [CrossRef]
- Lv, S.G. Design and impact analysis of foundation pit precipitation based on Visual Modflow software. Sichuan Cem. 2021, 3, 278–279. [Google Scholar]
Strata Serial | Name of Soil Layer | Elevation of Layer Bottom (m) | Layer Thickness (m) | Average Thickness (m) | Aquifer | Conductivity (cm/s) |
---|---|---|---|---|---|---|
①-1 | Vegetative fill | −4.50~5.11 | 0.5~10.5 | 3.89 | Phreatic aquifer | 6.84 × 10−3 |
①-2 | Stone fill | −7.04~4.89 | 0.4~10.6 | 3.32 | ||
①-3 | Sand fill | −6.29~3.36 | 0.3~6.8 | 1.99 | ||
②-1 | Silt | −9.64~2.45 | 0.2~7.0 | 2.74 | Aquitard | 6.31 × 10−5 |
②-2 | Silty sand | −11.11~1.32 | 0.3~5 | 1.53 | Micro-confined aquifer | 3.41 × 10−4 |
③-1 | Silty clay, sandy clay | −11.00~2.63 | 0.4~5.7 | 2.11 | Aquitard | 9.47 × 10−5 |
③-4 | Medium-coarse sand | −12.12~−2.79 | 0.5~6.9 | 2.79 | Micro-confined aquifer | 2.40 × 10−2 |
④ | Residual soils | −34.46~−2.14 | 0.4~30 | 6.83 | Aquitard | 5.2 × 10−4 |
⑥-1 | Fully weathered mixed granite | −40.96~−4.22 | 0.4~13.55 | 4.39 | ||
⑥-2A | Intense weathered mixed granite (soil) | −87.76~−1.86 | 0.4~46.8 | 8.12 | ||
⑥-2B | Intense weathered mixed granite (blocky) | −55.16~−2.10 | 0.4~16.0 | 3.21 | Confined aquifer | 1.25 × 10−2 |
⑥-3A | Weakly weathered mixed granite (upper zone) | −60.00~−1.15 | 0.2~22.9 | 3.96 | ||
⑥-3B | Weakly weathered mixed granite (lower zone) | −63.16~−8.1 | 0.5~35.1 | 6.87 | Aquitard | 2.52 × 10−3 |
⑥-4 | Slightly weathered mixed granite | −56.15~−8.10 | 1.6~43.4 | 14.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Hu, M.; Chen, X.; Dong, J.; Liu, S. Research on Subsidence Induced by the Dewatering–Curtain Interaction in the Deep Foundation Pit of the Shield Launching Shaft in Shenzhen, China. Water 2023, 15, 1798. https://doi.org/10.3390/w15091798
Zhang X, Hu M, Chen X, Dong J, Liu S. Research on Subsidence Induced by the Dewatering–Curtain Interaction in the Deep Foundation Pit of the Shield Launching Shaft in Shenzhen, China. Water. 2023; 15(9):1798. https://doi.org/10.3390/w15091798
Chicago/Turabian StyleZhang, Xingsheng, Mengke Hu, Xing Chen, Jinyu Dong, and Shipeng Liu. 2023. "Research on Subsidence Induced by the Dewatering–Curtain Interaction in the Deep Foundation Pit of the Shield Launching Shaft in Shenzhen, China" Water 15, no. 9: 1798. https://doi.org/10.3390/w15091798
APA StyleZhang, X., Hu, M., Chen, X., Dong, J., & Liu, S. (2023). Research on Subsidence Induced by the Dewatering–Curtain Interaction in the Deep Foundation Pit of the Shield Launching Shaft in Shenzhen, China. Water, 15(9), 1798. https://doi.org/10.3390/w15091798