Modelling Trends in Urban Flood Resilience towards Improving the Adaptability of Cities
Abstract
:1. Introduction
2. Research Framework and Methods
2.1. Research Method Selection
Method | Description | Applicable Scenarios | Advantages and Disadvantages | Reference | |
---|---|---|---|---|---|
Sub | DARE | Unidirectional determination of the level of importance of an indicator can be effective in solving decision-making problems. | Flexible determination of proportions without the limitation of sample data can solve the problems that cannot be handled by optimization techniques. | Requires experts to have a clear understanding of the indicators and to be able to compare and quantify them accurately, otherwise the weighting will be biased. | [48,49] |
Delphi | The knowledge and experience of experts in their specialties can be fully utilized. | Suitable for forming weights for indicators that are difficult to quantify. | The limited number of experts surveyed resulted in an incomplete and limited collection of views. | [50] | |
AHP | Compare multiple indicators in pairs, determine the judgment matrix, and calculate the decision weights. | Generally used for weighting of indicators; used alone for synthesizing evaluations. | Failure to provide new options for decision-making. | [39] | |
ANP | Calculates indicator weights by constructing a judgment matrix, similar to AHP. | Combination of qualitative and quantitative, more widely used. | The calculation is simple and easy to grasp; the correlation between the elements of the guideline layer and the elements of the indicator layer is considered. | [51] | |
Ob | FA | Reducing noise and redundancy in data by downscaling the data. | Can be used for information condensation, weight calculation, competitive ranking, etc. | The evaluation results are more objective; the cumulative contribution of the first few principal components extracted is required to reach a high level. | [52] |
PCA | Indicator weights are calculated from the variance contribution ratio of the principal components, which is more objective and reasonable. | There is no limit to the number of indicators and samples, and there is a wide range of applications. | The assumption of a linear relationship between the indicators is biased by the fact that in reality the relationship is mostly non-linear. | [53] | |
CRITIC | Weights are calculated using the volatility of the data or the correlation situation between the data. | It is appropriate that the data information itself carries some correlation or volatility. | The impact of more correlated indicators can be eliminated and overlapping information can be reduced. | [54] | |
Coefficient of Variation | The use of sample data ensures that the weights are objective. | Not applicable for small samples, which reduces the accuracy of the method. | Simple and practical methodology; does not reflect the intrinsic linkage of the indicators and can only analyze the indicators individually with judgment. | [55] | |
EWM | Based on the information provided by each indicator, the weights are determined in relation to the degree of variability of each indicator, reflecting the degree of dispersion of the attribute. | Weighted calculation, wide range of application areas. | High precision, simple operation, and wide range of applications. | [36] |
Method | Description | Advantages and Disadvantages | Reference |
---|---|---|---|
Fuzzy Integrated Evaluation | Conversion of qualitative evaluation to quantitative evaluation based on the theory of affiliation degree in fuzzy mathematics. | Situations where fewer indicators are applied; evaluation results are more subjective. | [56] |
Catastrophe Progression Method | Combining mutation theory and fuzzy mathematics for multi-objective judgmental decision-making. | No weighting of the indicators is involved, only the relative importance of the indicators to each other is taken into account. | [57] |
Cloud Model | Uncertainty transformation between qualitative concepts and quantitative descriptions can be realized. | The determination of evaluation intervals is somewhat subjective. | [37] |
BP Artificial Neural Network | Simulates the neural network of the human brain to build a model that can “learn” and accumulates and makes full use of empirical knowledge to minimize the error between the best solution and the actual value. | Predictive effects have a high degree of confidence; operation is more complex. | [58] |
VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) | This is a compromise sorting method based on ideals. | The relative importance of positive and negative ideal solutions is considered. | [59] |
Technique of Order Preference Similarity to the Ideal Solution (TOPSIS) | Ranking of the evaluation sample based on how close the evaluation object is to the idealized target. | The evaluation results are objective; they are applicable to both small sample data and multiple evaluation units, and they can well inscribe the comprehensive impact strength of multiple impact indicators. | [36,44] |
2.2. Research Framework
2.3. Determination of Index Weight
2.3.1. Analytic Network Process
2.3.2. Entropy Weight Method
2.3.3. Combination Weighting Method
2.4. TOPSIS Model
2.5. Obstacle Degree Model
3. Empirical Research
3.1. Study Area
3.2. Constructing the Evaluation Index System
3.3. Data Sources
4. Analysis of Research Results
4.1. Determination of Index Weight
4.2. TOPSIS Model Evaluation Results
4.2.1. Analysis of Urban Flood Disaster Resilience in Nanjing
4.2.2. Single System Time Series Analysis
- (1)
- Economic resilience
- (2)
- Social resilience
- (3)
- Ecological resilience
- (4)
- Management resilience
4.3. Obstacle Degree Model
5. Discussion and Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
A1 | A2 | A3 | A4 | B1 | B2 | B3 | B4 | B5 | C1 | C2 | C3 | D1 | D2 | D3 | D4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 0.0870 | 0.0870 | 0.0870 | 0.0870 | 0.0870 | 0.0870 | 0.0870 | 0.0870 | 0.0870 | 0.0870 | 0.0870 | 0.0870 | 0.0870 | 0.0870 | 0.0870 | 0.0870 |
A2 | 0.1356 | 0.1356 | 0.1356 | 0.1356 | 0.1356 | 0.1356 | 0.1356 | 0.1356 | 0.1356 | 0.1356 | 0.1356 | 0.1356 | 0.1356 | 0.1356 | 0.1356 | 0.1356 |
A3 | 0.0463 | 0.0463 | 0.0463 | 0.0463 | 0.0463 | 0.0463 | 0.0463 | 0.0463 | 0.0463 | 0.0463 | 0.0463 | 0.0463 | 0.0463 | 0.0463 | 0.0463 | 0.0463 |
A4 | 0.0981 | 0.0981 | 0.0981 | 0.0981 | 0.0981 | 0.0981 | 0.0981 | 0.0981 | 0.0981 | 0.0981 | 0.0981 | 0.0981 | 0.0981 | 0.0981 | 0.0981 | 0.0981 |
B1 | 0.0973 | 0.0973 | 0.0973 | 0.0973 | 0.0973 | 0.0973 | 0.0973 | 0.0973 | 0.0973 | 0.0973 | 0.0973 | 0.0973 | 0.0973 | 0.0973 | 0.0973 | 0.0973 |
B2 | 0.0165 | 0.0165 | 0.0165 | 0.0165 | 0.0165 | 0.0165 | 0.0165 | 0.0165 | 0.0165 | 0.0165 | 0.0165 | 0.0165 | 0.0165 | 0.0165 | 0.0165 | 0.0165 |
B3 | 0.0562 | 0.0562 | 0.0562 | 0.0562 | 0.0562 | 0.0562 | 0.0562 | 0.0562 | 0.0562 | 0.0562 | 0.0562 | 0.0562 | 0.0562 | 0.0562 | 0.0562 | 0.0562 |
B4 | 0.0606 | 0.0606 | 0.0606 | 0.0606 | 0.0606 | 0.0606 | 0.0606 | 0.0606 | 0.0606 | 0.0606 | 0.0606 | 0.0606 | 0.0606 | 0.0606 | 0.0606 | 0.0606 |
B5 | 0.0241 | 0.0241 | 0.0241 | 0.0241 | 0.0241 | 0.0241 | 0.0241 | 0.0241 | 0.0241 | 0.0241 | 0.0241 | 0.0241 | 0.0241 | 0.0241 | 0.0241 | 0.0241 |
C1 | 0.0974 | 0.0974 | 0.0974 | 0.0974 | 0.0974 | 0.0974 | 0.0974 | 0.0974 | 0.0974 | 0.0974 | 0.0974 | 0.0974 | 0.0974 | 0.0974 | 0.0974 | 0.0974 |
C2 | 0.0298 | 0.0298 | 0.0298 | 0.0298 | 0.0298 | 0.0298 | 0.0298 | 0.0298 | 0.0298 | 0.0298 | 0.0298 | 0.0298 | 0.0298 | 0.0298 | 0.0298 | 0.0298 |
C3 | 0.0653 | 0.0653 | 0.0653 | 0.0653 | 0.0653 | 0.0653 | 0.0653 | 0.0653 | 0.0653 | 0.0653 | 0.0653 | 0.0653 | 0.0653 | 0.0653 | 0.0653 | 0.0653 |
D1 | 0.0191 | 0.0191 | 0.0191 | 0.0191 | 0.0191 | 0.0191 | 0.0191 | 0.0191 | 0.0191 | 0.0191 | 0.0191 | 0.0191 | 0.0191 | 0.0191 | 0.0191 | 0.0191 |
D2 | 0.0770 | 0.0770 | 0.0770 | 0.0770 | 0.0770 | 0.0770 | 0.0770 | 0.0770 | 0.0770 | 0.0770 | 0.0770 | 0.0770 | 0.0770 | 0.0770 | 0.0770 | 0.0770 |
D3 | 0.0419 | 0.0419 | 0.0419 | 0.0419 | 0.0419 | 0.0419 | 0.0419 | 0.0419 | 0.0419 | 0.0419 | 0.0419 | 0.0419 | 0.0419 | 0.0419 | 0.0419 | 0.0419 |
D4 | 0.0479 | 0.0479 | 0.0479 | 0.0479 | 0.0479 | 0.0479 | 0.0479 | 0.0479 | 0.0479 | 0.0479 | 0.0479 | 0.0479 | 0.0479 | 0.0479 | 0.0479 | 0.0479 |
Appendix B
Characteristics | Number | ||
---|---|---|---|
Experts (n = 15) | Work experience | 5 years | 4 |
5–8 years | 5 | ||
More than 8 years | 6 | ||
Work unit | Colleges and universities | 5 | |
Government department | 5 | ||
Urban planners | 5 | ||
Expertise or research field | Urban resilience | 5 | |
Resilience enhancement strategy | 3 | ||
Flood management | 4 | ||
Urban planning development | 3 |
References
- Wu, Y.; Yu, G.; Shao, Q. Resilience benefit assessment for multi-scale urban flood control programs. J. Hydrol. 2022, 613, 128349. [Google Scholar] [CrossRef]
- Liu, G.; Yuan, X.; Huang, J.; Wang, H. Evaluation of urban resilience to flood based on PSR framework—A Case of Area in Suzhou—Wuxi—Changzhou. Resour. Dev. Mark. 2018, 34, 593–598. [Google Scholar]
- Zhou, Z.; Hu, Q.; Zhou, M.; Liu, D.; Tang, W.; Wang, S. Rainfall resilience assessment and obstacle factor diagnosis based on PSR-TOPSIS model: Taking Hefei City as an example. J. Hunan City Univ. (Nat. Sci.) 2022, 31, 55–61. [Google Scholar]
- Chen, C.; Chen, Y.; Shi, B.; Xu, T. An model for evaluating urban resilience to rainstorm flood disasters. China Saf. Sci. J. 2018, 28, 1–6. [Google Scholar]
- Li, Z.; Guo, X. Quantitative evaluation of China’s disaster relief policies: A PMC index model approach. Int. J. Disaster Risk Reduct. 2022, 74, 102911. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, W.; Wen, Y.; Wang, X. Sustainability Assessment of Water Resources Use in 31 Provinces in China: A Combination Method of Entropy Weight and Cloud Model. Int. J. Environ. Res. Public Health 2022, 19, 12870. [Google Scholar] [CrossRef]
- Laeni, N.; van den Brink, M.; Arts, J. Is Bangkok becoming more resilient to flooding? A framing analysis of Bangkok’s flood resilience policy combining insights from both insiders and outsiders. Cities 2019, 90, 157–167. [Google Scholar] [CrossRef]
- Restemeyer, B.; van den Brink, M.; Woltjer, J. Between adaptability and the urge to control: Making long-term water policies in the Netherlands. J. Environ. Plan. Manag. 2017, 60, 920–940. [Google Scholar] [CrossRef]
- Hosseini, F.S.; Sigaroodi, S.K.; Salajegheh, A.; Moghaddamnia, A.; Choubin, B. Towards a flood vulnerability assessment of watershed using integration of decision-making trial and evaluation laboratory, analytical network process, and fuzzy theories. Environ. Sci. Pollut. Res. 2021, 28, 62487–62498. [Google Scholar] [CrossRef]
- Cao, F.; Xu, X.; Zhang, C.; Kong, W. Evaluation of urban flood resilience and its Space-Time Evolution: A case study of Zhejiang Province, China. Ecol. Indic. 2023, 154, 110643. [Google Scholar] [CrossRef]
- Taromideh, F.; Fazloula, R.; Choubin, B.; Emadi, A.; Berndtsson, R. Urban Flood-Risk Assessment: Integration of Decision-Making and Machine Learning. Sustainability 2022, 14, 4483. [Google Scholar] [CrossRef]
- Rafiei-Sardooi, E.; Azareh, A.; Choubin, B.; Mosavi, A.H.; Clague, J.J. Evaluating urban flood risk using hybrid method of TOPSIS and machine learning. Int. J. Disaster Risk Reduct. 2021, 66, 102614. [Google Scholar] [CrossRef]
- Darabi, H.; Choubin, B.; Rahmati, O.; Haghighi, A.T.; Pradhan, B.; Klove, B. Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. J. Hydrol. 2019, 569, 142–154. [Google Scholar] [CrossRef]
- Li, W.; Jiang, R.; Wu, H.; Xie, J.; Zhao, Y.; Song, Y.; Li, F. A System Dynamics Model of Urban Rainstorm and Flood Resilience to Achieve the Sustainable Development Goals. Sustain. Cities Soc. 2023, 96, 104631. [Google Scholar] [CrossRef]
- Hegger, D.L.; Driessen, P.P.; Wiering, M.; Van Rijswick, H.F.; Kundzewicz, Z.W.; Matczak, P.; Crabbé, A.; Raadgever, G.T.; Bakker, M.H.; Priest, S.J. Toward more flood resilience: Is a diversification of flood risk management strategies the way forward? Ecol. Soc. 2016, 21, 52. [Google Scholar] [CrossRef]
- Sörensen, J.; Persson, A.; Sternudd, C.; Aspegren, H.; Nilsson, J.; Nordström, J.; Jönsson, K.; Mottaghi, M.; Becker, P.; Pilesjo, P.; et al. Re-Thinking Urban Flood Management-Time for a Regime Shift. Water 2016, 8, 332. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Zeng, Z.; Fang, Y.; Zhai, Q.; Du, S. A Markov reward process-based framework for resilience analysis of multistate energy systems under the threat of extreme events. Reliab. Eng. Syst. Saf. 2021, 209, 107443. [Google Scholar] [CrossRef]
- Zhang, X.; Song, J.; Peng, J.; Wu, J. Landslides-oriented urban disaster resilience assessment-A case study in ShenZhen, China. Sci. Total Environ. 2019, 661, 95–106. [Google Scholar] [CrossRef]
- Unisdr, G. How to Make Cities More Resilient: A Handbook for Local Government Leaders; United Nations: Geneva, Switzerland, 2012. [Google Scholar]
- Bertilsson, L.; Wiklund, K.; Tebaldi, I.D.; Rezende, O.M.; Veról, A.P.; Miguez, M.G. Urban flood resilience—A multi-criteria index to integrate flood resilience into urban planning. J. Hydrol. 2019, 573, 970–982. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Z.; Long, T.; Sun, S.; Gao, J. Mega-city region sustainability assessment and obstacles identification with GIS–entropy–TOPSIS model: A case in Yangtze River Delta urban agglomeration, China. J. Clean. Prod. 2021, 294, 126147. [Google Scholar] [CrossRef]
- Miguez, M.G.; Veról, A.P. A catchment scale Integrated Flood Resilience Index to support decision making in urban flood control design. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 925–946. [Google Scholar] [CrossRef]
- Wang, P.; Li, Y.; Zhang, Y. An urban system perspective on urban flood resilience using SEM: Evidence from Nanjing city, China. Nat. Hazards 2021, 109, 2575–2599. [Google Scholar] [CrossRef]
- Xu, W.; Cong, J.; Proverbs, D.; Zhang, L. An evaluation of urban resilience to flooding. Water 2021, 13, 2022. [Google Scholar] [CrossRef]
- Suna, R.R.; Shia, S.H.; Rehemana, Y.J.; Lib, S.M. Measurement of urban flood resilience using a quantitative model based on the correlation of vulnerability and resilience. Int. J. Disaster Risk Reduct. 2022, 82, 103344. [Google Scholar] [CrossRef]
- Shi, P. Theory and practice of disaster study. J. Nat. Disasters 1996, 18, 1–9. [Google Scholar]
- Li, S. Analysis Flood Risk and Study Waterlogging Simulation in Zhengzhou. Zhengzhou Univ. 2016, 14, 4777. [Google Scholar]
- Xu, Z.; Chen, H.; Ren, M.; Cheng, T. Progress on disaster mechanism and risk assessment of urban flood/waterlogging disasters in China. Adv. Water Sci. 2020, 31, 713–724. [Google Scholar]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A place-based model for understanding community resilience to natural disasters. Glob. Environ. Chang.-Hum. Policy Dimens. 2008, 18, 598–606. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Von Winterfeldt, D. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef]
- Restemeyer, B.; Woltjer, J.; van den Brink, M. A strategy-based framework for assessing the flood resilience of cities–A Hamburg case study. Plan. Theory Pract. 2015, 16, 45–62. [Google Scholar] [CrossRef]
- Li, C.; Cheng, X.; Li, N.; Du, X.; Yu, Q.; Kan, G. A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas. Int. J. Environ. Res. Public Health 2016, 13, 787. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Chen, Y.; Yang, Z. Assessment of temporal and spatial progress of urban resilience in Guangzhou under rainstorm scenarios. Int. J. Disaster Risk Reduct. 2021, 66, 102578. [Google Scholar] [CrossRef]
- Chen, K.; Leandro, J. A Conceptual Time-Varying Flood Resilience Index for Urban Areas: Munich City. Water 2019, 11, 830. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, J.; Li, L.; Shen, D.; Wei, G.; Khan, H.U.R.; Dong, S. Measuring the resilience to floods: A comparative analysis of key flood control cities in China. Int. J. Disaster Risk Reduct. 2021, 59, 102248. [Google Scholar] [CrossRef]
- Qiao, H.; Pei, J. Urban Stormwater Resilience Assessment Method Based on Cloud Model and TOPSIS. Int. J. Environ. Res. Public Health 2022, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Tayyab, M.; Zhang, J.; Hussain, M.; Ullah, S.; Liu, X.; Khan, S.N.; Baig, M.A.; Hassan, W.; Al-Shaibah, B. GIS-Based Urban Flood Resilience Assessment Using Urban Flood Resilience Model: A Case Study of Peshawar City, Khyber Pakhtunkhwa, Pakistan. Remote Sens. 2021, 13, 1864. [Google Scholar] [CrossRef]
- Orencio, P.M.; Fujii, M. A localized disaster-resilience index to assess coastal communities based on an analytic hierarchy process (AHP). Int. J. Disaster Risk Reduct. 2013, 3, 62–75. [Google Scholar] [CrossRef]
- Liao, K.H. A Theory on Urban Resilience to Floods-A Basis for Alternative Planning Practices. Ecol. Soc. 2012, 17, 48. [Google Scholar] [CrossRef]
- Dewulf, A.; Meijerink, S.; Runhaar, H. Editorial: The governance of adaptation to climate change as a multi-level, multi-sector and multi-actor challenge: A European comparative perspective. J. Water Clim. Chang. 2015, 6, 1–8. [Google Scholar] [CrossRef]
- Wiering, M.; Green, C.; van Rijswick, M.; Priest, S.; Keessen, A. The rationales of resilience in English and Dutch flood risk policies. J. Water Clim. Chang. 2015, 6, 38–54. [Google Scholar] [CrossRef]
- Lu, X.; Chan, F.K.S.; Li, N.; Chen, C.; Chen, W.; Chan, H. Improving urban flood resilience via GDELT GKG analyses in China’s Sponge Cities. Sci. Rep. 2022, 12, 20317. [Google Scholar] [CrossRef]
- Lu, P.; Sun, Y.; Steffen, N. Scenario-based performance assessment of green-grey-blue infrastructure for flood-resilient spatial solution: A case study of Pazhou, Guangzhou, greater Bay area. Landsc. Urban Plan. 2023, 238, 104804. [Google Scholar] [CrossRef]
- Moghadas, M.; Asadzadeh, A.; Vafeidis, A.; Fekete, A.; Kötter, T. A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. Int. J. Disaster Risk Reduct. 2019, 35, 101069. [Google Scholar] [CrossRef]
- Ji, J.; Chen, J. Urban flood resilience assessment using RAGA-PP and KL-TOPSIS model based on PSR framework: A case study of Jiangsu province, China. Water Sci. Technol. 2022, 86, 3264–3280. [Google Scholar] [CrossRef] [PubMed]
- Tavana, M.; Di Caprio, D.; Santos-Arteaga, F.J. An extended stochastic VIKOR model with decision maker’s attitude towards risk. Inf. Sci. 2018, 432, 301–318. [Google Scholar] [CrossRef]
- Liu, H.; Qiao, H.; Liu, S.; Wei, G.; Zhao, H.; Li, K.; Weng, F. Energy, environment and economy assessment of sewage sludge incineration technologies in China. Energy 2023, 264, 126294. [Google Scholar] [CrossRef]
- Xiang, C.; Qin, J.; Yin, L. Study on the rural ecotourism resource evaluation system. Environ. Technol. Innov. 2020, 20, 101131. [Google Scholar] [CrossRef]
- McPherson, S.; Reese, C.; Wendler, M.C. Methodology Update: Delphi Studies. Nurs. Res. 2018, 67, 404–410. [Google Scholar] [CrossRef]
- Jamali, A.; Robati, M.; Nikoomaram, H.; Farsad, F.; Aghamohammadi, H. Urban Resilience Assessment Using Hybrid MCDM Model Based on DEMATEL-ANP Method (DANP). J. Indian Soc. Remote Sens. 2023, 51, 893–915. [Google Scholar] [CrossRef]
- Asadzadeh, A.; Kötter, T.; Zebardast, E. An augmented approach for measurement of disaster resilience using connective factor analysis and analytic network process (F’ANP) model. Int. J. Disaster Risk Reduct. 2015, 14, 504–518. [Google Scholar] [CrossRef]
- Abdrabo, K.I.; Kantoush, S.A.; Esmaiel, A.; Saber, M.; Sumi, T.; Almamari, M.; Elboshy, B.; Ghoniem, S. An integrated indicator-based approach for constructing an urban flood vulnerability index as an urban decision-making tool using the PCA and AHP techniques: A case study of Alexandria, Egypt. Urban Clim. 2023, 48, 101426. [Google Scholar] [CrossRef]
- Yang, J.; Ding, Y.; Zhang, L. Conceptualizing and Measuring Megacity Resilience with an Integrated Approach: The Case of China. Sustainability 2022, 14, 11685. [Google Scholar] [CrossRef]
- Mabrouk, M.; Han, H. Urban resilience assessment: A multicriteria approach for identifying urban flood-exposed risky districts using multiple-criteria decision-making tools (MCDM). Int. J. Disaster Risk Reduct. 2023, 91, 103684. [Google Scholar] [CrossRef]
- Azareh, A.; Sardooi, E.R.; Choubin, B.; Barkhori, S.; Shahdadi, A.; Adamowski, J.; Shamshirband, S. Incorporating multi-criteria decision-making and fuzzy-value functions for flood susceptibility assessment. Geocarto Int. 2021, 36, 2345–2365. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, G. Towards flood risk reduction: Commonalities and differences between urban flood resilience and risk based on a case study in the Pearl River Delta. Int. J. Disaster Risk Reduct. 2023, 86, 103568. [Google Scholar] [CrossRef]
- Jiao, L.; Wang, L.; Lu, H.; Fan, Y.; Zhang, Y.; Wu, Y. An assessment model for urban resilience based on the pressure-state-response framework and BP-GA neural network. Urban Clim. 2023, 49, 101543. [Google Scholar] [CrossRef]
- Parkouhi, S.V.; Ghadikolaei, A.S. A resilience approach for supplier selection: Using Fuzzy Analytic Network Process and grey VIKOR techniques. J. Clean. Prod. 2017, 161, 431–451. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Zhu, S.; Li, D.; Huang, G.; Chhipi-Shrestha, G.; Nahiduzzaman, K.M.; Hewage, K.; Sadiq, R. Enhancing urban flood resilience: A holistic framework incorporating historic worst flood to Yangtze River Delta, China. Int. J. Disaster Risk Reduct. 2021, 61, 102355. [Google Scholar] [CrossRef]
- Ma, S.; Wang, R. The Social-Economic-Natural Complex Ecosystem. J. Ecol. 1984, 4, 1–9. [Google Scholar]
- Chen, X.; Guo, Z.; Zhou, H.; Qian, X.; Zhang, X. Urban Flood Resilience Assessment Based on VIKOR-GRA: A Case Study in Chongqing, China. Ksce J. Civ. Eng. 2022, 26, 4178–4194. [Google Scholar] [CrossRef]
- Rana, I.A.; Bhatti, S.S.; Jamshed, A.; Ahmad, S. An approach to understanding the intrinsic complexity of resilience against floods: Evidences from three urban communities of Pakistan. Int. J. Disaster Risk Reduct. 2021, 63, 102442. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, H.; Wang, D.; Ke, X.; Li, S.; Huang, S. Flood vulnerability and resilience assessment in China based on super-efficiency DEA and SBM-DEA methods. J. Hydrol. 2021, 600, 126470. [Google Scholar] [CrossRef]
- Kotzee, I.; Reyers, B. Piloting a social-ecological index for measuring flood resilience: A composite index approach. Ecol. Indic. 2016, 60, 45–53. [Google Scholar] [CrossRef]
- Xu, W.; Zhong, M.; Hong, Y.; Lin, K. Enhancing community resilience to urban floods with a network structuring model. Saf. Sci. 2020, 127, 104699. [Google Scholar] [CrossRef]
- Yao, Z. Study on the Evaluation of Urban Resilience and Lift Path in Shanxi Province. Shanxi Univ. Financ. Econ. 2021. [Google Scholar] [CrossRef]
- Zhou, X.; Luo, W.; Shi, S. Evaluation and Empirical Study of Resilient City Construction Based on ESEF-TOPSIS Model. City 2023, 24–36. Available online: https://kns.cnki.net/kcms2/article/abstract?v=lQz6UQjnwp-jVvRLuU3icLAtq4Ee1umECIe7IzEzBAji6vzGPpbR_NvEXtWujhfw84aeR0kCGZ912LayORjDhb8oXMaNVHRQlozvWPbnd0cmnUYh4P40ahRFRMLAVt8E8nGs3BLMcx9uWkMVsS9r_A==&uniplatform=NZKPT&language=CHS (accessed on 18 May 2024).
- He, L.; Chen, J.; Cheng, C.; Yuan, J. Assessment and spatiotemporal analysis of flood vulnerability in the Yangtze River Economic Belt. Water Resour. Hydropower Eng. 2023, 1–16. [Google Scholar] [CrossRef]
- Zhu, S.; Li, D.; Feng, H.; Zhang, N. The influencing factors and mechanisms for urban flood resilience in China: From the perspective of social-economic-natural complex ecosystem. Ecol. Indic. 2023, 147, 109959. [Google Scholar] [CrossRef]
- Müller, A.; Reiter, J.; Weiland, U. Assessment of urban vulnerability towards floods using an indicator-based approach—A case study for Santiago de Chile. Nat. Hazards Earth Syst. Sci. 2011, 11, 2107–2123. [Google Scholar] [CrossRef]
- Xiong, Q. Assessment of Urban Resilience and its Spatial-Temporal Evolution: A Case of Hubei Province. Hubei Univ. Technol. 2021. [Google Scholar] [CrossRef]
- Rezende, O.M.; de Franco, A.; de Oliveira, A.K.B.; Pitzer Jacob, A.C.; Miguez, M.G. A framework to introduce urban flood resilience into the design of flood control alternatives. J. Hydrol. 2019, 576, 478–493. [Google Scholar] [CrossRef]
- Xu, T.; Xie, Z.; Jiang, F.; Yang, S.; Deng, Z.; Zhao, L.; Wen, G.; Du, Q. Urban flooding resilience evaluation with coupled rainfall and flooding models: A small area in Kunming City, China as an example. Water Sci. Technol. 2023, 87, 2820–2839. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.; Patsakis, C.; Bouroche, M.; Cahill, V. Context dissemination for dynamic urban-scale applications. Mob. Netw. Appl. 2017, 22, 305–317. [Google Scholar] [CrossRef]
- He, S.; Liang, S.; Wu, S.; Guo, H. Analysis on Spatio-temporal Evolution and Relevance of Urban Flood Disaster Resilience in Yangtze River Delta. Resour. Environ. Yangtze Basin 2022, 31, 1988–1999. [Google Scholar]
- Huang, J.; She, J. Flood Vulnerability Assessment and Analysis of Influencing Factors in the Yangtze River Delta Urban Agglomeration. J. Hohai Univ. (Philos. Soc. Sci. Ed.) 2020, 22, 39–45. [Google Scholar]
- Song, S.; Wang, D.; Zhu, W.; Wang, C. Study on the spatial configuration of nursing homes for the elderly people in Shanghai: Based on their choice preference. Technol. Forecast. Soc. Chang. 2020, 152, 119859. [Google Scholar] [CrossRef]
- Ye, C.; Zhu, J.; Li, S.; Yang, S.; Chen, M. Assessment and analysis of regional economic collaborative development within an urban agglomeration: Yangtze River Delta as a case study. Habitat Int. 2019, 83, 20–29. [Google Scholar] [CrossRef]
- Huang, J.; She, J.; Yuan, X.; Wang, H. Simulation of Urban Flood Resilience Based on A System Dynamic Model: A Case Study in Nanjing. Resour. Environ. Yangtze Basin 2020, 29, 2519–2529. [Google Scholar]
- Li, D.; Nie, X.; Zhu, S.; Zhou, S. Quantitative Evaluation and Spatial-temporal Evolution of County-level Flood Resilience: A Case Study of Jiangsu Province. J. Catastrophology 2023, 38, 99–106. [Google Scholar]
Dimension | Indicator | Indicator Properties | Symbol | Reference |
---|---|---|---|---|
Economic factors | GDP per capita | + | A1 | [37,63] |
Fixed asset investment | + | A2 | [24,25] | |
Per capita disposable income | + | A3 | [24,26,63] | |
Social security and employment expenditure | + | A4 | [36,64] | |
Social factors | Population density | − | B1 | [63] |
Average number of college students per 10,000 population | + | B2 | [45] | |
Drainage pipe density | + | B3 | [24] | |
Number of health workers per 10,000 population | + | B4 | [37,63] | |
Number of hospital beds | + | B5 | [24,45] | |
Ecological factors | Rainfall | − | C1 | [35,36,65] |
Domestic waste harmless treatment rate | + | C2 | [4] | |
Green coverage rate of built district | + | C3 | [37,45] | |
Management factors | Flood dynamic monitoring accuracy | + | D1 | [25] |
Flood emergency plan | + | D2 | [45,66] | |
Public disaster emergency awareness | + | D3 | [37,64] | |
Disaster relief response speed | + | D4 | [66,67] |
Dimension | Indicator | WAj | WSj | Wj |
---|---|---|---|---|
Economics factor (0.301) | A1 GDP per capita | 0.087 | 0.062 | 0.075 |
A2 fixed asset investment | 0.136 | 0.035 | 0.085 | |
A3 Per capita disposable income | 0.046 | 0.065 | 0.056 | |
A4 Social security and employment expenditure | 0.098 | 0.073 | 0.086 | |
Social factor (0.299) | B1 Population density | 0.097 | 0.064 | 0.080 |
B2 Average number of college students per 10,000 population | 0.017 | 0.104 | 0.060 | |
B3 Drainage pipe density | 0.056 | 0.051 | 0.054 | |
B4 Number of health workers per 10,000 population | 0.061 | 0.077 | 0.069 | |
B5 Number of hospital beds | 0.024 | 0.048 | 0.036 | |
Ecological factors (0.174) | C1 Rainfall | 0.097 | 0.050 | 0.074 |
C2 Domestic waste harmless treatment rate | 0.030 | 0.033 | 0.032 | |
C3 Green coverage rate of built district | 0.065 | 0.072 | 0.069 | |
Management factors (0.226) | D1 Flood dynamic monitoring accuracy | 0.019 | 0.051 | 0.035 |
D2 Flood emergency plan | 0.077 | 0.061 | 0.069 | |
D3 Public disaster emergency awareness | 0.042 | 0.090 | 0.066 | |
D4 Disaster relief response speed | 0.048 | 0.065 | 0.056 |
Resilience Level | Low | Slightly Low | Moderate | Slightly High | High |
---|---|---|---|---|---|
grade | 1 | 2 | 3 | 4 | 5 |
Ci | [0, 0.3) | [0.3, 0.5) | [0.5, 0.65) | [0.65, 0.85) | [0.85, 1] |
Year | Economic Resilience | Social Resilience | Ecological Resilience | Management Resilience |
---|---|---|---|---|
2010 | 0.000 | 0.150 | 0.344 | 0.082 |
2011 | 0.114 | 0.184 | 0.468 | 0.116 |
2012 | 0.230 | 0.350 | 0.410 | 0.186 |
2013 | 0.315 | 0.373 | 0.425 | 0.255 |
2014 | 0.375 | 0.372 | 0.396 | 0.338 |
2015 | 0.453 | 0.378 | 0.389 | 0.457 |
2016 | 0.505 | 0.424 | 0.476 | 0.441 |
2017 | 0.574 | 0.448 | 0.686 | 0.719 |
2018 | 0.679 | 0.517 | 0.727 | 0.720 |
2019 | 0.794 | 0.624 | 1.000 | 0.829 |
2020 | 0.878 | 0.710 | 0.590 | 0.932 |
2021 | 1.000 | 0.711 | 0.701 | 1.000 |
Year | Obstacle Degree (%) | |||
---|---|---|---|---|
Economic Factor | Social Factor | Ecological Factor | Management Factor | |
2010 | 33.65 | 29.47 | 13.16 | 23.72 |
2011 | 32.60 | 30.99 | 11.15 | 25.26 |
2012 | 31.99 | 26.44 | 14.34 | 27.24 |
2013 | 30.12 | 26.45 | 15.40 | 28.04 |
2014 | 28.23 | 27.97 | 17.54 | 26.25 |
2015 | 26.07 | 30.03 | 21.59 | 22.31 |
2016 | 23.98 | 28.74 | 19.39 | 27.89 |
2017 | 34.20 | 37.69 | 12.93 | 15.18 |
2018 | 30.83 | 41.29 | 13.07 | 14.81 |
2019 | 31.15 | 54.03 | 0.00 | 14.82 |
2020 | 17.59 | 43.45 | 33.82 | 5.13 |
2021 | 0.00 | 62.16 | 37.84 | 0.00 |
Obstacle Factor Ranking | Obstacle Degree in Different Years | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
1 | A4 | A4 | A4 | A4 | A4 | C1 | C1 | A2 | B1 | B1 | B1 | B1 |
2 | A2 | B4 | C3 | C3 | C3 | B2 | D2 | B2 | C1 | B2 | C1 | C1 |
3 | A1 | A1 | B4 | B4 | B2 | A4 | A4 | B1 | B2 | A2 | C3 | C3 |
4 | B1 | D3 | A1 | D3 | B4 | B4 | B2 | B4 | A2 | A1 | A1 | - |
5 | D3 | A2 | D3 | A1 | D3 | D3 | B4 | C1 | D3 | A4 | A2 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Cai, X.; Yu, Q.; Proverbs, D.; Xia, T. Modelling Trends in Urban Flood Resilience towards Improving the Adaptability of Cities. Water 2024, 16, 1614. https://doi.org/10.3390/w16111614
Xu W, Cai X, Yu Q, Proverbs D, Xia T. Modelling Trends in Urban Flood Resilience towards Improving the Adaptability of Cities. Water. 2024; 16(11):1614. https://doi.org/10.3390/w16111614
Chicago/Turabian StyleXu, Wenping, Xinyan Cai, Qimeng Yu, David Proverbs, and Ting Xia. 2024. "Modelling Trends in Urban Flood Resilience towards Improving the Adaptability of Cities" Water 16, no. 11: 1614. https://doi.org/10.3390/w16111614
APA StyleXu, W., Cai, X., Yu, Q., Proverbs, D., & Xia, T. (2024). Modelling Trends in Urban Flood Resilience towards Improving the Adaptability of Cities. Water, 16(11), 1614. https://doi.org/10.3390/w16111614