Advancing the Understanding of Complex Piezometric Information: A Methodological Approach Integrating Long-Term Piezometry, Surface Nuclear Magnetic Resonance, and Fracture Analysis Using Insights from the “Calcaires du Barrois” Series, France
Abstract
:1. Introduction
2. Context
2.1. Study Site
2.2. Geological and Hydrogeological Characteristics of the “Calcaires du Barrois” Series
- The Sublithographic limestones (25 m thick) are lithographic micritic limestones with rare bioclastic beds and rare marly interbeds of decimetric thickness.
- The Dommartin limestones (63 m thick) consist of about 25 m of micritic limestones with bioclastic beds and marl interbeds at the base, an interval of about 25 m of micritic limestones with very rare bioclasts and bioclastic packstones at the top of this interval, and about 13 m of micritic limestones with very little bioclasticity at the top of the Dommartin limestones.
- The Decayed limestones (36 m—thick), which correspond to micritic limestones with little bioclasticity.
3. Data and Methods
3.1. Hydrogeological Investigations: Piezometry Analyses
- The variance, which is measured via time series variation coefficient, an indicator of the dispersion of the distribution of piezometric levels.
- The maximum amplitude (difference between the “Calcaires du Barrois” series base and the water level extremum piezometric levels). The base of the “Calcaires du Barrois” series is used as a reference to compare the height of piezometric variations measured in the boreholes.
- The slopes of piezometric rises and recession. The positive and negative slopes of the piezometric curves provide information on the rate of piezometric rise and the rate at which wells are drying up. These indicators are determined by studying the derivative of piezometric variations as a function of time. These derivatives are calculated at all points of a hydrograph using the finite difference method. The indicators provide information on the hydrodynamic parameters of the system. They therefore provide an insight into the structure of the system, such as the relative fracture density in the vicinity of the studied piezometers.
- System inertia or memory effect. This parameter quantifies the time taken for an event to affect the chronicle or, in other words, the time n taken for an event occurring at time t to not affect the event recorded at time t + n. The inertia of the system is expressed by the autocorrelation function [37]. This function is a measure of the degree of dependence on events in the same chronicle by assessing their repetitive nature. A significant memory effect reflects a certain degree of flow regulation by the system and, therefore, the importance of a capacitive character [38,39]. The memory effect is an indicator of the structure of the system and fracturing.
- Response time and cross-correlation coefficient. These indicators examine the strength of the relationship between the input signal, rainfall, and what can be considered as an approximation of the output signal, piezometry. It is assumed that there is a causal relationship between these two variables. The cross-correlation function corresponds to the transfer function between the two signals and provides information about the structure of the system.
3.2. Geological Investigations: Fracturing Analysis
- Optical Televiewer borehole wall imaging (sensor OPTV), which provides a complete, continuous scan of the borehole and, thus, provides a developed, oriented image of the borehole walls that can be used for subsequent image processing allowing measure dips and identify and orient planes of stratification, fracturing, and schistosity, (shown in polar plots). The characteristics of the Optical Televiewer are 360° camera 2 m long and 50 mm in diameter with 1 mm resolution. The quality of the images obtained depends mainly on the acquisition conditions in the borehole: the turbidity of the water, the diameter of the borehole, and the stability of the ground.
- Natural radioactivity logging or “Gamma Ray” (GR) measures the natural gamma radioactivity of rocks. It measures the content of naturally radioactive elements in the rocks and thus clarifies and correlates the lithological cross-section obtained by sampling the ground during drilling. In the study area, it can be used to distinguish between marl intervals (high values) and limestone intervals (low values). Correlations between boreholes are based on this measurement.
3.3. Geotechnics Investigations: Hydraulic Tests
3.3.1. Lefranc Tests
3.3.2. Pumping Tests
3.4. Hydrogeophysics Investigations: Surface Nuclear Magnetic Resonance (SNMR)
4. Results
4.1. Piezometric Data Processing (2016–2021)
4.1.1. Monocriteria Statistical Analysis
Strict Signal Indicators
Hydrodynamic Parameter Indicators
System Structure and Fracture Indicators
4.1.2. Multi-Criteria Statistical Analysis
4.2. Processing Geological and Geotechnical Data
4.2.1. Fracturing Data
4.2.2. Hydraulics Tests
Lefranc Tests: Permeability on the Scale of the Borehole
Pumping Tests: Permeability at Aquifer Scale
4.3. SNMR Data
4.3.1. SNMR Signal
4.3.2. Inversion Results
5. Discussion
5.1. Piezometric Response and Fracture Network Connectivity
5.2. Hydraulic Tests and Local Matrix Characterization
5.3. SNMR and Water Content Quantification
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Number | Name | Information | Number | Name | Information |
---|---|---|---|---|---|
1 | CIG1028 | Piezometry | 31 | CIG1031 | Borehole imaging |
2 | CIG1029 | Piezometry | 32 | CIG1080 | Borehole imaging |
3 | CIG1030 | Piezometry | 33 | CIG1088 | Borehole imaging |
4 | CIG1031 | Piezometry | 34 | CIG1120 | Borehole imaging |
5 | CIG1227 | Piezometry | 35 | CIG1122 | Borehole imaging |
6 | CIG1228 | Piezometry | 36 | CIG1254 | Borehole imaging |
7 | CIG1229 | Piezometry | 37 | EST3BIS | SNMR |
8 | CIG1230 | Piezometry | 38 | EST14 | SNMR |
9 | CIG1237 | Piezometry | 39 | EST18 | SNMR |
10 | CIG1245 | Piezometry | 40 | CIG1005 | Fracturing |
11 | CIG1246 | Piezometry | 41 | CIG1009 | Fracturing |
12 | CIG1247 | Piezometry | 42 | CIG1011 | Fracturing |
13 | CIG1248 | Piezometry | 43 | CIG1077 | Fracturing |
14 | CIG1249 | Piezometry | 44 | CIG1078 | Fracturing |
15 | CIG1250 | Piezometry | 45 | CIG1079 | Fracturing |
16 | EST1012 | Piezometry | 46 | CIG1080 | Fracturing |
17 | EST1021 | Piezometry | 47 | CIG1086 | Fracturing |
18 | EST1037 | Piezometry | 48 | CIG1088 | Fracturing |
19 | EST5071 | Piezometry | 49 | CIG1090 | Fracturing |
20 | CIG1023 | Pumping tests | 50 | CIG1108 | Fracturing |
21 | CIG1024 | Pumping tests | 51 | CIG1114 | Fracturing |
22 | CIG1025 | Pumping tests | 52 | CIG1116 | Fracturing |
23 | CIG1026 | Pumping tests | 53 | CIG1117 | Fracturing |
24 | CIG1137 | Lefranc tests | 54 | CIG1118 | Fracturing |
25 | CIG1138 | Lefranc tests | 55 | CIG1120 | Fracturing |
26 | CIG1139 | Lefranc tests | 56 | CIG1121 | Fracturing |
27 | CIG1140 | Lefranc tests | 57 | CIG1252 | Fracturing |
28 | CIG1237 | Lefranc tests | 58 | CIG1253 | Fracturing |
29 | CIG1250 | Lefranc tests | 59 | CIG1254 | Fracturing |
30 | CIG1011 | Borehole imaging |
Appendix B
Name | Depth (m) | Borehole Screen | Geological Level | Data | Data Acquisition Start On |
---|---|---|---|---|---|
{16} | 25.5 | Ø 112/122.5 mm + gravel packing | Sublithographic limestone (N1) | Pressure Temperature | 13 April 1996 30 June 1999 |
{17} | 30 | Ø 113/125 mm opening 1 mm + gravel packing | Kimmeridgian marls | Pressure Temperature Sampling | 4 April 2000 6 July 2000 6 July 2000 |
{18} | 20.2 | Ø 113/125 mm opening 1 mm + gravel packing | Kimmeridgian marls | Pressure Temperature Sampling | 5 April 2000 |
{19} | 39.06 | Ø 119.8/125 mm | Kimmeridgian marls | Pressure Temperature | 20 December 1995 10 July 1999 |
{1} | 20 | gravel packing | Kimmeridgian marls | Pressure | 25 January 2016 |
{2} | 14 | gravel packing | Kimmeridgian marls | Pressure | 17 February 2016 |
{3} | 28 | gravel packing | Kimmeridgian marls | Pressure | 25 February 2016 |
{4} | 30 | gravel packing | Kimmeridgian marls | Pressure | 27 January 2016 |
{5} | 30.3 | gravel packing | Kimmeridgian marls | Pressure Temperature | 31 August 2016 |
{6} | 30.3 | gravel packing | Kimmeridgian marls | Pressure Temperature | 31 August 2016 |
{7} | 30.3 | gravel packing | Kimmeridgian marls | Pressure Temperature | 22 August 2016 |
{8} | 32 | gravel packing | Kimmeridgian marls | Pressure Temperature | 31 August 2016 |
{9} | 30.3 | gravel packing | Kimmeridgian marls | Pressure Temperature | 31 August 2016 |
{10} | 20.3 | gravel packing | Kimmeridgian marls | Pressure Temperature | 18 August 2016 |
{11} | 20.3 | gravel packing | Sublithographic limestone (N1) | Pressure Temperature | 16 June 2016 |
{12} | 15.4 | gravel packing | Kimmeridgian marls | Pressure Temperature | 29 September 2016 |
{13} | 30.35 | gravel packing | Kimmeridgian marls | Pressure Temperature | 22 August 2016 |
{14} | 15.3 | gravel packing | Sublithographic limestone (N5) | Pressure Temperature | 24 November 2016 |
{15} | 30.3 | gravel packing | Sublithographic limestone (N4) | Pressure Temperature | 3 August 2016 |
References
- Stevanović, Z. Global Distribution and Use of Water from Karst Aquifers. Geol. Soc. Lond. Spec. Publ. 2018, 466, 217–236. [Google Scholar] [CrossRef]
- Ravbar, N.; Šebela, S. The Effectiveness of Protection Policies and Legislative Framework with Special Regard to Karst Landscapes: Insights from Slovenia. Environ. Sci. Policy 2015, 51, 106–116. [Google Scholar] [CrossRef]
- Hartmann, A.; Goldscheider, N.; Wagener, T.; Lange, J.; Weiler, M. Karst Water Resources in a Changing World: Review of Hydrological Modeling Approaches: Karst Water Resources Prediction. Rev. Geophys. 2014, 52, 218–242. [Google Scholar] [CrossRef]
- Chen, C.-T.; Hu, J.-C.; Lu, C.-Y.; Lee, J.-C.; Chan, Y.-C. Thirty-Year Land Elevation Change from Subsidence to Uplift Following the Termination of Groundwater Pumping and Its Geological Implications in the Metropolitan Taipei Basin, Northern Taiwan. Eng. Geol. 2007, 95, 30–47. [Google Scholar] [CrossRef]
- Mangin, A. Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale (The use of autocorrelation and spectral analyses to obtain a better understanding of hydrological systems). J. Hydrol. 1984, 67, 25–43. [Google Scholar] [CrossRef]
- Nistor, M.M.; Rahardjo, H.; Satyanaga, A.; Hao, K.Z.; Xiaosheng, Q.; Sham, A.W.L. Investigation of Groundwater Table Distribution Using Borehole Piezometer Data Interpolation: Case Study of Singapore. Eng. Geol. 2020, 271, 105590. [Google Scholar] [CrossRef]
- De Luca, D.A.; Lasagna, M.; Debernardi, L. Hydrogeology of the Western Po Plain (Piedmont, NW Italy). J. Maps 2020, 16, 265–273. [Google Scholar] [CrossRef]
- Fiorillo, F. Tank-Reservoir Drainage as a Simulation of the Recession Limb of Karst Spring Hydrographs. Hydrogeol. J 2011, 19, 1009–1019. [Google Scholar] [CrossRef]
- Bennett, G.; Van Camp, M.; Shemsanga, C.; Kervyn, M.; Walraevens, K. Assessment of Spatial and Temporal Variability of Groundwater Level in the Aquifer System on the Flanks of Mount Meru, Northern Tanzania. J. Hydrol. Reg. Stud. 2022, 44, 101212. [Google Scholar] [CrossRef]
- Giese, M.; Reimann, T.; Bailly-Comte, V.; Maréchal, J.-C.; Sauter, M.; Geyer, T. Turbulent and Laminar Flow in Karst Conduits Under Unsteady Flow Conditions: Interpretation of Pumping Tests by Discrete Conduit-Continuum Modeling. Water Resour. Res. 2018, 54, 1918–1933. [Google Scholar] [CrossRef]
- Praamsma, T.; Novakowski, K.; Kyser, K.; Hall, K. Using Stable Isotopes and Hydraulic Head Data to Investigate Groundwater Recharge and Discharge in a Fractured Rock Aquifer. J. Hydrol. 2009, 366, 35–45. [Google Scholar] [CrossRef]
- Maréchal, J.-C.; Ladouche, B.; Dörfliger, N.; Lachassagne, P. Interpretation of Pumping Tests in a Mixed Flow Karst System: Pumping Tests in Karst System. Water Resour. Res. 2008, 44, W05401. [Google Scholar] [CrossRef]
- Banks, E.W.; Simmons, C.T.; Love, A.J.; Shand, P. Assessing Spatial and Temporal Connectivity between Surface Water and Groundwater in a Regional Catchment: Implications for Regional Scale Water Quantity and Quality. J. Hydrol. 2011, 404, 30–49. [Google Scholar] [CrossRef]
- Valois, R.; Rau, G.C.; Vouillamoz, J.-M.; Derode, B. Estimating Hydraulic Properties of the Shallow Subsurface Using the Groundwater Response to Earth and Atmospheric Tides: A Comparison With Pumping Tests. Water Resour. Res. 2022, 58, e2021WR031666. [Google Scholar] [CrossRef]
- Bon, A.F.; Aoudou Doua, S.; Banakeng, L.A.; Narke, C.; Chouto, S.; Mbouombouo Ndam, A. Contribution of a Geostatistical Model of Electrical Conductivity in the Assessment of the Water Pollution Index of the Quaternary Aquifer of the Lake Chad Basin (Kousseri-Cameroon). Arab. J. Geosci. 2020, 13, 170. [Google Scholar] [CrossRef]
- Dewandel, B.; Aunay, B.; Maréchal, J.C.; Roques, C.; Bour, O.; Mougin, B.; Aquilina, L. Analytical Solutions for Analysing Pumping Tests in a Sub-Vertical and Anisotropic Fault Zone Draining Shallow Aquifers. J. Hydrol. 2014, 509, 115–131. [Google Scholar] [CrossRef]
- Castellazzi, P.; Arroyo-Domínguez, N.; Martel, R.; Calderhead, A.I.; Normand, J.C.L.; Gárfias, J.; Rivera, A. Land Subsidence in Major Cities of Central Mexico: Interpreting InSAR-Derived Land Subsidence Mapping with Hydrogeological Data. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 102–111. [Google Scholar] [CrossRef]
- Haimson, B.C.; Doe, T.W. State of Stress, Permeability, and Fractures in the Precambrian Granite of Northern Illinois. J. Geophys. Res. 1983, 88, 7355–7371. [Google Scholar] [CrossRef]
- Dausse, A.; Leonardi, V.; Jourde, H. Hydraulic Characterization and Identification of Flow-Bearing Structures Based on Multi-Scale Investigations Applied to the Lez Karst Aquifer. J. Hydrol. Reg. Stud. 2019, 26, 100627. [Google Scholar] [CrossRef]
- Goldscheider, N.; Drew, D. Methods in Karst Hydrogeology; International Contributions to Hydrogeology; Taylor & Francis: London, UK, 2007; ISBN 978-0-415-42873-6. [Google Scholar]
- Kiraly, L. Karstification and Groundwater Flow. Speleogenesis Evol. Karst Aquifers 2003, 1, 1–26. [Google Scholar]
- Ford, D.C.; Williams, P.W. Karst Hydrogeology and Geomorphology; Chapman and Hall: London, UK, 2007. [Google Scholar] [CrossRef]
- Bakalowicz, M. Karst Groundwater: A Challenge for New Resources. Hydrogeol. J. 2005, 13, 148–160. [Google Scholar] [CrossRef]
- Bakalowicz, M. Le milieu karstique: Études et perspectives, identification et caractérisation de la ressource. In Proceedings of the CFH—Colloque Hydrogéologie et Karst au Travers des Travaux de Michel Lepiller 17 Mai 2008, Orléans, France, 16–17 May 2008. [Google Scholar]
- Atkinson, T.C. Diffuse Flow and Conduit Flow in Limestone Terrain in the Mendip Hills, Somerset (Great Britain). J. Hydrol. 1977, 35, 93–110. [Google Scholar] [CrossRef]
- Shuster, E.T.; White, W.B. Seasonal Fluctuations in the Chemistry of Lime-Stone Springs: A Possible Means for Characterizing Carbonate Aquifers. J. Hydrol. 1971, 14, 93–128. [Google Scholar] [CrossRef]
- Clauser, C. Permeability of Crystalline Rocks. Eos 1992, 73, 233–238. [Google Scholar] [CrossRef]
- Jeannin, P.-Y. Structure et Comportement Hydraulique des Aquifères Karstiques (Structure and Hydraulic Behavior of Karst Aquifers). Ph.D. Thesis, Université de Neuchâtel, Neuchâtel, Switzerland, 1996. [Google Scholar]
- Delbart, C.; Valdés, D.; Barbecot, F.; Tognelli, A.; Couchoux, L. Spatial Organization of the Impulse Response in a Karst Aquifer. J. Hydrol. 2016, 537, 18–26. [Google Scholar] [CrossRef]
- Chalikakis, K.; Plagnes, V.; Guerin, R.; Valois, R.; Bosch, F.P. Contribution of Geophysical Methods to Karst-System Exploration: An Overview. Hydrogeol. J. 2011, 19, 1169–1180. [Google Scholar] [CrossRef]
- Chalikakis, K.; Nielsen, M.R.; Legchenko, A. MRS Applicability for a Study of Glacial Sedimentary Aquifers in Central Jutland, Denmark. J. Appl. Geophys. 2008, 12, 176–187. [Google Scholar] [CrossRef]
- Legchenko, A.; Valla, P. A Review of the Basic Principles for Proton Magnetic Resonance Sounding Measurements. J. Appl. Geophys. 2002, 50, 3–19. [Google Scholar] [CrossRef]
- Mazzilli, N.; Chalikakis, K.; Carrière, S.D. Surface Nuclear Magnetic Resonance Monitoring Reveals Karst Unsaturated Zone Recharge Dynamics during a Rain Event. Water 2020, 12, 3183. [Google Scholar] [CrossRef]
- Scholz, E. Synthèse Hydrogéologique des Calcaires du Barrois; ANDRA: Bure, France, 2011; p. 97. [Google Scholar]
- Jaillet, S. Un Karst de Bas Plateau: Le Barrois, Structure, Fonctionnement, Evolution (A Low Plateau Karst: The Barrois, Structure, Functioning, Evolution). Ph.D. Thesis, Université de Bordeaux, Bordeaux, France, 2000. [Google Scholar]
- Decloux, J.-P. Hydrologie et Hydrogeologie des Aquiferes de Surface sur les Bassins de la Saulx et de L’ornain—Rapport de Tâche 1 (RT1); ANDRA: Bure, France, 2018; p. 47. [Google Scholar]
- Mangin, A. Contribution à L’étude Hydrodynamique des Aquifères Karstiques. Ph.D. Thesis, Université de Dijon, Dijon, France, 1975. [Google Scholar]
- Cholet, C. Fonctionnement Hydrogéologique et Processus de Transport dans les Aquifères Karstiques du Massif du Jura. Ph.D. Thesis, Université Bourgogne Franche-Comté, Besançon, France, 2017. [Google Scholar]
- Delbart, C. Variabilité Spatio-Temporelle du Fonctionnement d’un Aquifère Karstique du Dogger: Suivis Hydrodynamiques et Géochimiques Multifréquences; Traitement du Signal des Réponses Physiques et Géochimiques. Ph.D. Thesis, Université Paris-Sud—Paris XI, Paris, France, 2013. [Google Scholar]
- Hvorslev, J. Time Lag and Soil Permeabilty in Ground; Waterways Experiment Station: Vicksburg, MS, USA, 1951; Volume 50. [Google Scholar]
- ISO 22282-2; Reconnaissance et Essais Géotechniques—Essais Géohydrauliques—Partie 2: Essai de Perméabilité à L’eau Dans un Forage en Tube Ouvert. ISO: Geneva, Switzerland, 2013.
- NF P94-130 Standard; Soils: Investigation and Testing—Pumping Test. AFNOR: Paris, France, 2002.
- Moench, A.F. Flow to a Well of Finite Diameter in a Homogeneous, Anisotropic Water Table Aquifer. Water Resour. Res. 1997, 33, 1397–1407. [Google Scholar] [CrossRef]
- Theis, C.V. The Relation between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Ground. Eos Trans. AGU 1935, 16, 519–524. [Google Scholar] [CrossRef]
- Kruseman, G.P.; De Ridder, N.A. Analysis and Evaluation of Pumping Test Data; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 1991; Volume 47. [Google Scholar]
- Vouillamoz, J.-M. La Caractérisation des Aquifères par une Méthode Non Invasive: Les Sondages par Resonance Magnetique Protonique. Ph.D. Thesis, Université de Paris XI, Paris, France, 2003. [Google Scholar]
- Legchenko, A.; Baltassat, J.-M.; Beauce, A.; Bernard, J. Nuclear Magnetic Resonance as a Geophysical Tool for Hydrogeologists. J. Appl. Geophys. 2002, 50, 21–46. [Google Scholar] [CrossRef]
- Legchenko, A.; Valla, P. Processing of Surface Proton Magnetic Resonance Signals Using Non-Linear Fitting. J. Appl. Geophys. 1998, 39, 77–83. [Google Scholar] [CrossRef]
- Legchenko, A.; Valla, P. Removal of Power-Line Harmonics from Proton Magnetic Resonance Measurements. J. Appl. Geophys. 2003, 53, 103–120. [Google Scholar] [CrossRef]
- Legchenko, A. MRS Measurements and Inversion in Presence of EM Noise. Bol. Geol. Min. 2007, 118, 489–508. [Google Scholar]
- Mazzilli, N.; Boucher, M.; Chalikakis, K.; Legchenko, A.; Jourde, H.; Champollion, C. Contribution of Magnetic Resonance Soundings for Characterizing Water Storage in the Unsaturated Zone of Karst Aquifers. Geophysics 2016, 81, WB49–WB61. [Google Scholar] [CrossRef]
- Legchenko, A. Magnetic Resonance Imaging for Groundwater; Wiley-ISTE: Hoboken, NJ, USA, 2013; ISBN 978-1-84821-568-9. [Google Scholar]
- Legchenko, A.; Comte, J.-C.; Ofterdinger, U.; Vouillamoz, J.-M.; Lawson, F.M.A.; Walsh, J. Joint Use of Singular Value Decomposition and Monte-Carlo Simulation for Estimating Uncertainty in Surface NMR Inversion. J. Appl. Geophys. 2017, 144, 28–36. [Google Scholar] [CrossRef]
Sounding Name | Site | Date | Average Number of Stacks | Ratio S/N | Maximum Depth Resolution (m) | Rainfall D-7 (mm) | Hydraulic Regime High-Water (HW) or Low-Water (LW) |
---|---|---|---|---|---|---|---|
{37} | {37} | 1 March 2022 | 299 | 2.51 | 24.41 | 7.8 | HW |
{38}_1 | {38} | 23 June 2021 | 274 | 2.67 | 25.77 | 10.4 | LW |
{38}_2 | {38} | 28 June 2021 | 288 | 2.7 | 25.77 | 21.0 | LW |
{38}_3 | {38} | 11 April 2022 | 367 | 9.18 | 21.6 | 48.4 | HW |
{38}_4 | {38} | 12 April 2022 | 243 | 6.63 | 21.6 | 48.4 | HW |
{39} | {39} | 3 March 2022 | 289 | 7.78 | 24.41 | 4.4 | HW |
Name | 1-Variance | 2-Amplitude (m) | 3-Flood Rise Gradient | 3-Recovery Gradient | 4-Inertia (Days) | 5-Response Time (Hours) | 5-Rainfall-Piezometry Correlation | Missing Data (%) |
---|---|---|---|---|---|---|---|---|
{1} | 1.71 | 8.7 | 1.72 × 10−6 | −1.25 × 10−7 | 69 | 25 | 0.14 | 1.59 |
{2} | 1.14 | 8.88 | 1.13 × 10−6 | −1.24 × 10−7 | 61 | 16 | 0.24 | 3.23 |
{3} | 1.52 | 7.02 | 6.61 × 10−6 | −1.26 × 10−7 | 62 | 37 | 0.18 | 7.05 |
{4} | 1.7 | 15.93 | 7.88 × 10−7 | −1.91 × 10−7 | 115 | 30 | 0.03 | 1.17 |
{5} | 0.65 | 8.82 | 3.31 × 10−7 | −9.18 × 10−8 | 40 | 18 | 0.23 | 0.02 |
{6} | 0.82 | 6.71 | 5.57 × 10−7 | −1.23 × 10−7 | 56 | 199 | 0.09 | 0.35 |
{7} | 2.08 | 18.87 | 1.84 × 10−6 | −2.98 × 10−7 | 74 | 16 | 0.17 | 3.77 |
{8} | 0.45 | 8.11 | 9.26 × 10−8 | −3.98 × 10−9 | 2 | 15 | 0.24 | 0 |
{9} | 0.92 | 10.13 | 3.41 × 10−7 | −1.10 × 10−7 | 54 | 18 | 0.2 | 1.59 |
{10} | 0.88 | 12.89 | 1.49 × 10−7 | −3.35 × 10−8 | 30 | 17 | 0.21 | 0 |
{11} | 0.23 | 3.71 | 9.99 × 10−8 | −6.81 × 10−9 | 8 | 4 | 0.36 | 0 |
{12} | 0.4 | 5.11 | 7.88 × 10−8 | −1.32 × 10−9 | 7 | 13 | 0.21 | 0.02 |
{13} | 1.4 | 10.86 | 2.31 × 10−6 | −1.04 × 10−7 | 74 | 16 | 0.18 | 0.28 |
{14} | 0.64 | 4.83 | 4.93 × 10−9 | −5.02 × 10−10 | 42 | 20 | 0.23 | 0.06 |
{15} | 0.55 | 2.44 | 3.95 × 10−7 | −3.12 × 10−8 | 68 | 176 | 0.1 | 0 |
{16} | 0.82 | 10.91 | 6.49 × 10−7 | −1.26 × 10−8 | 6 | 13 | 0.29 | 0.76 |
{17} | 0.99 | 5.28 | 1.43 × 10−6 | −1.31 × 10−7 | 65 | 100 | 0.16 | 2.28 |
{18} | 3.2 | 11.66 | 3.79 × 10−6 | −3.63 × 10−7 | 71 | 68 | 0.11 | 70.61 |
{19} | 0.99 | 5.16 | 4.87 × 10−6 | −5.66 × 10−8 | 60 | 39 | 0.19 | 29.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertrand, M.; Bertrand, C.; Mazzilli, N.; Gigleux, S.; Denimal, S.; Valois, R.; Girod, L.-M.; Cinkus, G.; Busquet, V.; Chalikakis, K. Advancing the Understanding of Complex Piezometric Information: A Methodological Approach Integrating Long-Term Piezometry, Surface Nuclear Magnetic Resonance, and Fracture Analysis Using Insights from the “Calcaires du Barrois” Series, France. Water 2024, 16, 1700. https://doi.org/10.3390/w16121700
Bertrand M, Bertrand C, Mazzilli N, Gigleux S, Denimal S, Valois R, Girod L-M, Cinkus G, Busquet V, Chalikakis K. Advancing the Understanding of Complex Piezometric Information: A Methodological Approach Integrating Long-Term Piezometry, Surface Nuclear Magnetic Resonance, and Fracture Analysis Using Insights from the “Calcaires du Barrois” Series, France. Water. 2024; 16(12):1700. https://doi.org/10.3390/w16121700
Chicago/Turabian StyleBertrand, Mathieu, Catherine Bertrand, Naomi Mazzilli, Sylvain Gigleux, Sophie Denimal, Rémi Valois, Lise-Marie Girod, Guillaume Cinkus, Valentine Busquet, and Konstantinos Chalikakis. 2024. "Advancing the Understanding of Complex Piezometric Information: A Methodological Approach Integrating Long-Term Piezometry, Surface Nuclear Magnetic Resonance, and Fracture Analysis Using Insights from the “Calcaires du Barrois” Series, France" Water 16, no. 12: 1700. https://doi.org/10.3390/w16121700
APA StyleBertrand, M., Bertrand, C., Mazzilli, N., Gigleux, S., Denimal, S., Valois, R., Girod, L. -M., Cinkus, G., Busquet, V., & Chalikakis, K. (2024). Advancing the Understanding of Complex Piezometric Information: A Methodological Approach Integrating Long-Term Piezometry, Surface Nuclear Magnetic Resonance, and Fracture Analysis Using Insights from the “Calcaires du Barrois” Series, France. Water, 16(12), 1700. https://doi.org/10.3390/w16121700