The Influence of Anthropogenic Pollution on the Physicochemical Conditions of the Waters of the Lower Section of the Sąpólna River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Measurement and Analysis of Water Quality
2.3. Statistical Analysis
3. Results and Discussion
3.1. General Comparison of Research Sites
3.2. Indicators Characterizing Oxygen Conditions and Organic Pollution
3.3. Indicators Characterizing Salinity and Water Acidity
3.4. Indicators Characterizing Biogenic Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hunsaker, C.T.; Levine, D.A. Hierarchical Approaches to the Study of Water Quality in Rivers. BioScience 1995, 45, 193–203. [Google Scholar] [CrossRef]
- Wang, X.L.; Lu, Y.L.; Han, J.Y.; He, G.Z.; Wang, T.Y. Identification of anthropogenic influences on water quality of rivers in Taihu watershed. J Environ. Sci. 2007, 19, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Bonisławska, M.; Tański, A.; Mokrzycka, M.; Brysiewicz, A.; Nędzarek, A.; Tórz, A. The effect of effluents from rainbow trout ponds on water quality in the Gowienica River. J. Water Land Develop. 2013, 19, 3–11. [Google Scholar] [CrossRef]
- Novita, E.; Pradana, H.A.; Purnomo, B.H.; Puspitasari, A.I. River water quality assessment in East Java, Indonesia. J. Water Land Develop. 2020, 47, 135–141. [Google Scholar] [CrossRef]
- Wątor, K.; Zdechlik, R. Application of water quality indices to the assessment of the effect of geothermal water discharge on river water quality—Case study from the Podhale region (Southern Poland). Ecol. Indic. 2021, 121, 107098. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquatic. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Likens, G.E. (Ed.) Lake Ecosystem Ecology: A Global Perspective; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Meybeck, M.; Helmer, R. The quality of rivers: From pristine state to global pollution. Paleogeog. Paleoclimat. Paleoecol. 1989, 75, 283–309. [Google Scholar] [CrossRef]
- Regulation MI 2021. Regulation of the Ministry of Infrastructure of 25 June 2021 on the Classification of Ecological Status, Ecological Potential and Chemical Status, and the Method of Classification of the Status of Surface Water Bodies, as Well as Environmental Quality Standards for Priority Substances. J. Laws 2021, 1475. Available online: https://leap.unep.org/en/countries/pl/national-legislation/regulation-classification-ecological-status-ecological-1 (accessed on 26 October 2023).
- European Parliament. Directive 2000/60/EC of the European Parliament and of 23 October 2000 the Council Establishing a Framework for Community Action in the Field of Water Police; OJ L 327, 21 December 2000; European Parliament: Brussels, Belgium, 2000. [Google Scholar]
- European Parliament. Directive 2006/44/EC of the European Parliament and of the Council of 6 September 2006 on the Quality of Fresh Waters Needing Protection or Improvement in Order to Support Fish Life; Official Journal of the European Union 25 September 2006; European Parliament: Brussels, Belgium, 2006. [Google Scholar]
- Schubel, J.R.; Auld, A.H.; Schmidt, G.M. Effects of Suspended Solids on the Development and Hatching Success of Yellow Perch and Striped Bass Eggs; Special Report. No. 35.; John Hopkins University, Chesapeake Bay Institute: Baltimore, MD, USA, 1974; p. 77. [Google Scholar]
- Newcombe, C.P.; Jensen, J.O.T. Channel suspended sediment and fisheries: A synthesis for quantitative assessment of risk and impact. N. Am. J. Fish. Manag. 1996, 16, 693–727. [Google Scholar] [CrossRef]
- Bonisławska, M.; Formicki, K.; Smaruj, I.; Szulc, J. Total suspended solids in surface waters versus embryonic development of pike (Esox lucius L.). EJPAU 2011, 14, 7. Available online: http://www.ejpau.media.pl/volume14/issue1/art-07.html (accessed on 14 September 2023).
- Su, Y.; Li, W.; Liu, L.; Li, J.; Sun, X.; Hu, W. Assessment of medium and small river health based on macroinvertebrates habitat suitability curves: A case study in a tributary of Yangtze River, China. Water Policy 2020, 22, 602–621. [Google Scholar] [CrossRef]
- Puczko, K.; Jekatierynczuk-Rudczyk, E. Extreme hydro-meteorological events influence to water quality of small rivers in urban area: A case study in Northeast Poland. Sci Rep. 2020, 10, 10255. [Google Scholar] [CrossRef] [PubMed]
- Stanković, S.; Vasović, D.; Živković, N. Impacts of extreme hydrological events on sustainable water resources management and human well-being. Saf. Eng. 2019, 9, 37–42. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Thorslund, J.; Strokal, M.; Nynke Hofstra, N.; Flörke, M.; Macedo, H.E.; Nkwasa, A.; Tang, T.; Kaushal, S.S.; Kumar, R.; et al. Global river water quality under climate change and hydroclimatic extremes. Nat. Rev. Earth Environ. 2023, 4, 687–702. [Google Scholar] [CrossRef]
- West Pomeranian Land Drainage Authority in Szczecin: 7.3.1. Rivers. In Program of Environmental Protection of Gryfice County; Gryfice: 30 December 2003, series: Resolution No. XVI/77/03 of the Gryfice District Council of 30 December; Available online: https://studylibpl.com/doc/884748/program-ochrony-%C5%9Brodowiska-powiatu-gryfickiego (accessed on 11 July 2009).
- Radtke, G.; Bernaś, R.; Dębowski, P.; Skóra, M. Ichthyofauna of the Rega Basin. Sci. Yearb. Pol. Angling Assoc. 2010, 23, 51–78. (In Polish) [Google Scholar]
- Bonisławska, M.; Tański, A.; Nędzarek, A.; Tórz, A.; Formicki, K.; Korzelecka-Orkisz, A. Suitability of Waters of the Rega River Catchment for the Construction and Operation of Artificial Spawning Grounds for Migratory Salmonids; Wylęgarnia 2021, Chapter in the Book; Wydawnictwo Instytutu Rybactwa Śródlądowego: Olsztyn, Poland, 2021; pp. 119–128. (In Polish) [Google Scholar]
- Resolution NR XXXVIII/215/20 of the City Council of Nowogard of 15 December 2020 on the Determination of the Area and Boundaries of the Agglomeration of Nowogard. 2020; pp. 1–15. Available online: http://e-dziennik.szczecin.uw.gov.pl/WDU_Z/2021/30/oryginal/akt.pdf (accessed on 10 October 2023).
- Goleniów County. Available online: www.wios.szczecin.pl/bip/files/20CC277BD20C4D8781475F5FBCF1CC13/goleniow.pdf (accessed on 10 December 2023).
- Weather Archive—Nowogard. Available online: https://www.meteoblue.com/pl/pogoda/historyclimate/weatherarchive/nowogard_polska_3090558?fcstlength=1y&year=2022&month=12 (accessed on 12 December 2023).
- APHA. Standard Methods for Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1999; p. 1325. ISBN 0875532357. [Google Scholar]
- Rutkowska, B.; Szulc, W.; Wyżyński, W.; Gościnna, K.; Torma, S.; Vilček, J.; Koco, Š. Water Quality in a Small Lowland River in Different Land Use. Hydrology 2022, 9, 200. [Google Scholar] [CrossRef]
- Ruiz-Zarzuela, I.; Halaihel, N.; Balcázar, J.L.; Ortega, C.; Vendrell, D.; Perez, T.; Alonso, J.L.; de Blas, I. Effect of fish farming on the water quality of rivers in northeast Spain. Water Sci. Technol. 2009, 60, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Niemi, G.J.; DeVore, P.; Detenbeck, N.; Taylor, D.; Lima, A.; Pastor, J.; Yount, J.D.; Naiman, R.J. Overview of case studies on recovery of aquatic systems from disturbance. Environ. Manag. 1990, 14, 571–587. [Google Scholar] [CrossRef]
- Amed, A.M. Prediction of dissolved oxygen in Surma River by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks (ANNs). J. King Saud. Univ. Eng. Sci. 2017, 29, 151–158. [Google Scholar] [CrossRef]
- Dębska, K.; Rutkowska, B.; Szulc, W.; Gozdowski, D. Changes in selected water quality parameters in the Utrata river as a function of catchment area land use. Water 2021, 13, 2989. [Google Scholar] [CrossRef]
- Huang, J.; Yin, H.; Chapra, S.C.; Zhou, Q. Modelling dissolved oxygen depression in an Urban River in China. Water 2017, 9, 520. [Google Scholar] [CrossRef]
- Siwiec, T.; Reczek, L.; Michel, M.M.; Gut, B.; Hawer-Strojek, P.; Czajkowska, J.; Jóźwiakowski, K.; Gajewska, M.; Bugajski, P. Correlations between organic pollution indicators in municipal wastewater. Arch. Environ. Prot. 2018, 44, 50–57. [Google Scholar] [CrossRef]
- Lisle, T.E.; Lewis, J. Effects of sediment transport on survival of salmonid embryos in a natural stream: A simulation approach. Can. J. Fish. Aquat. Sci. 1992, 49, 2337–2344. [Google Scholar] [CrossRef]
- Kemp, P.; Sear, D.; Collins, A.; Naden, P.; Jones, I. The impacts of fine sediment on riverine fish. Hydrol Process. 2011, 25, 1800–1821. [Google Scholar] [CrossRef]
- Bilotta, G.S.; Brazier, R.E. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 2008, 42, 2849–2861. [Google Scholar] [CrossRef] [PubMed]
- Dickson, W. Water acidification—Effects and countermeasures. Summary document. Ecol. Effect of Acid Depos. Nat. Swedish Environ. Prot. Board Report PM 1983, 267–273. [Google Scholar]
- Nędzarek, A.; Bonisławska, M.; Tórz, A.; Gajek, A.; Socha, M.; Harasimiuk, F.B. Water quality in the central reach of the Ina River (West Pomerania, Poland). Pol. J Environ Stud. 2015, 24, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Meybeck, M. Carbon, nitrogen and phosphorus transport by world rivers. Am. J. Sci. 1982, 282, 401–450. [Google Scholar] [CrossRef]
- Neal, C.; Jarvie, H.P. Agriculture, community, river eutrophication and the Water Framework Directive. Hydrol. Process. 2005, 19, 1895–1901. [Google Scholar] [CrossRef]
- Morgan, R.P.; Kline, K.M. Nutrient concentrations in Maryland non-tidal streams. Environ. Monit. Assess. 2011, 178, 221–235. [Google Scholar] [CrossRef]
- Rattan, K.J.; Corriveau, J.C.; Brua, R.B.; Clup, J.M.; Yates, A.G.; Chambers, P.A. Quantifying seasonal variation in total phosphorus and nitrogen from prairie streams in the Red River Basin, Manitoba Canada. Sci. Total Environ. 2016, 575, 649–659. [Google Scholar] [CrossRef]
- Fierro, P.; Bertrán, C.; Tapia, J.; Hauenstein, E.; Peña-Cortés, F.; Vergara, C.; Cerna, C.; Vargas-Chacoff, L. Effects of local land-useon riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages. Sci. Total Environ. 2017, 609, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Torma, S.; Koco, Š.; Vilček, J.; Čermák, P. Nitrogen and phosphorus transport in the soil from the point of view of water pollution. Folia Geogr. 2019, 61, 143–156. [Google Scholar]
- Korwin-Kossakowski, M.; Myszkowski, L.; Kazuń, K. Acute toxicity of nitrite to tench [Tinca tinca L.] larvae. Pol Arch. Hydrobiol. 1995, 42, 213–216. [Google Scholar]
- Kroupová, H.; Valentová, O.; Svobodová, Z.; Šauer, P.; Machova, J. Toxic effects of nitrite on freshwater organisms: A review. Rev. Aquac. 2018, 10, 525–542. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, B.; Yu, G.; Chen, W.; He, N.; Wang, T.; Miao, C. Coupled effects of biogeochemical and hydrological processes on C, N, and P export during extreme rainfall events in a purple soil watershed in southwestern China. J. Hydrol. 2014, 511, 692–702. [Google Scholar] [CrossRef]
Parameter | Method | Units |
---|---|---|
Temperature | Standard Method 2550 | °C |
Conductivity | Standard Method 2510 | μS cm−1 |
pH | Standard Method 4500-H+ | |
Total suspended solids (TSS) | Standard Method 2540D | mg·dm−3 |
Alkalinity | Standard Method 2320 | mg CaCO3·dm−3 |
Total hardness | Standard Method 2340 | mg CO3·dm−3 |
Dissolved oxygen (DO) | Standard Method 4500-O B | mg O2·dm−3 |
Biochemical Oxygen Demand (BOD5) | Standard Method 5210 B | mg O2·dm−3 |
Chemical Oxygen Demand (CODCr) | Standard Method 5220 B | mg O2·dm−3 |
Nitrite-nitrogen (NO2−-N) | Standard Method 4500-NO2− | mg·dm−3(as NO2-N) |
Nitrate-nitrogen (NO3−-N) | Standard Method 4500-NO3− | mg·dm−3 (as NO3-N) |
Total ammonia nitrogen (NH4-N) | Standard Method 4500-NH3 | mg·dm−3 (as NH3-N) |
Total nitrogen (TN) | Standard Method 4500-N | mg·dm−3 (as N) |
Total reactive phosphorus (TRP) | Standard Method 4500-P | mg·dm−3 (as P) |
Total phosphorus (TP) | Standard Method 4500-P | mg·dm−3 (as P) |
Directive 2006/44/EC | |||||
---|---|---|---|---|---|
Indicator Name, Unit | Salmonid Waters | Cyprinid Waters | |||
pH | 6.0–9.0 | ||||
TSS mg·dm−3 | ≤25 | ||||
DO mgO2·dm−3 | 50% ≥9.0 | 50% ≥7.0 | |||
BOD5 mgO2·dm−3 | ≤3.0 | ≤6.0 | |||
TP mg·dm−3 | ≤0.2 | ≤0.4 | |||
NO2-N mg·dm−3 | ≤0.01 | ≤0.03 | |||
NH4-N mg·dm−3 | ≤1.0 | ≤1.0 | |||
The Regulation of the Ministry of Infrastructure | |||||
Indicator name, unit | The threshold value for water quality class | ||||
I | II | III | IV | V | |
Indicators characterizing oxygen conditions and organic pollution | |||||
DO mgO2·dm−3 | ≥8.9 | ≥7.6 | Not classified—nc | ||
BOD5 mgO2·dm−3 | ≤2.3 | ≤3.5 | |||
TOC mg·dm−3 | ≤8.2 | ≤10.0 | |||
Indicators characterizing salinity | |||||
Conductivity in 20 °C µS·cm−1 | ≤420 | ≤690 | Not classified—nc | ||
Indicators characterizing biogenic conditions | |||||
NH4-N mg·dm−3 | ≤0.14 | ≤0.40 | Not classified—nc | ||
NO3-N mg·dm−3 | ≤1.10 | ≤2.00 | |||
TN mg·dm−3 | ≤2.00 | ≤3.30 | |||
TRP mg·dm−3 | ≤0.06 | ≤0.09 | |||
TP mg·dm−3 | ≤0.17 | ≤0.33 |
Parameter Point | Temp. °C | pH | Conductivity µS·cm−1 | TSS mg·dm−3 | DO | BOD5 | CODCr | TOC | Alkalinity mgCaCO3·dm−3 | Total Hardness mgCO32·dm−3 |
---|---|---|---|---|---|---|---|---|---|---|
mgO2·dm−3 | mgC·dm−3 | |||||||||
1 | 8.8 ± 5.9 a | 7.1 ± 0.1 a | 708 ± 145 a nc | 50 ± 45 a | 4.0 ± 2.3 a nc | 4.3 ± 0.7 ab nc | 83.2 ± 34.8 b | 24.8 ± 4.1 a nc | 325.6 ± 78.9 c | 365.1 ± 63.8 b |
min max 1.4–16.6 | min max 6.9–7.3 | min max 438–912 | min max 17–170 | min max 0.9–7.0 | min max 2.9–5.2 | min max 36.8–119.6 | min max 19.90–31.11 | min max 205.5–457.5 | min max 292.5–472.8 | |
2 | 13.6 ± 5.6 a | 7.2 ± 0.2 ab | 1991 ± 720 c nc | 620 ± 1602 a | 6.0 ± 1.2 a nc | 4.6 ±1.1 b nc | 137.8 ± 103.9 b | 41.4 ± 42.9 a nc | 235.8 ± 50.7 b | 297.2 ± 48.6 a |
min max 6.0–22.1 | min max 6.8–7.7 | min max 1116–3662 | min max 15–5150 | min max 4.4–7.4 | min max 2.2–6.0 | min max 31.9–369.1 | min max 18.4–166.07 | min max 165.0–330.0 | min max 243.3–399.3 | |
3 | 11.6 ± 6.0 a | 7.4 ± 0.2 b | 1449 ± 542 b nc | 750 ± 2329 a | 4.0 ± 2.2 a nc | 3.7 ± 1.2 ab nc | 99.0 ± 80.9 b | 78.6 ± 195.4 a nc | 231.0 ± 36.8 ab | 311.9 ± 56.0 ab |
min max 4.1–23.2 | min max 7.1–7.7 | min max 804–2520 | min max 12–8140 | min max 0.0–7.8 | min max 1.1–5.5 | min max 34.3–319.7 | min max 17.5–699.1 | min max 178.5–300.0 | min max 275.8–440.3 | |
4 | 9.6 ± 4.8 a | 7.7 ± 0.2 c | 465 ± 103 a II | 69 ± 55 a | 8.8 ± 1.3 b II | 3.1 ± 1.1 a II | 27.5 ± 20.5 a | 14.3 ± 3.1 a nc | 179.5 ± 25.8 a | 285.6 ± 33.3 a |
min max 2.3–16.5 | min max 7.7–7.9 | min max 198–578 | min max 28–232 | min max 6.9–11.4 | min max 0.2–4.4 | min max 1.9–62.3 | min max 7.1–18.8 | min max 140.0–220.0 | min max 243.5–328.3 | |
5 | 10.1 ± 4.9 a | 7.6 ± 0.2 c | 689 ± 145a II | 179 ± 407 a | 8.4 ± 1.7 b II | 3.5 ±1.6 a II | 31.4 ± 23.6 a | 27.9 ± 40.0 a nc | 183.5 ± 30.3 a | 288.5 ± 49.3 a |
min max 3.7–17.2 | min max 7.3–7.9 | min max 458–874 | min max 21–1465 | min max 6.2–11.6 | min max 0.9–6.9 | min max 6.3–76.5 | min max 8.8–153.9 | min max 140.0–235.0 | min max 209.8–367.3 | |
6 | 9.9 ± 4.8 a | 7.7 ± 0.3 c | 619 ± 92 a II | 53 ± 32 a | 9.3 ± 1.3 b I | 3.3 ± 1.5 a II | 22.1 ± 9.9 a | 14.6 ± 3.1 a nc | 183.0 ± 27.0 a | 290.4 ± 54.5 a |
min max 2.9–17.1 | min max 7.2–8.1 | min max 494–796 | min max 21–130 | min max 7.2–11.1 | min max 0.5–5.3 | min max 3.2–36.8 | min max 7.9–19.3 | min max 136.5–220.0 | min max 227.3–440.3 | |
p | 0.299 | 0.000 | 0.000 | 0.504 | 0.000 | 0.051 | 0.000 | 0.438 | 0.000 | 0.005 |
Parameter Point | TRP | TP | NO2−-N | NO−3-N | NH4+-N | TON | TN |
---|---|---|---|---|---|---|---|
mg·dm−3 | |||||||
1 | 0.477 ± 0.337 cd nc | 0.617 ± 0.452 b nc | 0.018 ± 0.022 a | 0.331 ± 0.233 a I | 0.187 ± 0.370 ab II | 2.658 ± 1.735 a | 3.194 ± 1.865 a II |
min max 0.160–1.227 | min max 0.195–1.712 | min max 0.004–0.074 | min max 0.037–0.641 | min max 0.015–1.237 | min max 1.427 ± 6.134 | min max 1.316–6.475 | |
2 | 0.674 ± 0.283 c nc | 0.919 ± 0.350 c nc | 0.316 ± 0.955 a | 2.422 ± 1.532 b nc | 0.095 ± 0.156 a I | 7.780 ± 11.323 a | 10.613 ± 10.776 a nc |
min max 0.228–1.078 | min max 0.347–1.385 | min max 0.013–3.346 | min max 0.641–5.490 | min max 0.023–0.578 | min max 0.740 ± 38.215 | min max 3.425–39.335 | |
3 | 0.688 ± 0.385 c nc | 0.927 ± 0.449 c nc | 0.238 ± 0.539 a | 1.350 ± 1.002 b II | 0.290 ± 0.331 b II | 10.308 ± 24.821 a | 12.187 ± 24.398 a nc |
min max 0.165–1.331 | min max 0.283–1.580 | min max 0.016–1.938 | min max 0.121–3.199 | min max 0.048–1.230 | min max 1.414 ±88.910 | min max 3.121–89.180 | |
4 | 0.076 ± 0.057 a II | 0.154 ± 0.175 a I | 0.019 ± 0.009 a | 1.377 ± 1.427 b II | 0.032 ± 0.019 a I | 1.970 ± 2.527 a | 3.398 ± 2.900 a nc |
min max 0.014–0.201 | min max 0.03–0.674 | min max 0.006–0.041 | min max 0.240–4.891 | min max 0.012–0.058 | min max 0.414 ± 8.939 | min max 1.004–9.921 | |
5 | 0.326 ± 0.316 bd nc | 0.457 ± 0.386 b nc | 0.066 ± 0.096 a | 1.459 ± 1.413 b II | 0.125 ± 0.090 ab I | 3.626 ± 5.366 a | 5.276 ± 5.222 a nc |
min max 0.021–0.988 | min max 0.028–1.206 | min max 0.007–0.354 | min max 0.260–4.854 | min max 0.021–0.359 | min max 0.491 ± 18.967 | min max 1.481–19.797 | |
6 | 0.141 ± 0.097 ab nc | 0.202 ± 0.121 ab II | 0.036 ± 0.022 a | 1.447 ± 1.132 b II | 0.066 ± 0.034 a I | 1.909 ± 2.187 a | 3.457 ± 2.350 a nc |
min max 0.025–0.239 | min max 0.048–0.414 | min max 0.010–0.077 | min max 0.436–4.151 | min max 0.036–0.133 | min max 0.029 ± 8.228 | min max 1.352–9.123 | |
p | 0.000 | 0.000 | 0.046 | 0.012 | 0.048 | 0.380 | 0.217 |
Parameter Point | Conductivity µS·cm−1 | TSS mg·dm−3 | DO | CODCr | TOC | TP | TON | TN | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mgO2·dm−3 | mgC·dm−3 | mg·dm−3 | ||||||||||||||
April | average | April | average | April | average | April | average | April | average | April | average | April | average | April | average | |
1 | 606 | 708 | 64 | 50 | 5.4 | 4.0 | 78.1 | 83.2 | 22.9 | 24.8 | 0.525 | 0.617 | 1.427 | 2.658 | 1.541 | 3.194 |
2 | 1810 | 1991 | 228 | 620 | 5.1 | 6.0 | 85.2 | 137.8 | 166.1 | 41.4 | 1.136 | 0.919 | 38.215 | 7.780 | 39.335 | 10.613 |
3 | 1068 | 1449 | 8140 | 750 | 0.0 | 4.0 | 191.8 | 99.0 | 699.1 | 78.6 | 1.472 | 0.927 | 88.910 | 10.308 | 89.180 | 12.187 |
4 | 420 | 465 | 66 | 69 | 9.2 | 8.8 | 11.8 | 27.5 | 13.6 | 14.3 | 0.176 | 0.154 | 1.319 | 1.970 | 2.049 | 3.398 |
5 | 848 | 689 | 1465 | 179 | 6.2 | 8.4 | 59.2 | 31.4 | 153.9 | 27.9 | 1.206 | 0.457 | 18.967 | 3.626 | 19.797 | 5.276 |
6 | 650 | 619 | 130 | 53 | 9.8 | 9.3 | 17.8 | 22.1 | 14.0 | 14.6 | 0.199 | 0.036 | 1.677 | 1.909 | 2.693 | 3.457 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonisławska, M.; Nędzarek, A.; Rybczyk, A.; Tański, A. The Influence of Anthropogenic Pollution on the Physicochemical Conditions of the Waters of the Lower Section of the Sąpólna River. Water 2024, 16, 35. https://doi.org/10.3390/w16010035
Bonisławska M, Nędzarek A, Rybczyk A, Tański A. The Influence of Anthropogenic Pollution on the Physicochemical Conditions of the Waters of the Lower Section of the Sąpólna River. Water. 2024; 16(1):35. https://doi.org/10.3390/w16010035
Chicago/Turabian StyleBonisławska, Małgorzata, Arkadiusz Nędzarek, Agnieszka Rybczyk, and Adam Tański. 2024. "The Influence of Anthropogenic Pollution on the Physicochemical Conditions of the Waters of the Lower Section of the Sąpólna River" Water 16, no. 1: 35. https://doi.org/10.3390/w16010035
APA StyleBonisławska, M., Nędzarek, A., Rybczyk, A., & Tański, A. (2024). The Influence of Anthropogenic Pollution on the Physicochemical Conditions of the Waters of the Lower Section of the Sąpólna River. Water, 16(1), 35. https://doi.org/10.3390/w16010035