Numerical Modeling of Groundwater Dynamics and Management Strategies for the Sustainable Groundwater Development in Water-Scarce Agricultural Region of Punjab, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Framework
2.2.1. Data Collection
2.2.2. Depth to the Water Table
2.2.3. Crop Water Requirement
2.3. Numerical Groundwater Modeling
2.4. Boundary and Initial Conditions for the Numerical Model
2.5. Aquifer Properties and Model Layering
2.6. Groundwater Recharge
2.7. Groundwater Pumping
2.8. Stress Period and Time Step
3. Results and Discussion
3.1. Spatio-Temporal Patterns of Climatology and Actual Evapotranspiration
3.2. Spatio-Temporal Distribution of Depth to the Water Table in the LBDC
3.3. Model Calibration
3.4. Groundwater Budget
3.5. Groundwater Management Scenarios
3.5.1. 20% Increase in Groundwater Extraction by 2040
3.5.2. 20% Decrease in Groundwater Extraction up to September 2040
3.6. Limitations and Future Work
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Griebler, C.; Avramov, M. Groundwater ecosystem services: A review. Freshw. Sci. 2015, 34, 355–367. [Google Scholar] [CrossRef]
- Aliabad, F.A.; Hakimzadeh, M.A.; Shojaei, S. The impact of drought and decline in groundwater levels on the spread of sand dunes in the plain in Iran. Sustain. Water Resour. Manag. 2019, 5, 541–555. [Google Scholar] [CrossRef]
- Scanlon, B.; Zhang, Z.; Rateb, A.; Sun, A.; Wiese, D.; Save, H.; Beaudoing, H.; Lo, M.; Müller-Schmied, H.; Döll, P. Tracking seasonal fluctuations in land water storage using global models and GRACE satellites. Geophys. Res. Lett. 2019, 46, 5254–5264. [Google Scholar] [CrossRef]
- Mohan, C.; Gleeson, T.; Forstner, T.; Famiglietti, J.S.; de Graaf, I. Quantifying Groundwater’s Contribution to Regional Environmental-Flows in Diverse Hydrologic Landscapes. Water Resour. Res. 2023, 59, e2022WR033153. [Google Scholar] [CrossRef]
- Siebert, S.; Burke, J.; Faures, J.-M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef]
- Khafaji, M.S.A.; Alwan, I.A.; Khalaf, A.G.; Bhat, S.A.; Kuriqi, A. Potential use of groundwater for irrigation purposes in the Middle Euphrates region, Iraq. Sustain. Water Resour. Manag. 2022, 8, 157. [Google Scholar] [CrossRef]
- Marston, L.; Konar, M.; Cai, X.; Troy, T.J. Virtual groundwater transfers from overexploited aquifers in the United States. Proc. Natl. Acad. Sci. USA 2015, 112, 8561–8566. [Google Scholar] [CrossRef]
- Siebert, S.; Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 2010, 384, 198–217. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the projections of the world water development report. NPJ Clean. Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Faquseh, H.; Grossi, G. The effect of climate change on groundwater resources availability: A case study in the city of Brescia, northern Italy. Sustain. Water Resour. Manag. 2023, 9, 113. [Google Scholar] [CrossRef]
- Warku, F.; Korme, T.; Wedajo, G.K.; Nedow, D. Impacts of land use/cover change and climate variability on groundwater recharge for upper Gibe watershed, Ethiopia. Sustain. Water Resour. Manag. 2022, 8, 2. [Google Scholar] [CrossRef]
- Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef]
- Asadi, R.; Zamaniannejatzadeh, M.; Eilbeigy, M. Assessing the Impact of Human Activities and Climate Change Effects on Groundwater Quantity and Quality: A Case Study of the Western Varamin Plain, Iran. Water 2023, 15, 3196. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, M.; Shrestha, S.; Hafeez, M.A.; Moiz, A.; Sheikh, Z.A. Impacts of climate and land-use change on groundwater recharge in the semi-arid lower Ravi River basin, Pakistan. Groundw. Sustain. Dev. 2022, 17, 100743. [Google Scholar] [CrossRef]
- Wada, Y.; Van Beek, L.P.; Van Kempen, C.M.; Reckman, J.W.; Vasak, S.; Bierkens, M.F. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37, L20402. [Google Scholar] [CrossRef]
- Gleeson, T.; Cuthbert, M.; Ferguson, G.; Perrone, D. Global groundwater sustainability, resources, and systems in the Anthropocene. Annu. Rev. Earth Planet. Sci. 2020, 48, 431–463. [Google Scholar] [CrossRef]
- Kaur, N.; Kaur, S.; Kaur, P.; Aggarwal, R. Impact of climate change on groundwater levels in Sirhind Canal Tract of Punjab, India. Groundw. Sustain. Dev. 2021, 15, 100670. [Google Scholar] [CrossRef]
- Kaur, N.; Kaur, S.; Tsolakis, N.; Mishra, N.; Srai, J.S. Managing groundwater demand through surface water and reuse strategies in an overexploited aquifer of Indian Punjab. Model. Earth Syst. Environ. 2023, 9, 2009–2026. [Google Scholar] [CrossRef]
- Zeydalinejad, N.; Mahdavikia, H.; Goudarzi, A.; Saeidi, S. The present challenges and policy for sustainable management of groundwater resources in Iran: Putting emphasis on Lorestan province as an example in the country. Sustain. Water Resour. Manag. 2023, 9, 95. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Sidhu, B.S.; Sharda, R.; Singh, S. Spatio-temporal assessment of groundwater depletion in Punjab, India. Groundw. Sustain. Dev. 2021, 12, 100498. [Google Scholar] [CrossRef]
- Arshad, A.; Mirchi, A.; Samimi, M.; Ahmad, B. Combining downscaled-GRACE data with SWAT to improve the estimation of groundwater storage and depletion variations in the irrigated Indus basin. Sci. Total Environ. 2022, 838, 156044. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Khorrami, B.; Jehanzaib, M.; Tariq, A.; Ajmal, M.; Arshad, A.; Shafeeque, M.; Dilawar, A.; Basit, I.; Zhang, L. Spatial downscaling of GRACE data based on XGBoost model for improved understanding of hydrological droughts in the Indus Basin Irrigation System (IBIS). Remote Sens. 2023, 15, 873. [Google Scholar] [CrossRef]
- Ali, S.; Liu, D.; Fu, Q.; Cheema, M.J.M.; Pal, S.C.; Arshad, A.; Pham, Q.B.; Zhang, L. Constructing high-resolution groundwater drought at spatio-temporal scale using GRACE satellite data based on machine learning in the Indus Basin. J. Hydrol. 2022, 612, 128295. [Google Scholar] [CrossRef]
- Ali, S.; Liu, D.; Fu, Q.; Cheema, M.J.M.; Pham, Q.B.; Rahaman, M.; Dang, T.D.; Anh, D.T. Improving the Resolution of GRACE Data for Spatio-Temporal Groundwater Storage Assessment. Remote Sens. 2021, 13, 3513. [Google Scholar] [CrossRef]
- Ali, S.; Wang, Q.; Liu, D.; Fu, Q.; Rahaman, M.M.; Faiz, M.A.; Cheema, M.J.M. Estimation of spatio-temporal groundwater storage variations in the Lower Transboundary Indus Basin using GRACE satellite. J. Hydrol. 2022, 605, 127315. [Google Scholar] [CrossRef]
- Laghari, A.N.; Vanham, D.; Rauch, W. The Indus basin in the framework of current and future water resources management. Hydrol. Earth Syst. Sci. 2012, 16, 1063–1083. [Google Scholar] [CrossRef]
- Ahmed, I.; ur Rahman, M.H.; Ahmed, S.; Hussain, J.; Ullah, A.; Judge, J. Assessing the impact of climate variability on maize using simulation modeling under semi-arid environment of Punjab, Pakistan. Environ. Sci. Pollut. Res. 2018, 25, 28413–28430. [Google Scholar] [CrossRef]
- Adnan, S.; Ullah, K.; Gao, S.; Khosa, A.H.; Wang, Z. Shifting of agro-climatic zones, their drought vulnerability, and precipitation and temperature trends in Pakistan. Int. J. Climatol. 2017, 37, 529–543. [Google Scholar] [CrossRef]
- Qureshi, A.S. Groundwater governance in Pakistan: From colossal development to neglected management. Water 2020, 12, 3017. [Google Scholar] [CrossRef]
- Karimi, P.; Bastiaanssen, W.; Molden, D.; Cheema, M. Basin-wide water accounting using remote sensing data: The case of transboundary Indus Basin. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 12921–12958. [Google Scholar]
- Basharat, M. Spatial and temporal appraisal of groundwater depth and quality in LBDC command-issues and options. Pak. J. Eng. Appl. Sci. 2012, 11, 14–29. [Google Scholar]
- Smolenaars, W.J.; Dhaubanjar, S.; Jamil, M.K.; Lutz, A.; Immerzeel, W.; Ludwig, F.; Biemans, H. Future upstream water consumption and its impact on downstream water availability in the transboundary Indus Basin. Hydrol. Earth Syst. Sci. 2022, 26, 861–883. [Google Scholar] [CrossRef]
- Zakir-Hassan, G.; Punthakey, J.F.; Shabir, G.; Yasmeen, F.; Sultan, M.; Ashraf, H.; Sohoo, I.; Majeed, F. Physicochemical investigation of rainfall for managed aquifer recharge in Punjab (Pakistan). Water 2022, 14, 2155. [Google Scholar] [CrossRef]
- Akhter, G.; Ge, Y.; Iqbal, N.; Shang, Y.; Hasan, M. Appraisal of remote sensing technology for groundwater resource management perspective in Indus Basin. Sustainability 2021, 13, 9686. [Google Scholar] [CrossRef]
- Masood, A.; Tariq, M.A.U.R.; Hashmi, M.Z.U.R.; Waseem, M.; Sarwar, M.K.; Ali, W.; Farooq, R.; Almazroui, M.; Ng, A.W. An overview of groundwater monitoring through point-to satellite-based techniques. Water 2022, 14, 565. [Google Scholar] [CrossRef]
- Božiček, B.; Lojen, S.; Dolenec, M.; Vižintin, G. Impacts of deep groundwater monitoring wells on the management of deep geothermal Pre-Neogene aquifers in the Mura-Zala Basin, Northeastern Slovenia. Groundw. Sustain. Dev. 2017, 5, 193–205. [Google Scholar] [CrossRef]
- Gayen, A. Field-based spatio-temporal monitoring of hydrograph network stations to predict the long-term behavioral pattern of groundwater regime and its implications in India: A review. Case Stud. Geospat. Appl. Groundw. Resour. 2023, 171–183. [Google Scholar] [CrossRef]
- Asgharinia, S.; Petroselli, A. A comparison of statistical methods for evaluating missing data of monitoring wells in the Kazeroun Plain, Fars Province, Iran. Groundw. Sustain. Dev. 2020, 10, 100294. [Google Scholar] [CrossRef]
- Mengistu, H.A.; Demlie, M.B.; Abiye, T.A.; Xu, Y.; Kanyerere, T. Conceptual hydrogeological and numerical groundwater flow modelling around the Moab Khutsong deep gold mine, South Africa. Groundw. Sustain. Dev. 2019, 9, 100266. [Google Scholar] [CrossRef]
- Aliewi, A.; Bhandary, H.; Al-Qallaf, H.; Sabarathinam, C.; Al-Kandari, J. Assessment of the groundwater yield and sustainability of the transboundary Dibdibba aquifer using numerical modelling approach. Groundw. Sustain. Dev. 2021, 15, 100678. [Google Scholar] [CrossRef]
- Leão, B.R.; Junior, G.C.S.; Eger, G.Z.; Marques, E.A. Numerical modeling as a support tool for groundwater permits in the state of Bahia, Brazil. Groundw. Sustain. Dev. 2023, 23, 100986. [Google Scholar] [CrossRef]
- Liang, F.; Li, S.; Jie, F.; Ge, Y.; Liu, N.; Jia, G. The Development of a Coupled Soil Water Assessment Tool-MODFLOW Model for Studying the Impact of Irrigation on a Regional Water Cycle. Water 2023, 15, 3542. [Google Scholar] [CrossRef]
- Wang, S.; Shao, J.; Song, X.; Zhang, Y.; Huo, Z.; Zhou, X. Application of MODFLOW and geographic information system to groundwater flow simulation in North China Plain, China. Environ. Geol. 2008, 55, 1449–1462. [Google Scholar] [CrossRef]
- Singh, R.; Chakma, S.; Birke, V. Numerical modelling and performance evaluation of multi-permeable reactive barrier system for aquifer remediation susceptible to chloride contamination. Groundw. Sustain. Dev. 2020, 10, 100317. [Google Scholar] [CrossRef]
- Yadav, R.; Roy, J. Analytical solutions of one-dimensional scale dependent advection-dispersion equations for finite domain solute transport. Groundw. Sustain. Dev. 2022, 16, 100712. [Google Scholar] [CrossRef]
- Zdechlik, R. A review of applications for numerical groundwater flow modeling. Int. Multidiscip. Sci. GeoConference SGEM 2016, 3, 11–18. [Google Scholar]
- Karmakar, S.; Tatomir, A.; Oehlmann, S.; Giese, M.; Sauter, M. Numerical Benchmark Studies on Flow and Solute Transport in Geological Reservoirs. Water 2022, 14, 1310. [Google Scholar] [CrossRef]
- Chen, H.; Xue, Y.; Qiu, D. Numerical simulation of the land subsidence induced by groundwater mining. Clust. Comput. 2022, 26, 3647–3656. [Google Scholar] [CrossRef]
- Hamdi, M.; Goïta, K. Analysis of Groundwater Depletion in the Saskatchewan River Basin in Canada from Coupled SWAT-MODFLOW and Satellite Gravimetry. Hydrology 2023, 10, 188. [Google Scholar] [CrossRef]
- Mosase, E.; Ahiablame, L.; Park, S.; Bailey, R. Modelling potential groundwater recharge in the Limpopo River Basin with SWAT-MODFLOW. Groundw. Sustain. Dev. 2019, 9, 100260. [Google Scholar] [CrossRef]
- Talebmorad, H.; Ostad-Ali-Askari, K. Hydro geo-sphere integrated hydrologic model in modeling of wide basins. Sustain. Water Resour. Manag. 2022, 8, 118. [Google Scholar] [CrossRef]
- Di Salvo, C. Improving results of existing groundwater numerical models using machine learning techniques: A review. Water 2022, 14, 2307. [Google Scholar] [CrossRef]
- Leaf, A.T.; Fienen, M.N. Modflow-setup: Robust automation of groundwater model construction. Front. Earth Sci. 2022, 10, 903965. [Google Scholar] [CrossRef]
- Qadir, A.; Ahmad, Z.; Khan, T.; Zafar, M.; Qadir, A.; Murata, M. A spatio-temporal three-dimensional conceptualization and simulation of Dera Ismail Khan alluvial aquifer in visual MODFLOW: A case study from Pakistan. Arab. J. Geosci. 2016, 9, 1–9. [Google Scholar]
- Shakoor, A.; Arshad, M.; Ahmad, R.; Khan, Z.M.; Qamar, U.; Farid, H.U.; Sultan, M.; Ahmad, F. Development of groundwater flow model (MODFLOW) to simulate the escalating groundwater pumping in the Punjab, Pakistan. Pak. J. Agric. Sci. 2018, 55, 629–638. [Google Scholar]
- Aslam, M.; Arshad, M.; Singh, V.P.; Shahid, M.A. Hydrological Modeling of Aquifer’s Recharge and Discharge Potential by Coupling WetSpass and MODFLOW for the Chaj Doab, Pakistan. Sustainability 2022, 14, 4421. [Google Scholar] [CrossRef]
- Aslam, M.; Shehzad, M.U.; Ali, A.; Ali, N.; Chaiyasan, K.; Tahir, H.; Joyklad, P.; Hussain, Q. Seepage and Groundwater Numerical Modelling for Managing Waterlogging in the Vicinity of the Trimmu–Sidhnai Link Canal. Infrastructures 2022, 7, 144. [Google Scholar] [CrossRef]
- Aslam, R.A.; Shrestha, S.; Usman, M.N.; Khan, S.N.; Ali, S.; Sharif, M.S.; Sarwar, M.W.; Saddique, N.; Sarwar, A.; Ali, M.U. Integrated SWAT-MODFLOW Modeling-Based Groundwater Adaptation Policy Guidelines for Lahore, Pakistan under Projected Climate Change, and Human Development Scenarios. Atmosphere 2022, 13, 2001. [Google Scholar] [CrossRef]
- Arfan Arshad, A.M.; Perez, J.V.; Akbar, M.U.; Madani, K. Reconstructing high-resolution groundwater level data using a hybrid random forest model to quantify distributed groundwater changes in the Indus Basin. J. Hydrol. 2023, 628, 130535. [Google Scholar] [CrossRef]
- Hussain, S.; Mubeen, M.; Nasim, W.; Fahad, S.; Ali, M.; Ehsan, M.A.; Raza, A. Investigation of Irrigation Water Requirement and Evapotranspiration for Water Resource Management in Southern Punjab, Pakistan. Sustainability 2023, 15, 1768. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, M.; Hasanuzzaman, M. Study of effective rainfall for irrigated agriculture in south-eastern part of Bangladesh. World J. Agric. Sci. 2008, 4, 453–457. [Google Scholar]
- Arshad, A.; Zhang, Z.; Zhang, W.; Gujree, I. Long-term perspective changes in crop irrigation requirement caused by climate and agriculture land use changes in Rechna Doab, Pakistan. Water 2019, 11, 1567. [Google Scholar] [CrossRef]
- Shafeeque, M.; Bibi, A. Assessing the Impact of Future Climate Scenarios on Crop Water Requirements and Agricultural Water Supply Across Different Climatic Zones of Pakistan. Front. Earth Sci. 2023, 11, 1283171. [Google Scholar] [CrossRef]
- Schmid, W.; Punthakey, J.; Hodgson, G.; Kirby, M.; Ahmad, M.; Podger, G.; Stewart, J.; Basharat, M.; Khero, Z.; Bodla, H. Development of a Regional Groundwater Model for the Indus Basin Irrigation System of Pakistan. South Asia Sustainable Development Investment Portfolio (SDIP) Project. CSIRO, Australia. 2017. Available online: https://www.researchgate.net/publication/321500430_Development_of_a_regional_groundwater_model_for_the_Indus_Basin_irrigation_system_of_Pakistan_Status_report (accessed on 15 December 2023).
- Awan, U.K.; Anwar, A.; Ahmad, W.; Hafeez, M. A methodology to estimate equity of canal water and groundwater use at different spatial and temporal scales: A geo-informatics approach. Environ. Earth Sci. 2016, 75, 409. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Y.; Zhang, S.; Wang, D.; Chen, H. Application of a Linked Hydrodynamic–Groundwater Model for Accurate Groundwater Simulation in Floodplain Areas: A Case Study of Irtysh River, China. Water 2023, 15, 3059. [Google Scholar] [CrossRef]
- Ware, H.H.; Mengistu, T.D.; Yifru, B.A.; Chang, S.W.; Chung, I.-M. Assessment of Spatiotemporal Groundwater Recharge Distri-bution Using SWAT-MODFLOW Model and Transient Water Fluctuation Method. Water 2023, 15, 2112. [Google Scholar] [CrossRef]
- Hassan, W.H.; Ghanim, A.A.; Mahdi, K.; Adham, A.; Mahdi, F.A.; Nile, B.K.; Riksen, M.; Ritsema, C. Effect of Artificial (Pond) Recharge on the Salinity and Groundwater Level in Al-Dibdibba Aquifer in Iraq Using Treated Wastewater. Water 2023, 15, 695. [Google Scholar] [CrossRef]
- Shafeeque, M.; Hafeez, M.; Sarwar, A.; Arshad, A.; Khurshid, T.; Asim, M.I.; Ali, S.; Dilawar, A. Quantifying future water-saving potential under climate change and groundwater recharge scenarios in Lower Chenab Canal, Indus River Basin. Theor. Appl. Climatol. 2023, 1–18. [Google Scholar] [CrossRef]
Crop Type. | Mean Monthly Crop Coefficient (Kc) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
Wheat | 1.08 | 1.13 | 0.57 | 0.3 | 0.34 | |||||||
Cotton | 0.35 | 0.44 | 0.92 | 1.21 | 1.21 | 1.05 | 0.72 | |||||
Maize | 0.5 | 0.36 | 0.34 | 0.36 | 0.4 | |||||||
Rice | 0.30 | 0.61 | 1.19 | 1.09 | 0.56 | |||||||
Sugarcane | 0.54 | 0.72 | 0.66 | 0.6 | 0.52 | 0.48 | 0.6 | 0.73 | 0.84 | 0.9 | 0.7 | 0.54 |
Parameter | Calibrated Statistics |
---|---|
No. of Observations | 29 |
Res. Mean | 0.03 |
Abs. Res. Mean | 0.91 |
Res. Std. Deviation | 1.35 |
RMSE | 1.21 |
Min. Residual | −2.20 |
Max. Residual | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raheem, A.; Ahmad, I.; Arshad, A.; Liu, J.; Rehman, Z.U.; Shafeeque, M.; Rahman, M.M.; Saifullah, M.; Iqbal, U. Numerical Modeling of Groundwater Dynamics and Management Strategies for the Sustainable Groundwater Development in Water-Scarce Agricultural Region of Punjab, Pakistan. Water 2024, 16, 34. https://doi.org/10.3390/w16010034
Raheem A, Ahmad I, Arshad A, Liu J, Rehman ZU, Shafeeque M, Rahman MM, Saifullah M, Iqbal U. Numerical Modeling of Groundwater Dynamics and Management Strategies for the Sustainable Groundwater Development in Water-Scarce Agricultural Region of Punjab, Pakistan. Water. 2024; 16(1):34. https://doi.org/10.3390/w16010034
Chicago/Turabian StyleRaheem, Abdul, Ijaz Ahmad, Arfan Arshad, Jinping Liu, Zia Ur Rehman, Muhammad Shafeeque, Md Masudur Rahman, Muhammad Saifullah, and Umar Iqbal. 2024. "Numerical Modeling of Groundwater Dynamics and Management Strategies for the Sustainable Groundwater Development in Water-Scarce Agricultural Region of Punjab, Pakistan" Water 16, no. 1: 34. https://doi.org/10.3390/w16010034
APA StyleRaheem, A., Ahmad, I., Arshad, A., Liu, J., Rehman, Z. U., Shafeeque, M., Rahman, M. M., Saifullah, M., & Iqbal, U. (2024). Numerical Modeling of Groundwater Dynamics and Management Strategies for the Sustainable Groundwater Development in Water-Scarce Agricultural Region of Punjab, Pakistan. Water, 16(1), 34. https://doi.org/10.3390/w16010034