The Characteristics and Application of Deuterium and Oxygen Isotopes to Karst Groundwater, Southwest China
Abstract
:1. Introduction
2. The Characteristics of Stable Isotopes of Karst Groundwater
2.1. Seasonal Characteristics of Stable Isotopes of Karst Groundwater in Southwest China
2.2. Spatial Characteristics of Stable Isotopes of Karst Groundwater in Southwest China
3. Application of Stable Isotopes to Karst Groundwater
3.1. Karst Groundwater Recharge Source and Recharge Elevation Identification
3.1.1. Recharge Source of Karst Groundwater
3.1.2. Recharge Elevation of Karst Groundwater
3.2. Karst Groundwater in Hydrological Cycle
3.3. Hydrological Process of Karst Groundwater
3.4. Karst Groundwater Contamination Tracking
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bugna, G.C.; Grace, J.M.; Hsieh, Y.-P. Sensitivity of using stable water isotopic tracers to study the hydrology of isolated wetlands in north Florida. J. Hydrol. 2020, 580, 124321. [Google Scholar] [CrossRef]
- Stockinger, M.P.; Lücke, A.; McDonnell, J.J.; Diekkrüger, B.; Vereecken, H.; Bogena, H.R. Interception effects on stable isotope driven streamwater transit time estimates. Geophys. Res. Lett. 2015, 42, 5299–5308. [Google Scholar] [CrossRef]
- Hassenruck-Gudipati, H.J.; Andermann, C.; Dee, S.; Brunello, C.F.; Baidya, K.P.; Sachse, D.; Meyer, H.; Hovius, N. Moisture sources and pathways determine stable isotope signature of Himalayan waters in Nepal. AGU Adv. 2023, 4, e2022AV000735. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, F.; Li, X.; Zeng, C.; Shi, X.; Wu, H.; Jagirani, M.D.; Che, T. Using stable isotopes to identify major flow pathways in a permafrost influenced alpine meadow hillslope during summer rainfall period. Hydrol. Process. 2020, 34, 1104–1116. [Google Scholar] [CrossRef]
- Sidle, W.C. Environmental isotopes for resolution of hydrology problems. Environ. Monit. Assess. 1998, 52, 389–410. [Google Scholar] [CrossRef]
- Mook, W.G. Environmental Isotopes in the Hydrological Cycle: Principles and Applications; UNESCO: Paris, France, 2000; p. 291. [Google Scholar]
- Zachleder, V.; Vítová, M.; Hlavová, M.; Moudříková, Š.; Mojzeš, P.; Heumann, H.; Becher, J.R.; Bišová, K. Stable isotope compounds—Production, detection, and application. Biotechnol. Adv. 2018, 36, 784–797. [Google Scholar] [CrossRef] [PubMed]
- Gat, J.R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 1996, 24, 226–227. [Google Scholar] [CrossRef]
- Galewsky, J.; Steen-Larsen, H.C.; Field, R.D.; Worden, J.; Risi, C.; Schneider, M. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Rev. Geophys. 2016, 54, 809–865. [Google Scholar] [CrossRef] [PubMed]
- Jouzel, J.; Delaygue, G.; Landais, A.; Masson-Delmotte, V.; Risi, C.; Vimeux, F. Water isotopes as tools to document oceanic sources of precipitation. Water Resour. Res. 2013, 49, 7469–7486. [Google Scholar] [CrossRef]
- Van Geldern, R.; Barth, J.A.C. Oxygen and Hydrogen Stable Isotopes in Earth’s Hydrologic Cycle. Isotopic Landscapes in Bioarchaeology; Grupe, G., McGlynn, G.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 173–187. [Google Scholar]
- Yang, K.; Han, G. Controls over hydrogen and oxygen isotopes of surface water and groundwater in the Mun river catchment, northeast Thailand: Implications for the water cycle. Hydrogeol. J. 2020, 28, 1021–1036. [Google Scholar] [CrossRef]
- Wang, T.; Xu, Z.; Zhang, S.; Zhang, L.; Zhao, Z. Research on the hydrologic cycle characteristics using stable isotopes of oxygen and hydrogen in the Jinxiuchuan basin. Tecnol. Cienc. Agua 2017, 8, 105–115. [Google Scholar] [CrossRef]
- Che, C.; Zhang, M.; Argiriou, A.A.; Wang, S.; Du, Q.; Zhao, P.; Ma, Z. The stable isotopic composition of different water bodies at the Soil–Plant–Atmosphere Continuum (SPAC) of the western Loess Plateau, China. Water 2019, 11, 1742. [Google Scholar] [CrossRef]
- Xia, C.; Liu, G.; Mei, J.; Meng, Y.; Liu, W.; Hu, Y. Characteristics of hydrogen and oxygen stable isotopes in precipitation and the environmental controls in tropical monsoon climatic zone. Int. J. Hydrogen Energy. 2019, 44, 5417–5427. [Google Scholar] [CrossRef]
- Wang, D.; Tian, L.; Cai, Z.; Shao, L.; Guo, X.; Tian, R.; Li, Y.; Chen, Y.; Yuan, C. Indian monsoon precipitation isotopes linked with high level cloud cover at local and regional scales. Earth Planet. Sci. Lett. 2020, 529, 115837. [Google Scholar] [CrossRef]
- Ali, K.K.; Ajeena, A.R. Assessment of interconnection between surface water and groundwater in Sawa lake area, southern Iraq, using stable isotope technique. Arabian J. Geosci. 2016, 9, 648. [Google Scholar] [CrossRef]
- Halder, J.; Decrouy, L.; Vennemann, T.W. Mixing of Rhône River water in Lake Geneva (Switzerland–France) inferred from stable hydrogen and oxygen isotope profiles. J. Hydrol. 2013, 477, 152–164. [Google Scholar] [CrossRef]
- Iacurto, S.; Grelle, G.; De Filippi, F.M.; Sappa, G. Karst spring recharge areas and discharge relationship by oxygen-18 and deuterium isotopes analyses: A case study in southern Latium region, Italy. Appl. Sci. Basel. 2020, 10, 1882. [Google Scholar] [CrossRef]
- Galvão, P.; Hirata, R.; Halihan, T.; Terada, R. Recharge sources and hydrochemical evolution of an urban karst aquifer, Sete Lagoas, MG, Brazil. Environ. Earth Sci. 2017, 76, 159. [Google Scholar] [CrossRef]
- Sánchez-Murillo, R.; Birkel, C. Groundwater recharge mechanisms inferred from isoscapes in a complex tropical mountainous region. Geophys. Res. Lett. 2016, 43, 5060–5069. [Google Scholar] [CrossRef]
- Rusjan, S.; Sapač, K.; Petrič, M.; Lojen, S.; Bezak, N. Identifying the hydrological behavior of a complex karst system using stable isotopes. J. Hydrol. 2019, 577, 123956. [Google Scholar] [CrossRef]
- Ettayfi, N.; Bouchaou, L.; Michelot, J.L.; Tagma, T.; Warner, N.; Boutaleb, S.; Massault, M.; Lgourna, Z.; Vengosh, A. Geochemical and isotopic (oxygen, hydrogen, carbon, strontium) constraints for the origin, salinity, and residence time of groundwater from a carbonate aquifer in the western Anti-Atlas Mountains, Morocco. J. Hydrol. 2012, 438–439, 97–111. [Google Scholar] [CrossRef]
- Bicalho, C.C.; Batiot-Guilhe, C.; Taupin, J.D.; Patris, N.; Exter, S.V.; Jourde, H. A conceptual model for groundwater circulation using isotopes and geochemical tracers coupled with hydrodynamics: A case study of the Lez karst system, France. Chem. Geol. 2019, 528, 118442. [Google Scholar] [CrossRef]
- Li, Z.; Lin, X.; Coles, A.E.; Chen, X. Catchment-scale surface water-groundwater connectivity on China’s Loess Plateau. CATENA 2017, 152, 268–276. [Google Scholar] [CrossRef]
- Bowen, G.J.; Cai, Z.Y.; Fiorella, R.P.; Putman, A.L. Isotopes in the water cycle: Regional–to global–scale patterns and applications. Annu. Rev. Earth Planet. Sci. 2019, 47, 453–479. [Google Scholar] [CrossRef]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Process. 2000, 14, 1341–1355. [Google Scholar] [CrossRef]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Stable isotope composition of precipitation over southeast Asia. J. Geophys. Res. Atmos. 1998, 103, 28721–28742. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Valdivielso, S.; Vázquez-Suñé, E.; Custodio, E. Origin and variability of oxygen and hydrogen isotopic composition of precipitation in the central Andes: A review. J. Hydrol. 2020, 587, 124899. [Google Scholar] [CrossRef]
- Yao, T.; Masson-Delmotte, V.; Gao, J.; Yu, W.; Yang, X.; Risi, C.; Sturm, C.; Werner, M.; Zhao, H.; He, Y.; et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys. 2013, 51, 525–548. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S. A review of precipitation isotope studies in China: Basic pattern and hydrological process. J. Geog. Sci. 2016, 26, 921–938. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Z.; Feng, Q.; Zhang, B.; Gui, J. A review of isotope ecohydrology in the cold regions of western China. Sci. Total Environ. 2023, 857, 159438. [Google Scholar] [CrossRef]
- Rank, D.; Wyhlidal, S.; Schott, K.; Weigand, S.; Oblin, A. Temporal and spatial distribution of isotopes in river water in Central Europe: 50 years experience with the Austrian network of isotopes in rivers. Isot. Environ. Health Stud. 2018, 54, 115–136. [Google Scholar] [CrossRef] [PubMed]
- Jasechko, S. Global Isotope Hydrogeology—Review. Rev. Geophys. 2019, 57, 835–965. [Google Scholar] [CrossRef]
- De Waele, J.; Plan, L.; Audra, P. Recent developments in surface and subsurface karst geomorphology: An introduction. Geomorphology 2009, 106, 1–8. [Google Scholar] [CrossRef]
- Yuan, D. Chinese Karstology; Geology Press: Beijing, China, 1994; pp. 1–200. [Google Scholar]
- Worthington, S.R.H.; Jeannin, P.-Y.; Alexander, E.C.; Davies, G.J.; Schindel, G.M. Contrasting definitions for the term ‘karst aquifer’. Hydrogeol. J. 2017, 25, 1237–1240. [Google Scholar] [CrossRef]
- Yuan, D. Modern Karstology; Science Press: Beijing, China, 2016; pp. 295–303. [Google Scholar]
- Dinçer, T.; Payne, B.R. An environmental isotope study of the south-western karst region of Turkey. J. Hydrol. 1971, 14, 233–258. [Google Scholar] [CrossRef]
- Yuan, D. Geological environment and hydroecological problems in karst areas. South. J. Nat. Resour. 2003, 22–25. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky desertification in southwest China: Impacts, causes, and restoration. Earth Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Shan, H.; Deng, J. Basic features and counter-measures for harmonious use of karst water in southwest China. Carsol. Sin. 2006, 25, 324–329. (In Chinese) [Google Scholar] [CrossRef]
- Shi, X.; Bai, S.; Chen, W. Remote sensing of water use efficiency in southwest China’s karst area. Environ. Sci. Pollut. Res. 2022, 29, 71166–71178. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, C.; Chen, H.; Yue, Y.; Zhang, W.; Zhang, M.; Qi, X.; Fu, Z. Karst landscapes of China: Patterns, ecosystem processes and services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef]
- Jiang, Z.; Xia, R.; Shi, J.; Pei, J.; He, S.; Liang, B. The application effects and exploitation capacity of karst underground water resources in southwest China. Acta Geosci. Sin. 2006, 27, 495–502. (In Chinese) [Google Scholar] [CrossRef]
- Che, Y.; Zhang, M.; Wang, S.; Wang, J.; Liu, Y.; Zhang, F. Stable water isotopes of precipitation in China simulated by SWING2 models. Arabian J. Geosci. 2016, 9, 732. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, M.; Wang, S.; Liu, Y.; Qiang, F.; Qu, D. Interannual trends in stable oxygen isotope composition in precipitation of China during 1979–2007: Spatial incoherence. Quat. Int. 2017, 454, 25–37. [Google Scholar] [CrossRef]
- Wang, S.; Lei, S.; Zhang, M.; Hughes, C.; Crawford, J.; Liu, Z.; Qu, D. Spatial and seasonal isotope variability in precipitation across China: Monthly isoscapes based on regionalized fuzzy clustering. J. Clim. 2022, 35, 3411–3425. [Google Scholar] [CrossRef]
- Li, R.; Zhu, D.; Han, Y.; Cao, Z.; Ni, J.; Liu, Z. Atmospheric process factors affecting the stable isotope variations in precipitation in Guiyang, southwest China. Theor. Appl. Clim. 2023, 155, 3243–3257. [Google Scholar] [CrossRef]
- Zhou, J.; Li, T. A tentative study of the relationship between annual δ18O & δD variations of precipitation and atmospheric circulations—A case from southwest China. Quat. Int. 2018, 479, 117–127. [Google Scholar] [CrossRef]
- Xia, C.C.; Chen, K.; Zhou, J.; Mei, J.; Liu, Y.P.; Liu, G.D. Comparison of precipitation stable isotopes during wet and dry seasons in a subtropical monsoon climate region of China. Appl. Ecol. Environ. Res. 2019, 17, 11979–11993. [Google Scholar] [CrossRef]
- Wu, X.; Pan, M.; Zhu, X.; Yin, J.; Wang, Z.; Zhang, M.; Cao, J. Effect of the El Niño–Southern Oscillation on hydrogen and oxygen isotope ratios of precipitation in Guilin, SW China. Isot. Environ. Health Stud. 2021, 57, 67–81. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X.; Xu, Y.; Wang, Y.; Wu, H. Synoptic time-series surveys of precipitation δ18O and its relationship with moisture sources in Yunnan, southwest China. Quat. Int. 2017, 440, 40–51. [Google Scholar] [CrossRef]
- Ren, M.; Huang, F.; Hu, X.; Cao, J.; Zhang, P.; Liang, J.; Zhang, J. The composition characteristics of hydrogen and oxygenstable isotopes as an indicator of evaporation in the river Lijiang, China. China Environ. Sci. 2020, 40, 1637–1648. (In Chinese) [Google Scholar] [CrossRef]
- Shi, J.; Jiang, G.; Sun, Z.; Liu, F.; Wang, Q. The migration and transformation processes of dissolved organic matter in rainwater- drip water- phreatic water of a typical karst spring catchment, in south China. J. Hydrol. 2023, 625, 130077. [Google Scholar] [CrossRef]
- Zhang, T.; Pu, J.; Li, J.; Yuan, D.; Li, L. Stable isotope and aquatic geochemistry of a typical subtropical karst subterranean stream in southwest China. Carbonates Evaporites 2017, 32, 415–430. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Z.; Ding, S.; Shi, L.; Zhang, H. Hydrogen and oxygen isotope characteristics and their indicative significance in Shuanghe cave basin. Earth Environ. 2022, 50, 516–525. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, M.; Hu, Y.; Zeng, C.; Liu, Z.; Yang, R.; Chen, B. Effects of land cover on variations in stable hydrogen and oxygen isotopes in karst groundwater: A comparative study of three karst catchments in Guizhou province, southwest China. J. Hydrol. 2018, 565, 374–385. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, Z.; Ford, D.; Zhao, M.; Bao, Q.; Zeng, C.; Gong, X.; Wei, Y.; Cai, X.; Chen, J. Conservation of oxygen and hydrogen seasonal isotopic signals in meteoric precipitation in groundwater: An experimental tank study of the effects of land cover in a summer monsoon climate. Geochim. Cosmochim. Acta. 2020, 284, 254–272. [Google Scholar] [CrossRef]
- Mao, L.; Fu, S.; Liu, H.; Zhou, E.; Yue, L.; Yang, L.; Zhang, J. Analysis of recharge source of karst spring water based on stable hydrogen and oxygen isotopes. Earth Sci. 2023, 48, 1–13. (In Chinese) [Google Scholar] [CrossRef]
- Pu, J. Hydrogen and oxygen isotope geochemistry of karst groundwater in Chongqing. Acta Geosci. Sin. 2013, 34, 713–722. (In Chinese) [Google Scholar] [CrossRef]
- Guo, X.; Gong, X.; Shi, J.; Guo, J.; Domínguez-Villar, D.; Lin, Y.; Wang, H.; Yuan, D. Temporal variations and evaporation control effect of the stable isotope composition of precipitation in the subtropical monsoon climate region, southwest China. J. Hydrol. 2021, 599, 126278. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, J.; Su, Z.; Wu, Y.; Liang, Q.; Liang, M.; Liu, X.; Chen, C.; Qiu, H.; Li, J.; et al. Quantifying source effects based on rainwater δ18O from 10-year monitoring records in southwest China. Appl. Geochem. 2023, 155, 105706. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, C.; Ruan, J.; Johnson, K.R. East Asian precipitation δ18O relationship with various monsoon indices. J. Geophys. Res. Atmos. 2020, 125, e2019JD032282. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Nie, Y.; Fu, Z.; Lian, J.; Luo, Z.; Wang, F. Temporal variations of precipitation driven by local meteorological parameters in southwest China: Insights from 9 years of continuous hydro-meteorological and isotope observations. J. Hydrol. Reg. Stud. 2023, 46, 101345. [Google Scholar] [CrossRef]
- Kong, Y.; Wang, K.; Li, J.; Pang, Z. Stable isotopes of precipitation in china: A consideration of moisture sources. Water 2019, 11, 1239. [Google Scholar] [CrossRef]
- Li, H.; Ku, T.; Yuan, D.; Wan, N.; Ma, Z.; Zhang, P.; Bar Matthews, M.; Ayalon, A.; Liu, Z.; Zhang, M.; et al. Stable isotopic compositions of waters in the karst environments of China: Climatic implications. Appl. Geochem. 2007, 22, 1748–1763. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, M.; Li, T.; Chen, C.; Li, J. Asian-Australian monsoon evolution over the last millennium linked to ENSO in composite stalagmite δ18O records. Quat. Sci. Rev. 2022, 281, 107420. [Google Scholar] [CrossRef]
- Liu, Y.; Man, W.; Zhou, T.; Dongdong, P. A tracing study on influence factors of east Asian stable lsotopes in atmospheric water vapor. Chin. J. Atmos. Sci. 2023, 47, 616–630. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, J.; Li, T. Seasonal and interannual variations of hydrochemical characteristics and stable isotopic compositions of drip waters in Furong cave, southwest China based on 12 years’ monitoring. J. Hydrol. 2019, 572, 40–50. [Google Scholar] [CrossRef]
- Mance, D.; Hunjak, T.; Lenac, D.; Rubinić, J.; Roller-Lutz, Z. Stable isotope analysis of the karst hydrological systems in the bay of Kvarner (Croatia). Appl. Radiat. Isot. 2014, 90, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Azzaz, H.; Cherchali, M.; Meddi, M.; Houha, B.; Puig, J.M.; Achachi, A. The use of environmental isotopic and hydrochemical tracers to characterize the functioning of karst systems in the Tlemcen Mountains, northwest Algeria. Hydrogeol. J. 2008, 16, 531–546. [Google Scholar] [CrossRef]
- Dotsika, E.; Lykoudis, S.; Poutoukis, D. Spatial distribution of the isotopic composition of precipitation and spring water in Greece. Glob. Planet. Chang. 2010, 71, 141–149. [Google Scholar] [CrossRef]
- Ronchetti, F.; Deiana, M.; Lugli, S.; Sabattini, M.; Critelli, V.; Aguzzoli, A.; Mussi, M. Water isotope analyses and flow measurements for understanding the stream and meteoric recharge contributions to the Poiano evaporite karst spring in the north Apennines, Italy. Hydrogeol. J. 2023, 31, 601–619. [Google Scholar] [CrossRef]
- Binet, S.; Joigneaux, E.; Pauwels, H.; Albéric, P.; Fléhoc, C.; Bruand, A. Water exchange, mixing and transient storage between a saturated karstic conduit and the surrounding aquifer: Groundwater flow modeling and inputs from stable water isotopes. J. Hydrol. 2017, 544, 278–289. [Google Scholar] [CrossRef]
- Yin, G.; Ni, S.; Zhang, Q. Deuterium excess parameter and geohydrology significance—Taking the geohydrology researches in Jiuzaigou and Yele, Sichuan for example. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2001, 28, 251–254. (In Chinese) [Google Scholar]
- Liu, K.; Qiao, X.; Li, B.; Sun, Y.; Li, Z.; Pu, C. Characteristics of deuterium excess parameters for geothermal water in Beijing. Environ. Earth Sci. 2016, 75, 1485. [Google Scholar] [CrossRef]
- Wang, F.; Chen, H.; Lian, J.; Fu, Z.; Nie, Y. Seasonal recharge of spring and stream waters in a karst catchment revealed by isotopic and hydrochemical analyses. J. Hydrol. 2020, 591, 125595. [Google Scholar] [CrossRef]
- Huang, H.; Liu, H. The hydrogen and oxygen stable isotope analysis of the karst spring in Heilongtan. Carsol. Sin. 2015, 34, 445–451. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Z.; Yin, J.-J.; Pu, J.; Wang, P.; Liang, X.; Yang, P.; He, Q.; Gou, P.; Yuan, D. Integrated understanding of the critical zone processes in a subtropical karst watershed (Qingmuguan, southwestern China): Hydrochemical and isotopic constraints. Sci. Total Environ. 2020, 749, 141257. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Z.; Soulsby, C.; Cheng, Q.; Binley, A.; Jiang, R.; Tao, M. Characterizing the heterogeneity of karst critical zone and its hydrological function: An integrated approach. Hydrol. Process. 2018, 32, 2932–2946. [Google Scholar] [CrossRef]
- Perrin, J.; Jeannin, P.-Y.; Zwahlen, F. Epikarst storage in a karst aquifer: A conceptual model based on isotopic data, Milandre test site, Switzerland. J. Hydrol. 2003, 279, 106–124. [Google Scholar] [CrossRef]
- Hu, K.; Chen, H.; Nie, Y.; Wang, K. Seasonal recharge and mean residence times of soil and epikarst water in a small karst catchment of southwest China. Sci. Rep. 2015, 5, 10215. [Google Scholar] [CrossRef]
- Dumitru, O.A.; Forray, F.L.; Fornós, J.J.; Ersek, V.; Onac, B.P. Water isotopic variability in Mallorca: A path to understanding past changes in hydroclimate. Hydrol. Process. 2017, 31, 104–116. [Google Scholar] [CrossRef]
- Dai, J.; Zhang, X.; Wang, L.; Luo, Z.; Wang, R.; Liu, Z.; He, X.; Rao, Z.; Guan, H. Seasonal isotopic cycles used to identify transit times and the young water fraction within the critical zone in a subtropical catchment in China. J. Hydrol. 2022, 612, 128138. [Google Scholar] [CrossRef]
- Cao, X.; Wu, P.; Zhou, S.; Han, Z.; Tu, H.; Zhang, S. Seasonal variability of oxygen and hydrogen isotopes in a wetland system of the Yunnan-Guizhou Plateau, southwest China: A quantitative assessment of groundwater inflow fluxes. Hydrogeol. J. 2018, 26, 215–231. [Google Scholar] [CrossRef]
- Chen, J.; Luo, M.; Ma, R.; Zhou, H.; Zou, S.; Gan, Y. Nitrate distribution under the influence of seasonal hydrodynamic changes and human activities in Huixian karst wetland, south China. J. Contam. Hydrol. 2020, 234, 103700. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Ye, M.; Wang, Y.; Greenhalgh, T.; Fowler, K. Using δ18O and δ2H to detect hydraulic connection between a sinkhole lake and a first-magnitude spring. Groundwater 2021, 59, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Chen, W.; Chen, Y.; Cai, Z. Stable isotopes of atmospheric precipitation and its environmental drivers in the eastern Chinese Loess Plateau, China. J. Hydrol. 2020, 581, 124404. [Google Scholar] [CrossRef]
- Li, J.; Pang, Z. The elevation gradient of stable isotopes in precipitation in the eastern margin of Tibetan Plateau. Sci. China Earth Sci. 2022, 65, 1972–1984. [Google Scholar] [CrossRef]
- Juan, G.; Li, Z.; Qi, F.; Ruifeng, Y.; Tingting, N.; Baijuan, Z.; Jian, X.; Wende, G.; Fusen, N.; Weixuan, D.; et al. Environmental effect and spatiotemporal pattern of stable isotopes in precipitation on the transition zone between the Tibetan Plateau and arid region. Sci. Total Environ. 2020, 749, 141559. [Google Scholar] [CrossRef] [PubMed]
- Brkić, Ž.; Kuhta, M.; Hunjak, T.; Larva, O. Regional isotopic signatures of groundwater in Croatia. Water 2020, 12, 1983. [Google Scholar] [CrossRef]
- Jiao, Y.; Liu, C.; Gao, X.; Xu, Q.; Ding, Y.; Liu, Z. Impacts of moisture sources on the isotopic inverse altitude effect and amount of precipitation in the Hani Rice Terraces region of the Ailao Mountains. Sci. Total Environ. 2019, 687, 470–478. [Google Scholar] [CrossRef]
- Kern, Z.; Hatvani, I.G.; Czuppon, G.; Fórizs, I.; Erdélyi, D.; Kanduč, T.; Palcsu, L.; Vreča, P. Isotopic ‘altitude’ and ‘continental’ effects in modern precipitation across the Adriatic–Pannonian region. Water 2020, 12, 1797. [Google Scholar] [CrossRef]
- Ling, X.; Ma, J.; Chen, P.; Liu, C.; Horita, J. Isotope implications of groundwater recharge, residence time and hydrogeochemical evolution of the Longdong Loess Basin, northwest China. J. Arid. Land 2022, 14, 34–55. [Google Scholar] [CrossRef]
- Zeng, C.; Liu, Z.; Yang, J.; Yang, R. A groundwater conceptual model and karst-related carbon sink for a glacierized alpine karst aquifer, southwestern China. J. Hydrol. 2015, 529, 120–133. [Google Scholar] [CrossRef]
- Hamidi, M.D.; Gröcke, D.R.; Kumar Joshi, S.; Christopher Greenwell, H. Investigating groundwater recharge using hydrogen and oxygen stable isotopes in Kabul city, a semi-arid region. J. Hydrol. 2023, 626, 130187. [Google Scholar] [CrossRef]
- Abu Jabal, M.S.; Abustan, I.; Rozaimy, M.R.; El Najar, H. The deuterium and oxygen-18 isotopic composition of the groundwater in Khan Younis city, southern Gaza Strip (Palestine). Environ. Earth Sci. 2018, 77, 155. [Google Scholar] [CrossRef]
- Valappil, N.K.M.; Viswanathan, P.M.; Hamza, V.; Sabarathinam, C. Isoscapes to address the regional precipitation trends in the equatorial region of southeast Asia. Phys. Chem. Earth. Parts A/B/C 2022, 127, 103159. [Google Scholar] [CrossRef]
- El Ouali, A.; Roubil, A.; Lahrach, A.; Mudry, J.; El Ghali, T.; Qurtobi, M.; El Hafyani, M.; Alitane, A.; El Hmaidi, A.; Essahlaoui, A.; et al. Isotopic characterization of rainwater for the development of a local meteoric water line in an arid climate: The case of the Wadi Ziz Watershed (south-eastern Morocco). Water 2022, 14, 779. [Google Scholar] [CrossRef]
- Sassine, L.; Khaska, M.; Ressouch, S.; Simler, R.; Lancelot, J.; Verdoux, P.; Le Gal La Salle, C. Coupling geochemical tracers and pesticides to determine recharge origins of a shallow alluvial aquifer: Case study of the Vistrenque hydrogeosystem (SE France). Appl. Geochem. 2015, 56, 11–22. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Argiriou, A.A.; Wang, S.; Zhou, X.; Liu, X. Deuterium excess in precipitation reveals water vapor source in the monsoon margin sites in northwest China. Water 2020, 12, 3315. [Google Scholar] [CrossRef]
- Yuan, J.; Deng, G.; Xu, F.; Tang, Y.; Li, P. Hydrogeochemical characteristics of karst groundwater in the northern part of the city of Bijie. Hydrogeol. Eng. Geo. 2016, 43, 12–21. (In Chinese) [Google Scholar] [CrossRef]
- Liu, W.; Wang, S.; Luo, W. The response of epikarst spring to precipitation and its implications in karst peak-cluster region of Libo county, Guizhou province, China. Geochimica 2011, 40, 487–496. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, M. The δ18O and δD values of groundwater in east Yunnan and west Guizhou. Acta Geol. Sichuan 2019, 39, 508–511. (In Chinese) [Google Scholar] [CrossRef]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, F.; Deng, G.; Tang, Y. Using stable isotopes and major ions to identify hydrogeochemical characteristics of karst groundwater in Xide country, Sichuan Province. Carbonates Evaporites 2018, 33, 223–234. [Google Scholar] [CrossRef]
- Pu, T.; He, Y.; Zhang, T.; Wu, J.; Zhu, G.; Chang, L. Isotopic and geochemical evolution of ground and river waters in a karst dominated geological setting: A case study from Lijiang basin, South-Asia monsoon region. Appl. Geochem. 2013, 33, 199–212. [Google Scholar] [CrossRef]
- Zhan, Z. Geochemical Characteristics of Snowfall and Its Influence on Groundwater in Southwest Subalpine Karst Area, a Case of Shuifang Spring of Jinfo Mountain. Master’s Thesis, Southwest University, Chongqing, China, 2018. (In Chinese). [Google Scholar]
- Pang, H.; He, Y.; Lu, A.g.; Zhao, J.; Ning, B.; Yuan, L.; Song, B.; Zhang, N. Comparisons of stable isotopic fractionation in winter and summer at Baishui Glacier No. 1, Mt. Yulong, China. J. Geog. Sci. 2006, 16, 306–314. [Google Scholar] [CrossRef]
- Liu, J.; Song, X.; Yuan, G.; Sun, X.; Yang, L. Stable isotopic compositions of precipitation in China. Tellus B Chem. Phys. Meteorol. 2014, 66, 22567. [Google Scholar] [CrossRef]
- Jiao, Y.; Liu, C.; Liu, Z.; Ding, Y.; Xu, Q. Impacts of moisture sources on the temporal and spatial heterogeneity of monsoon precipitation isotopic altitude effects. J. Hydrol. 2020, 583, 124576. [Google Scholar] [CrossRef]
- Kong, Y.; Pang, Z. A positive altitude gradient of isotopes in the precipitation over the Tianshan mountains: Effects of moisture recycling and sub-cloud evaporation. J. Hydrol. 2016, 542, 222–230. [Google Scholar] [CrossRef]
- Guo, H.; Zhu, G.; He, Y.; Zhou, J.; Pan, H.; Ma, X.; Zhang, Y.; Huang, M.; Xiang, J. Dynamic characteristics and influencing factors of precipitation δ18O, China. Theor. Appl. Clim. 2019, 138, 899–910. [Google Scholar] [CrossRef]
- Koeniger, P.; Toll, M.; Himmelsbach, T. Stable isotopes of precipitation and spring waters reveal an altitude effect in the Anti-Lebanon mountain, Syria. Hydrol. Process. 2016, 30, 2851–2860. [Google Scholar] [CrossRef]
- Zang, H.; Zheng, X.; Qin, Z.; Jia, Z. A study of the characteristics of karst groundwater circulation based on multi-isotope approach in the Liulin spring area, north China. Isot. Environ. Health Stud. 2015, 51, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Huang, X.; Qi, S.; Han, Y.; Kuang, J.; Wang, S.; Wang, H.; Xiao, Z. Characteristics of hydrogen and oxygen isotopes and noble gas isotopes in the groundwater of Weishan, Wudalianchi, northeast China. Acta. Geol. Sin.-Engl. 2022, 96, 1729–1741. [Google Scholar] [CrossRef]
- Peters, E.; Visser, A.; Esser, B.K.; Moran, J.E. Tracers reveal recharge elevations, groundwater flow paths and travel times on Mount Shasta, California. Water 2018, 10, 97. [Google Scholar] [CrossRef]
- Liu, Q.; Deng, D.; Yao, B.; Liao, Q. Analysis of the karst springs’ supply sources in rocky desertification area of Guanling–Huajiang, Guizhou, China. Carbonates Evaporites 2020, 35, 90. [Google Scholar] [CrossRef]
- Garzione, C.N.; Quade, J.; DeCelles, P.G.; English, N.B. Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth Planet. Sci. Lett. 2000, 183, 215–229. [Google Scholar] [CrossRef]
- Demiroğlu, M. Identifying the groundwater basin boundaries, using environmental isotopes: A case study. Appl. Water Sci. 2017, 7, 1161–1167. [Google Scholar] [CrossRef]
- Jódar, J.; Custodio, E.; Lambán, L.J.; Martos-Rosillo, S.; Herrera-Lameli, C.; Sapriza-Azuri, G. Vertical variation in the amplitude of the seasonal isotopic content of rainfall as a tool to jointly estimate the groundwater recharge zone and transit times in the Ordesa and Monte Perdido National Park aquifer system, north-eastern Spain. Sci. Total Environ. 2016, 573, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Ait Brahim, Y.; Bouchaou, L.; Sifeddine, A.; Khodri, M.; Reichert, B.; Cruz, F.W. Elucidating the climate and topographic controls on stable isotope composition of meteoric waters in Morocco, using station-based and spatially-interpolated data. J. Hydrol. 2016, 543, 305–315. [Google Scholar] [CrossRef]
- Blasch, K.W.; Bryson, J.R. Distinguishing sources of ground water recharge by using δ2H and delta δ18O. Groundwater 2007, 45, 294–308. [Google Scholar] [CrossRef]
- Ellins, K.K. Stable isotopic study of the groundwater of the Martha Brae river basin, Jamaica. Water Resour. Res. 1992, 28, 1597–1604. [Google Scholar] [CrossRef]
- Yang, D.; Yang, Y.; Xia, J. Hydrological cycle and water resources in a changing world: A review. Geogr. Sustain. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Montanari, A.; Bahr, J.; Blöschl, G.; Cai, X.; Mackay, D.S.; Michalak, A.M.; Rajaram, H.; Sander, G. Fifty years of water resources research: Legacy and perspectives for the science of hydrology. Water Resour. Res. 2015, 51, 6797–6803. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, J.; Su, C.; Cui, Y.; Zhang, Q. The application of improved SWAT model to hydrological cycle study in karst area of south China. Sustainability 2019, 11, 5024. [Google Scholar] [CrossRef]
- Lyu, Y.; Hu, W.; Yang, Y. Research progress of hydrological cycle in karst critical zone. Adv. Water Sci. 2019, 30, 123–138. (In Chinese) [Google Scholar] [CrossRef]
- Katz, B.G.; DeHan, R.S.; Hirten, J.J.; Catches, J.S. Interactions between ground water and surface water in the Suwannee river basin, Florida. J. Am. Water Resour. Assoc. 1997, 33, 1237–1254. [Google Scholar] [CrossRef]
- Li, C.; Gao, X.; Wang, W.; Zhang, X.; Zhang, X.; Jiang, C.; Wang, Y. Hydro-biogeochemical processes of surface water leakage into groundwater in large scale karst water system: A case study at Jinci, northern China. J. Hydrol. 2021, 596, 125691. [Google Scholar] [CrossRef]
- Younos, T.; Kaurish, F.W.; Brown, T.; De Leon, R. Determining the source of stream contamination in a karst water system, southwest Virginia, USA. J. Am. Water Resour. Assoc. 2001, 37, 327–334. [Google Scholar] [CrossRef]
- Hillaire-Marcel, C.; Kim, S.-T.; Landais, A.; Ghosh, P.; Assonov, S.; Lécuyer, C.; Blanchard, M.; Meijer, H.A.J.; Steen-Larsen, H.C. A stable isotope toolbox for water and inorganic carbon cycle studies. Nat. Rev. Earth Environ. 2021, 2, 699–719. [Google Scholar] [CrossRef]
- Chu, H.; Wei, J.; Wang, R.; Xin, B. Characterizing the interaction of groundwater and surface water in the karst aquifer of Fangshan, Beijing (China). Hydrogeol. J. 2017, 25, 575–588. [Google Scholar] [CrossRef]
- Liu, F.; Wang, S.; Wang, L.; Shi, L.; Song, X.; Yeh, T.-C.J.; Zhen, P. Coupling hydrochemistry and stable isotopes to identify the major factors affecting groundwater geochemical evolution in the Heilongdong Spring Basin, north China. J. Geochem. Explor. 2019, 205, 106352. [Google Scholar] [CrossRef]
- Modie, L.T.; Kenabatho, P.K.; Stephens, M.; Mosekiemang, T. Investigating groundwater and surface water interactions using stable isotopes and hydrochemistry in the Notwane River Catchment, south east Botswana. J. Hydrol. Reg. Stud. 2022, 40, 101014. [Google Scholar] [CrossRef]
- Han, Z.; Tang, C.; Wu, P.; Zhang, R.; Zhang, C. Using stable isotopes and major ions to identify hydrological processes and geochemical characteristics in a typical karstic basin, Guizhou, southwest China. Isot. Environ. Health Stud. 2014, 50, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Tang, C.; Zhu, L.; Liu, C.; Cha, X.; Tao, X. Hydrogeochemical characteristics of surface water and groundwater in the karst basin, southwest China. Hydrol. Process. 2009, 23, 2012–2022. [Google Scholar] [CrossRef]
- Dong, H.; Dan, Y.; Liang, J.; Liang, B.; Nie, G.; Ji, S. A hypogene karst development pattern controlled by the deep-cycle of groundwater in the syncline in Huanjiang, Guangxi, China. Water 2021, 13, 199. [Google Scholar] [CrossRef]
- Qin, W.; Han, D.; Song, X.; Liu, S. Environmental isotopes (δ18O, δ2H, 222Rn) and hydrochemical evidence for understanding rainfall-surface water-groundwater transformations in a polluted karst area. J. Hydrol. 2021, 592, 125748. [Google Scholar] [CrossRef]
- Ba, J.; Dan, Y.; Luo, F.; Tang, C.; Peng, C. Seasonal differences in the hydrochemical characteristics of karst wetlands and the associated mechanisms in Huixian, China. Water 2022, 14, 2362. [Google Scholar] [CrossRef]
- Katz, B.G.; Coplen, T.B.; Bullen, T.D.; Davis, J.H. Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in Mantled Karst. Groundwater 1997, 35, 1014–1028. [Google Scholar] [CrossRef]
- Kalbus, E.; Reinstorf, F.; Schirmer, M. Measuring methods for groundwater—Surface water interactions: A review. Hydrol. Earth Syst. Sci. Discuss. 2006, 3, 873–887. [Google Scholar] [CrossRef]
- Liao, D.; Pang, Z.; Xiao, W.; Hao, Y.; Du, J.; Yang, X.; Sun, G. Constraining the water cycle model of an important karstic catchment in southeast Tibetan Plateau using isotopic tracers (2H, 18O, 3H, 222Rn). Water 2020, 12, 3306. [Google Scholar] [CrossRef]
- Sun, J.; Tang, C.; Wu, P.; Strosnider, W.H.J. Hydrogen and oxygen isotopic composition of karst waters with and without acid mine drainage: Impacts at a SW China coalfield. Sci. Total Environ. 2014, 487, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Jiang, G.; Wang, G.; Guo, F.; Wang, J.; Wang, Q.; Shi, J.; Cai, J.; Wang, M. Surface-subsurface hydrological processes of rainwater harvesting project in karst mountainous areas indicated by stable hydrogen and oxygen isotopes. Sci. Total Environ. 2022, 831, 154924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yuan, D.; Cao, J. Analysis of the environmental sensitivities of a typical dynamic epikarst system at the Nongla monitoring site, Guangxi, China. Environ. Geol. 2005, 47, 615–619. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, J.; Lian, J.; Fu, Z.; Luo, Z.; Nie, Y.; Chen, H. Spatial variability of epikarst thickness and its controlling factors in a dolomite catchment. Geoderma 2022, 428, 116213. [Google Scholar] [CrossRef]
- Song, T.; Zhang, L.; Liu, P.; Zou, S.; Zhao, Y.; Liu, X.; Li, D. Transformation process of five water in epikarst zone: A case study in subtropical karst area. Environ. Earth Sci. 2022, 81, 293. [Google Scholar] [CrossRef]
- Trček, B. How can the epikarst zone influence the karst aquifer hydraulic behaviour? Environ. Geol. 2007, 51, 761–765. [Google Scholar] [CrossRef]
- Williams, P.W. The role of the epikarst in karst and cave hydrogeology: A review. Int. J. Speleol. 2008, 37, 1–10. [Google Scholar] [CrossRef]
- Jones, W.K. Physical structure of the epikarst. Acta Cardiol. 2013, 42, 311–314. [Google Scholar] [CrossRef]
- Wang, S.; Fu, Z.; Chen, H.; Nie, Y.; Xu, Q. Mechanisms of surface and subsurface runoff generation in subtropical soil-epikarst systems: Implications of rainfall simulation experiments on karst slope. J. Hydrol. 2020, 580, 124370. [Google Scholar] [CrossRef]
- Liu, X.; Fu, Z.; Zhang, W.; Xiao, S.; Chen, H.; Wang, K. Soluble carbon loss through multiple runoff components in the shallow subsurface of a karst hillslope: Impact of critical zone structure and land use. CATENA 2023, 222, 106868. [Google Scholar] [CrossRef]
- Cao, J.; Yuan, D.; Tong, L.; Mallik, A.; Yang, H.; Huang, F. An overview of karst ecosystem in southwest China: Current state and future management. J. Resour. Ecol. 2015, 6, 247–256. [Google Scholar] [CrossRef]
- Peng, T.; Wang, S. Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China. CATENA 2012, 90, 53–62. [Google Scholar] [CrossRef]
- Qiao, Y.; Jiang, Y.; Zhang, C. Contribution of karst ecological restoration engineering to vegetation greening in southwest China during recent decade. Ecol. Indic. 2021, 121, 107081. [Google Scholar] [CrossRef]
- Rong, L.; Wang, S.; Yu, G.; Deng, X.; Ran, J. Stable isotope analysis of water sources of four woody species in the Libo karst forest. Sci. Sil. Sin. 2012, 48, 14–22. (In Chinese) [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, Z.; Qin, X. Water source partitioning among trees growing on carbonate rock in a subtropical region of Guangxi, China. Environ. Earth Sci. 2012, 66, 635–640. [Google Scholar] [CrossRef]
- Deng, Y.; Ke, J.; Wu, S.; Jiang, G.; Jiang, Z.; Zhu, A. Responses of plant water uptake to groundwater depth in limestone outcrops. J. Hydrol. 2020, 590, 125377. [Google Scholar] [CrossRef]
- Nie, Y.; Chen, H.; Wang, K.; Yang, J. Water source utilization by woody plants growing on dolomite outcrops and nearby soils during dry seasons in karst region of southwest China. J. Hydrol. 2012, 420, 264–274. [Google Scholar] [CrossRef]
- Behzad, H.M.; Arif, M.; Duan, S.; Kavousi, A.; Cao, M.; Liu, J.; Jiang, Y. Seasonal variations in water uptake and transpiration for plants in a karst critical zone in China. Sci. Total Environ. 2023, 860, 160424. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Xiong, K.; Liu, Z.; Li, Y.; Fan, B. Seasonal variations of plant water use in the karst desertification control. Sci. Total Environ. 2023, 885, 163778. [Google Scholar] [CrossRef]
- Yan, Y.; Dai, Q.; Yang, Y.; Yan, L.; Yi, X. Epikarst shallow fissure soil systems are key to eliminating karst drought limitations in the karst rocky desertification area of SW China. Ecohydrology 2022, 15, e2372. [Google Scholar] [CrossRef]
- Hartmann, A.; Goldscheider, N.; Wagener, T.; Lange, J.; Weiler, M. Karst water resources in a changing world: Review of hydrological modeling approaches. Rev. Geophys. 2014, 52, 218–242. [Google Scholar] [CrossRef]
- Hao, Z.; Gao, Y.; Zhang, Q.; Wen, W. Isotopic insights on quantitative assessments of interaction of eco-hydrological processes in multi-scale karst watersheds. Int. Soil Water Conserv. Res. 2024, 12, 156–170. [Google Scholar] [CrossRef]
- Jeelani, G.; Shah, R.A.; Fryar, A.E.; Deshpande, R.D.; Mukherjee, A.; Perrin, J. Hydrological processes in glacierized high-altitude basins of the western Himalayas. Hydrogeol. J. 2018, 26, 615–628. [Google Scholar] [CrossRef]
- Guo, X.; Jiang, G.; Gong, X.; Yin, J.; Wu, X. Recharge processes on typical karst slopes implied by isotopic and hydrochemical indexes in Xiaoyan cave, Guilin, China. J. Hydrol. 2015, 530, 612–622. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Z.; Wang, T.; Zhou, G.; Martin, J.B.; Zhang, L.; Meng, X. Origins and mixing contributions of deep warm groundwater in a carbonate-hosted ore deposit, Sichuan-Yunnan-Guizhou Pb-Zn triangle, southwestern China. J. Hydrol. 2020, 590, 125400. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Cheng, Q.; Soulsby, C. Storage dynamics, hydrological connectivity and flux ages in a karst catchment: Conceptual modelling using stable isotopes. Hydrol. Earth Syst. Sci. 2019, 23, 51–71. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Cheng, Q.; Soulsby, C. Using StorAge Selection (SAS) functions to understand flow paths and age distributions in contrasting karst groundwater systems. J. Hydrol. 2021, 602, 126785. [Google Scholar] [CrossRef]
- Li, G.; Chen, X.; Zhang, Z.; Wang, L.; Soulsby, C. Effects of passive-storage conceptualization on modeling hydrological function and isotope dynamics in the flow system of a cockpit karst landscape. Hydrol. Earth Syst. Sci. 2022, 26, 5515–5534. [Google Scholar] [CrossRef]
- Chen, L.; Deng, J.; Yang, W.; Chen, H. Hydrological modelling of large-scale karst-dominated basin using a grid-based distributed karst hydrological model. J. Hydrol. 2024, 628, 130459. [Google Scholar] [CrossRef]
- Xue, D.; Botte, J.; De Baets, B.; Accoe, F.; Nestler, A.; Taylor, P.; Van Cleemput, O.; Berglund, M.; Boeckx, P. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res. 2009, 43, 1159–1170. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Cheng, S.; Li, Q.; Yu, H. Application of the dual-isotope approach and Bayesian isotope mixing model to identify nitrate in groundwater of a multiple land-use area in Chengdu plain, China. Sci. Total Environ. 2020, 717, 137134. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhu, D.; Zhang, S.; Yang, G.; Zhao, Y.; Zhou, C.; Lin, Y.; Zou, S. Application of the hydrochemistry, stable isotopes and MixSIAR model to identify nitrate sources and transformations in surface water and groundwater of an intensive agricultural karst wetland in Guilin, China. Ecotoxicol. Environ. Saf. 2022, 231, 113205. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Yue, F.; Wang, X.; Liu, Z.; Shi, Z.; Zhang, P. Identify nitrogen transport paths and sources contribution in karst valley depression area using isotopic approach. J. Environ. Manag. 2023, 337, 117751. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yue, F.; Wang, Y.; Qin, C.; Ding, H.; Xue, L.; Li, S.-L. The effect of heavy rainfall events on nitrogen patterns in agricultural surface and underground streams and the implications for karst water quality protection. Agric. Water Manag. 2022, 266, 107600. [Google Scholar] [CrossRef]
- Xu, B.; Lin, Y.; Wu, Y.; Wang, Y. Identifying sources and transformations of nitrate in different occurrence environments of carbonate rocks using a coupled isotopic approach (δ15N, δ18O, 87Sr/86Sr) in karst groundwater system, North China. Sci. Total Environ. 2024, 912, 169300. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zou, S.; Wang, J.; Zhou, C.; Wu, Y.; Zhang, H.; Zhao, Y.; Yang, G. Spatiotemporal variability and control factors of NO3− in a polluted karst water system of an agricultural wetland in south China. Chemosphere 2023, 313, 137435. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Li, Y.; Groves, C.; Hong, A. Coupled hydrogeochemical evaluation of a vulnerable karst aquifer impacted by septic effluent in a protected natural area. Sci. Total Environ. 2019, 658, 1475–1484. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Ming, X.; Groves, C.; Sheng, T. Impact of hotel septic effluent on the Jinfoshan karst aquifer, SW China. Hydrogeol. J. 2019, 27, 321–334. [Google Scholar] [CrossRef]
- Yin, C.; Yang, H.; Wang, J.; Guo, J.; Tang, X.; Chen, J. Combined use of stable nitrogen and oxygen isotopes to constrain the nitrate sources in a karst lake. Agric. Ecosyst. Environ. 2020, 303, 107089. [Google Scholar] [CrossRef]
- Ming, X.; Groves, C.; Wu, X.; Chang, L.; Zheng, Y.; Yang, P. Nitrate migration and transformations in groundwater quantified by dual nitrate isotopes and hydrochemistry in a karst World Heritage site. Sci. Total Environ. 2020, 735, 138907. [Google Scholar] [CrossRef]
- Bu, H.; Zhang, Y.; Meng, W.; Song, X. Effects of land-use patterns on in-stream nitrogen in a highly-polluted river basin in northeast China. Sci. Total Environ. 2016, 553, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Kendall, C.; Elliott, E.M.; Wankel, S.D. Tracing anthropogenic inputs of nitrogen to ecosystems. In Stable Isotopes in Ecology and Environmental Science; Blackwell Publishing: Oxford, UK, 2007; pp. 375–449. [Google Scholar]
- Lee, K.; Bong, Y.; Lee, D.; Kim, Y.; Kim, K. Tracing the sources of nitrate in the Han River watershed in Korea, using δ15N-NO3− and δ18O-NO3− values. Sci. Total Environ. 2008, 395, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yue, F.; Li, S.; Li, X.; Wang, S.; Li, C.; Tao, F. Nitrate dynamics during impoundment and flood periods in a subtropical karst reservoir: Hongfeng lake, southwestern China. Environ. Sci. Process. Impacts 2018, 20, 1736–1745. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Wang, Y.; Wu, X.; Chang, L.; Ham, B.; Song, L.; Groves, C. Nitrate sources and biogeochemical processes in karst underground rivers impacted by different anthropogenic input characteristics. Environ. Pollut. 2020, 265, 114835. [Google Scholar] [CrossRef] [PubMed]
- Moreno-González, R.; Macías, F.; Olías, M.; Ruiz Cánovas, C. Temporal evolution of acid mine drainage (AMD) leachates from the abandoned tharsis mine (Iberian Pyrite Belt, Spain). Environ. Pollut. 2022, 295, 118697. [Google Scholar] [CrossRef] [PubMed]
- Tomiyama, S.; Igarashi, T.; Tabelin, C.B.; Tangviroon, P.; Ii, H. Acid mine drainage sources and hydrogeochemistry at the Yatani mine, Yamagata, Japan: A geochemical and isotopic study. J. Contam. Hydrol. 2019, 225, 103502. [Google Scholar] [CrossRef] [PubMed]
- Tabelin, C.B.; Corpuz, R.D.; Igarashi, T.; Villacorte-Tabelin, M.; Alorro, R.D.; Yoo, K.; Raval, S.; Ito, M.; Hiroyoshi, N. Acid mine drainage formation and arsenic mobility under strongly acidic conditions: Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite. J. Hazard. Mater. 2020, 399, 122844. [Google Scholar] [CrossRef] [PubMed]
- Mosai, A.K.; Ndlovu, G.; Tutu, H. Improving acid mine drainage treatment by combining treatment technologies: A review. Sci. Total Environ. 2024, 919, 170806. [Google Scholar] [CrossRef]
- Sun, J.; Takahashi, Y.; Strosnider, W.H.J.; Kogure, T.; Wu, P.; Cao, X. Tracing and quantifying contributions of end members to karst water at a coalfield in southwest China. Chemosphere 2019, 234, 777–788. [Google Scholar] [CrossRef]
- Ren, K.; Zeng, J.; Liang, J.; Yuan, D.; Jiao, Y.; Peng, C.; Pan, X. Impacts of acid mine drainage on karst aquifers: Evidence from hydrogeochemistry, stable sulfur and oxygen isotopes. Sci. Total Environ. 2021, 761, 143223. [Google Scholar] [CrossRef]
- Song, K.; Wang, F.; Peng, Y.; Liu, J.; Liu, D. Construction of a hydrogeochemical conceptual model and identification of the groundwater pollution contribution rate in a pyrite mining area. Environ. Pollut. 2022, 305, 119327. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Jasechko, S.; Gleeson, T.; Wada, Y.; Andreo, B.; Barberá, J.A.; Brielmann, H.; Bouchaou, L.; Charlier, J.-B.; Darling, W.G.; et al. Risk of groundwater contamination widely underestimated because of fast flow into aquifers. Proc. Natl. Acad. Sci. USA 2021, 118, e2024492118. [Google Scholar] [CrossRef] [PubMed]
- White, W.B. Contaminant Transport in Karst Aquifers: Systematics and Mechanisms. Karst Groundwater Contamination and Public Health; White, W.B., Herman, J.S., Eds.; Springer: Berlin, Germany, 2018; pp. 55–81. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, M.; Yu, S.; You, S.; Jiang, P. The Characteristics and Application of Deuterium and Oxygen Isotopes to Karst Groundwater, Southwest China. Water 2024, 16, 1812. https://doi.org/10.3390/w16131812
Tang M, Yu S, You S, Jiang P. The Characteristics and Application of Deuterium and Oxygen Isotopes to Karst Groundwater, Southwest China. Water. 2024; 16(13):1812. https://doi.org/10.3390/w16131812
Chicago/Turabian StyleTang, Mi, Shi Yu, Shaohong You, and Pingping Jiang. 2024. "The Characteristics and Application of Deuterium and Oxygen Isotopes to Karst Groundwater, Southwest China" Water 16, no. 13: 1812. https://doi.org/10.3390/w16131812
APA StyleTang, M., Yu, S., You, S., & Jiang, P. (2024). The Characteristics and Application of Deuterium and Oxygen Isotopes to Karst Groundwater, Southwest China. Water, 16(13), 1812. https://doi.org/10.3390/w16131812