Regional Dynamics and Economic Sustainability of Mariculture Firms in Portugal: A Financial Performance Analysis
Abstract
:1. Introduction
2. Literature Review
3. Data and Methodology
4. Results
5. Discussion
Limitations
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pauli, G.A. The Blue Economy: 10 Years, 100 Innovations, 100 Million Jobs; Paradigm Publications: Tokyo, Japan, 2010. [Google Scholar]
- UNDESA, U. World Urbanization Prospects: The 2014 Revision, Highlights. United Nations, Department of Economic and Social Affairs (UN/DESA), Population Division. United Nations Publication. 2014. Available online: https://esa.un.org/unpd/wup/Publications/Files/WUP2014-Highlights.pdf (accessed on 8 May 2024).
- Hoegh-Guldberg, O.; Tanzer, J.; Gamblin, P.; Burgener, V. Reviving the Ocean Economy: The Case for Action—2015; WWF International: Geneva, Switzerland, 2015; p. 60. Available online: https://wwfint.awsassets.panda.org/downloads/revivingoceaneconomy_summary_high_res.pdf (accessed on 8 May 2024).
- Barbesgaard, M. Blue growth: Savior or ocean grabbing? J. Peasant. Stud. 2018, 45, 130–149. [Google Scholar] [CrossRef]
- UN DESA. International Migration Report 2017: Highlights; UN DESA: New York, NY, USA, 2017. [Google Scholar]
- Lopes, A.S.D.C. From Consumption to Production–Development of Fisheries and Mariculture in Portugal. Ph.D. Thesis, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal, 2016. [Google Scholar]
- Perlin, A.P.; Guedes, G.B.; Nunes, M.L.; Ferreira, P.V. Indicadores de sustentabilidade da indústria corticeira Portuguesa. Rev. Port. E Bras. De Gestão 2013, 12, 47–56. [Google Scholar]
- Koričan, M.; Perčić, M.; Vladimir, N.; Soldo, V.; Jovanović, I. Environmental and economic assessment of mariculture systems using a high share of renewable energy sources. J. Clean. Prod. 2022, 333, 130072. [Google Scholar] [CrossRef]
- Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; McNevin, A.A.; Tacon, A.G.; Teletchea, F.; Tomasso, J.R., Jr.; et al. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Mair, G.C.; Halwart, M.; Derun, Y.; Costa-Pierce, B.A. A decadal outlook for global aquaculture. J. World Aquac. Soc. 2023, 54, 196. [Google Scholar] [CrossRef]
- Vecchio, Y.; Masi, M.; Adinolfi, F. From the AKAP to AKAIE model to assess the uptake of technological innovations in the aquaculture sector. Rev. Aquac. 2023, 15, 772–784. [Google Scholar] [CrossRef]
- Aarstad, J.; Jakobsen, S.E.; Fløysand, A.; Kvitastein, O.A. Sustainability and innovation across the aquaculture value chain. Front. Aquac. 2024, 3, 1384722. [Google Scholar] [CrossRef]
- Knol-Kauffman, M.; Nielsen, K.N.; Sander, G.; Arbo, P. Sustainability conflicts in the blue economy: Planning for offshore aquaculture and offshore wind energy development in Norway. Marit. Stud. 2023, 22, 47. [Google Scholar] [CrossRef]
- Hossain, A.; Senff, P.; Glaser, M. Lessons for coastal applications of IMTA as a way towards sustainable development: A review. Appl. Sci. 2022, 12, 11920. [Google Scholar] [CrossRef]
- Hala, A.F.; Chougule, K.; Cunha, M.E.; Caria, M.M.; Oliveira, I.; Bradley, T.; Forbes, J.; Galileu, S.L. Life cycle assessment of integrated multi-trophic aquaculture: A review on methodology and challenges for its sustainability evaluation. Aquaculture 2024, 590, 741035. [Google Scholar] [CrossRef]
- Checa, D.; Macey, B.M.; Bolton, J.J.; Brink-Hull, M.; O’Donohoe, P.; Cardozo, A.; Poersch, L.H.; Sánchez, I. Circularity Assessment in Aquaculture: The Case of Integrated Multi-Trophic Aquaculture (IMTA) Systems. Fishes 2024, 9, 165. [Google Scholar] [CrossRef]
- Mileti, A.; Arduini, D.; Watson, G.; Giangrande, A. Blockchain traceability in trading biomasses obtained with an Integrated Multi-Trophic Aquaculture. Sustainability 2022, 15, 767. [Google Scholar] [CrossRef]
- Oyinlola, M.A.; Reygondeau, G.; Wabnitz, C.C.; Cheung, W.W. Projecting global mariculture diversity under climate change. Glob. Chang. Biol. 2020, 26, 2134–2148. [Google Scholar] [CrossRef] [PubMed]
- Free, C.M.; Cabral, R.B.; Froehlich, H.E.; Battista, W.; Ojea, E.; O’Reilly, E.; Palardy, J.E.; García Molinos, J.; Siegel, K.J.; Arnason, R. Expanding ocean food production under climate change. Nature 2022, 605, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Maulu, S.; Hasimuna, O.J.; Haambiya, L.H.; Monde, C.; Musuka, C.G.; Makorwa, T.H.; Munganga, B.P.; Phiri, K.J.; Nsekanabo, J.D. Climate change effects on aquaculture production: Sustainability implications, mitigation, and adaptations. Front. Sustain. Food Syst. 2021, 5, 609097. [Google Scholar] [CrossRef]
- Stewart-Sinclair, P.J.; Last, K.S.; Payne, B.L.; Wilding, T.A. A global assessment of the vulnerability of shellfish aquaculture to climate change and ocean acidification. Ecol. Evol. 2020, 10, 3518–3534. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Xu, Y.; Dong, B.; Nishino, N. Mariculture carbon sequestration efficiency in China: Its measurement and socio-economic factor analysis. Sustain. Prod. Consum. 2023, 40, 101–121. [Google Scholar] [CrossRef]
- Yu, J.; Yin, W.; Liu, D. Evolution of mariculture policies in China: Experience and challenge. Mar. Policy 2020, 119, 104062. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, D.; Zhang, X.; Yang, H. Regional ecological efficiency and future sustainable development of marine ranch in China: An empirical research using DEA and system dynamics. Aquaculture 2021, 534, 736339. [Google Scholar] [CrossRef]
- Yu, J.K.; Li, Y.H. Evolution of marine spatial planning policies for mariculture in China: Overview, experience and prospects. Ocean Coast. Manag. 2020, 196, 105293. [Google Scholar] [CrossRef]
- Parappurathu, S.; Menon, M.; Jeeva, C.; Belevendran, J.; Anirudhan, A.; Lekshmi, P.S.; Ramachandran, C.; Padua, S.; Aswathy, N.; Ghosh, S.; et al. Sustainable intensification of small-scale mariculture systems: Farm-level insights from the coastal regions of India. Front. Sustain. Food Syst. 2023, 7, 1078314. [Google Scholar] [CrossRef]
- AftabUddin, S.; Hussain, M.G.; Abdullah Al, M.; Failler, P.; Drakeford, B.M. On the potential and constraints of mariculture development in Bangladesh. Aquac. Int. 2021, 29, 575–593. [Google Scholar] [CrossRef]
- Krause, G.; Billing, S.L.; Dennis, J.; Grant, J.; Fanning, L.; Filgueira, R.; Miller, M.; Agúndez, J.A.P.; Stybel, N.; Stead, S.M.; et al. Visualizing the social in aquaculture: How social dimension components illustrate the effects of aquaculture across geographic scales. Mar. Policy 2020, 118, 103985. [Google Scholar] [CrossRef]
- Clawson, G.; Kuempel, C.D.; Frazier, M.; Blasco, G.; Cottrell, R.S.; Froehlich, H.E.; Metian, M.; Nash, K.L.; Többen, J.; Verstaen, J.; et al. Mapping the spatial distribution of global mariculture production. Aquaculture 2022, 553, 738066. [Google Scholar] [CrossRef]
- Crona, B.I.; Wassénius, E.; Jonell, M.; Koehn, J.Z.; Short, R.; Tigchelaar, M.; Daw, T.M.; Golden, C.D.; Gephart, J.A.; Allison, E.H.; et al. Four ways blue foods can help achieve food system ambitions across nations. Nature 2023, 616, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.L.; Kishore, A.; Sumaila, U.R.; Issifu, I.; Hunter, B.P.; Belton, B.; Bush, S.R.; Cao, L.; Gelcich, S.; Gephart, J.A.; et al. Blue food demand across geographic and temporal scales. Nat. Commun. 2021, 12, 5413. [Google Scholar] [CrossRef] [PubMed]
- Tigchelaar, M.; Leape, J.; Micheli, F.; Allison, E.H.; Basurto, X.; Bennett, A.; Bush, S.R.; Cao, L.; Cheung, W.W.; Crona, B.; et al. The vital roles of blue foods in the global food system. Glob. Food Secur. 2022, 33, 100637. [Google Scholar] [CrossRef]
- Gephart, J.A.; Henriksson, P.J.; Parker, R.W.; Shepon, A.; Gorospe, K.D.; Bergman, K.; Eshel, G.; Golden, C.D.; Halpern, B.S.; Hornborg, S.; et al. Environmental performance of blue foods. Nature 2021, 597, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Stoll, J.S.; Bailey, M.; Jonell, M. Alternative pathways to sustainable seafood. Conserv. Lett. 2020, 13, e12683. [Google Scholar] [CrossRef]
- Liu, C.; Liu, G.; Cristiano, S.; Ulgiati, S.; Xu, L.; Yang, Z. Investigating Potential Ecological Benefits From Mariculture. Earth’s Future 2024, 12, e2023EF003766. [Google Scholar] [CrossRef]
- Yu, S.E.; Dong, S.L.; Zhang, Z.X.; Zhang, Y.Y.; Sarà, G.; Wang, J.; Dong, Y.W. Mapping the potential for offshore aquaculture of salmonids in the Yellow Sea. Mar. Life Sci. Technol. 2022, 4, 329–342. [Google Scholar] [CrossRef]
- Schupp, M.F.; Krause, G.; Onyango, V.; Buck, B.H. Dissecting the offshore wind and mariculture multi-use discourse: A new approach using targeted SWOT analysis. Marit. Stud. 2021, 20, 127–140. [Google Scholar] [CrossRef]
- Mosqueira, M.; Pombo, A.; Borges, C.; Brito, A.C.; Zacarias, N.; Esteves, R.; Palma, C. Potential for Coastal and Offshore Aquaculture in Portugal: Insights from Physico-Chemical and Oceanographic Conditions. Appl. Sci. 2022, 12, 2742. [Google Scholar] [CrossRef]
- Yu, L.; Zheng, S.; Gao, Q. Government environmental regulation strategy for new pollutants control in mariculture. Mar. Policy 2023, 150, 105545. [Google Scholar] [CrossRef]
- Yu, J.; Yu, J. Evolution of mariculture insurance policies in China: Review, challenges, and recommendations. Rev. Fish. Sci. Aquac. 2021, 29, 566–581. [Google Scholar] [CrossRef]
- DeVoe, M.R. Marine Aquaculture Regulation in the United States: Environmental Policy and Management Issues. Interactions between Cultured Species and Naturally Occurring Species the Environment. In Proceedings of the Twenty-Fourth U.S.-Japan Aquaculture Panel Symposium, Corpus Christi, TX, USA, 8–10 October 1995; Keller, B.J., Park, P.K., James, P.M., Takayanagi, K., Hosoya, K., Eds.; UJNR Technical Report No. 24. Available online: https://repository.library.noaa.gov/view/noaa/38468/noaa_38468_DS1.pdf#page=6 (accessed on 8 May 2024).
- Hermógenes da Silva, H.J.; Pierri Estades, N.; Kiatkoski Kim, M. Incentives to Mariculture Development in Brazil: Environmental Injustice on Traditional Fishing Communities. In Blue Justice: Small-Scale Fisheries in a Sustainable Ocean Economy; Springer International Publishing: Cham, Switzerland, 2022; pp. 489–506. [Google Scholar]
- Silva, H.J.H.D.; Pierri, N. Mariculture Policies and Ocean Grabbing in Brazil. Lat. Am. Perspect. 2024. [Google Scholar] [CrossRef]
- Santos, E.; Castanho, R.A. The impact of size on the performance of transnational corporations operating in the textile industry in Portugal during the COVID-19 pandemic. Sustainability 2022, 14, 717. [Google Scholar] [CrossRef]
- Santos, E.; Lisboa, I.; Eugénio, T. Economic Sustainability in Wastewater Treatment Companies: A Regional Analysis for the Iberian Peninsula. Appl. Sci. 2021, 11, 9876. [Google Scholar] [CrossRef]
- Santos, E.; Lisboa, I.; Crespo, C.; Moreira, J.; Eugenio, T. Evaluating economic sustainability of nautical tourism through brand equity and corporate performance. In Transcending Borders in Tourism through Innovation and Cultural Heritage, Proceedings of the 8th International Conference, IACuDiT, Hydra, Greece, 1–3 September 2021; Springer International Publishing: Cham, Switzerland, 2022; pp. 105–118. [Google Scholar]
Variable | Calculation/Explanation |
---|---|
Age | Age of the company reflects the experience and stability of the company, which can affect performance. |
Turn | Total revenue generated by the company. Reflects the company’s ability to generate sales and revenue, a key indicator of financial performance. |
Net | Net profit. Total profit after deducting expenses from revenue. Reflects the company’s profitability, indicating its ability to generate profit from its operations. |
Cash | Cash reserves. Total amount of cash and cash equivalents held by the company. Indicates the company’s liquidity and ability to meet short-term financial obligations. |
Tass | Total value of assets owned by the company. Reflects the size and scale of the company’s operations, which can influence its competitiveness and ability to generate returns. |
Share | Total value of shareholders’ equity in the company. Indicates the portion of the company’s assets that belong to shareholders, reflecting their ownership stake and potential returns. |
Curr | Current ratio. Ratio of current assets to current liabilities. Measures the company’s short-term liquidity and ability to cover its short-term obligations with its current assets. |
Profmg | Profit margin. Percentage of revenue that translates into profit. Indicates the efficiency of the company’s operations in generating profit from its sales. |
Roe | Return on equity. Ratio of net income to shareholders’ equity. Measures the company’s ability to generate profit from shareholders’ equity, reflecting its efficiency in utilizing shareholders’ funds to generate returns. |
Solv | Solvency ratio. Ratio of total assets to total liabilities. Indicates the company’s ability to meet its long-term financial obligations with its assets. |
Empl | Total number of employees reflects the company’s workforce size, which can impact productivity, operational efficiency, and, ultimately, performance. |
Size | The size is measured by the number of employees and takes value 1 for microfirms with less than 10 employees, 2 for firms with 10 to 49 workers, and 3 for more than 50 workers- |
Prod | Labour Productivity indicates the efficiency of the company’s operations in producing goods or services, which can impact its competitiveness and profitability. |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
age | 600 | 20.6 | 16.8 | 8 | 111 |
turn | 553 | 1341.1 | 8927.2 | 0 | 190,546 |
net | 563 | 38.6 | 8216.0 | −94,277 | 166,084 |
cash | 563 | 402.9 | 7283.6 | −11,867 | 167,166 |
tass | 565 | 3448.0 | 17,954.0 | 1 | 299,010 |
share | 565 | 858.1 | 7882.1 | −134,026 | 93,294 |
curr | 553 | 7.2 | 14.7 | 0 | 92 |
profmg | 455 | 1.1 | 34.4 | −100 | 100 |
roe | 446 | −10.8 | 116.1 | −885 | 912 |
solv | 530 | 32.0 | 40.1 | −96 | 100 |
empl | 505 | 8.8 | 19.3 | 1 | 170 |
size | 505 | 1.2 | .5 | 1 | 3 |
prod | 500 | 84.5 | 102.4 | −2 | 1656.9 |
Year | Age | Turn | Net | Cash | Tass | Share | Curr | Profmg | Roe | Solv | Size | Empl |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2013 | 21 | 629 | −453 | −170 | 6917 | 2227 | 8 | 2 | −56 | 32 | 1 | 8 |
2014 | 21 | 706 | −478 | −242 | 4647 | 403 | 11 | 4 | −14 | 29 | 1 | 8 |
2015 | 21 | 747 | −331 | −128 | 3942 | 135 | 7 | −10 | −20 | 28 | 1 | 8 |
2016 | 21 | 1243 | −1604 | 587 | 1424 | −1863 | 8 | −1 | −14 | 30 | 1 | 7 |
2017 | 21 | 3717 | 2788 | 2856 | 1927 | 794 | 6 | 0 | −10 | 26 | 1 | 8 |
2018 | 21 | 865 | 9 | 81 | 2253 | 877 | 7 | 6 | −2 | 28 | 1 | 8 |
2019 | 21 | 1043 | 51 | 133 | 2916 | 1199 | 9 | 3 | 29 | 37 | 1 | 9 |
2020 | 21 | 1086 | −93 | −4 | 3403 | 1383 | 7 | −1 | −17 | 34 | 1 | 10 |
2021 | 21 | 1484 | 286 | 428 | 3817 | 1748 | 5 | 6 | 11 | 40 | 1 | 11 |
2022 | 21 | 1608 | 83 | 266 | 4025 | 1967 | 6 | 2 | −26 | 38 | 1 | 12 |
Variable | North | Centro | Lisbon | Alentejo | Algarve | Madeira |
---|---|---|---|---|---|---|
age | 29 | 27 | 14 | 36 | 19 | 17 |
turn | 988.2 | 3617.2 | 307.2 | 113.5 | 565.0 | 894.6 |
net | −32.9 | 282.3 | −119.5 | −3.6 | −15.4 | 49.6 |
cash | 25.68 | 1516.5 | −56.2 | 7.3 | 52.8 | 90.2 |
tass | 2030.8 | 9100.5 | 1885.9 | 779.8 | 1261.7 | 953.3 |
share | 701.4 | 1648.8 | 673.3 | 771.1 | 543.5 | 271.6 |
curr | 1.3 | 4.1 | 5.6 | 39.9 | 10.8 | 1.0 |
profmg | −7.9 | −5.0 | −2.1 | −3.3 | 10.2 | 3.1 |
roe | −25.0 | −21.0 | −9.0 | −0.4 | −2.3 | 0.3 |
solv | 25.7 | 36.6 | 21.2 | 98.9 | 34.5 | 24.0 |
size | 2 | 1 | 1 | 1 | 1 | 1 |
empl | 15 | 16 | 4 | 1 | 6 | 7 |
prod | 79.62 | 103.68 | 69.38 | 116.43 | 76.22 | 104.61 |
Age | Turn | Net | Cash | Tass | Share | Curr | Profmg | Roe | Solv | Size | Empl |
---|---|---|---|---|---|---|---|---|---|---|---|
8 | 506 | −532 | −432 | 2348 | 714 | 2 | −14 | −68 | 2 | 1 | 5 |
9 | 44 | 11 | 14 | 78 | 47 | 4 | 1 | 12 | 58 | 1 | 1 |
10 | 155 | 36 | 47 | 320 | 228 | 22 | 36 | 37 | 53 | 1 | 4 |
11 | 259 | −13 | 16 | 844 | 268 | 3 | −1 | −12 | 22 | 1 | 4 |
12 | 165 | −19 | −3 | 290 | 30 | 3 | 1 | −17 | 21 | 1 | 3 |
13 | 638 | −48 | 20 | 1716 | 630 | 10 | −8 | −18 | 26 | 1 | 9 |
14 | 385 | −138 | 9 | 1546 | 418 | 10 | −4 | 5 | 18 | 1 | 6 |
15 | 153 | 1 | 7 | 230 | 79 | 8 | 0 | 22 | 26 | 1 | 4 |
16 | 893 | 18 | 115 | 1891 | 1427 | 3 | 2 | −24 | 40 | 1 | 6 |
17 | 371 | −93 | −47 | 1577 | 635 | 1 | −14 | −20 | 40 | 1 | 6 |
18 | 21,879 | 2428 | 10,907 | 53,358 | 7176 | 5 | 3 | 13 | −2 | 2 | 69 |
19 | 1497 | 179 | 273 | 3567 | 1144 | 1 | 11 | 17 | 22 | 2 | 11 |
21 | 584 | −326 | 115 | 12,172 | 3148 | 14 | 4 | −3 | 48 | 1 | 16 |
23 | 21 | −6 | −5 | 119 | 20 | 4 | −28 | −15 | 16 | 1 | 1 |
27 | 1721 | 131 | 196 | 1901 | 1137 | 2 | 8 | 14 | 57 | 2 | 13 |
30 | 3703 | 87 | 165 | 2754 | 1237 | 2 | 3 | 8 | 45 | 2 | 16 |
31 | 136 | 66 | 76 | 371 | 343 | 38 | 55 | 29 | 95 | 1 | 1 |
32 | 333 | −2 | 40 | 937 | 627 | 15 | 1 | −4 | 62 | 1 | 4 |
35 | 1307 | −519 | −353 | 4886 | 2399 | 3 | −16 | −58 | 56 | 2 | 16 |
36 | 1792 | 240 | 404 | 4407 | 2154 | 22 | 4 | 6 | 76 | 2 | 11 |
37 | 409 | 7 | 47 | 1196 | 251 | 1 | 0 | 2 | 22 | 1 | 3 |
40 | 943 | −35 | −22 | 1329 | 543 | 2 | −7 | −29 | 40 | 2 | 10 |
42 | 60 | −47 | −11 | 1121 | 254 | 0 | −55 | −20 | 22 | 1 | 2 |
56 | 1036 | −35 | −26 | 1880 | 626 | 2 | −4 | −19 | 34 | 2 | 15 |
66 | 87 | −67 | −64 | 892 | −20 | 0 | −18 | −212 | −3 | 1 | 2 |
111 | 360 | −170 | −91 | 1587 | 178 | 0 | −11 | −151 | 6 | 1 | 6 |
Size | Age | Turn | Net | Cash | Tass | Share | Curr | Profmg | Roe | Solv | Empl |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 19 | 241 | −32 | 1 | 943 | 334 | 6 | −2.8 | −9 | 24 | 3 |
2 | 29 | 1879 | −145 | 58 | 4426 | 1755 | 2 | −4.9 | −29 | 40 | 16 |
3 | 18 | 43,666 | 4861 | 21,820 | 106,612 | 14,410 | 6 | 18.5 | 13 | 37 | 136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, E. Regional Dynamics and Economic Sustainability of Mariculture Firms in Portugal: A Financial Performance Analysis. Water 2024, 16, 1655. https://doi.org/10.3390/w16121655
Santos E. Regional Dynamics and Economic Sustainability of Mariculture Firms in Portugal: A Financial Performance Analysis. Water. 2024; 16(12):1655. https://doi.org/10.3390/w16121655
Chicago/Turabian StyleSantos, Eleonora. 2024. "Regional Dynamics and Economic Sustainability of Mariculture Firms in Portugal: A Financial Performance Analysis" Water 16, no. 12: 1655. https://doi.org/10.3390/w16121655
APA StyleSantos, E. (2024). Regional Dynamics and Economic Sustainability of Mariculture Firms in Portugal: A Financial Performance Analysis. Water, 16(12), 1655. https://doi.org/10.3390/w16121655