Identification of Groundwater–Surface Water Interaction Using Combined Hydraulic and Hydrogeochemical Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Sampling Analysis
2.3. Hydraulic Analysis
2.4. Hydrogeochemical Analysis
2.5. Calculation of Recharge Ratios
3. Results and Discussion
3.1. Hydraulic Analysis
3.1.1. Hydraulic Characteristics of Observation Cross-Sections
3.1.2. Hydraulic Characteristics of Flow Field
3.2. Hydrochemical Analysis
3.3. Isotopic Analysis
3.3.1. Stable Isotopic Composition of Water
3.3.2. Distribution Characteristics and Indications of Stable Isotopes
- (1)
- Analysis of isotopic variations along river
- (2)
- Analysis of isotopic variations along cross-sections
3.4. Combined Indicators of the Interaction between the Songhua River and Groundwater
3.5. Exchange Ratio of the Songhua River and Groundwater
4. Conclusions
- (1)
- Both cross-sectional and planar hydraulic characteristics indicate that the Songhua River in the basin is a losing river. The riparian groundwater level is significantly influenced by fluctuations in the river’s water level, and the surface water consistently exhibits a hydraulic tendency to recharge the aquifer. Human activities have altered the natural groundwater–surface water interaction patterns, inducing the infiltration of river water into the groundwater.
- (2)
- The hydrochemical type of the Songhua River is entirely HCO3-Ca, while the groundwater in the basin is mainly classified as HCO3-Ca, Mixed, and Cl-Ca types. The hydrochemical characteristics, types, and causes of the riparian groundwater are similar to those of the river water, but both differ significantly from the groundwater farther from the river. The infiltration recharge from the river has led to this water quality similarity, resulting in the mixing and dilution of the adjacent groundwater and impacting its hydrogeochemical characteristics.
- (3)
- The influence of the river water on groundwater recharge varies over time, being more significant during the flood season. The river’s influence extends within 3.5 km of the riverbank, contributing between 62.07% and 89.92% to groundwater recharge, with an average of 78.04%.
- (4)
- The calculated mixing ratios quantify the spatial variability of the Songhua River–groundwater interactions, revealing differences between upstream and downstream, as well as between the left and right banks. Rainfall’s contribution to the adjacent groundwater recharge is significantly less than that of the river.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sophocleous, M. Interactions between Groundwater and Surface Water: The State of the Science. Hydrogeol. J. 2002, 10, 52–67. [Google Scholar] [CrossRef]
- Navarro-Martinez, F.; Salas Garcia, A.; Sánchez-Martos, F.; Baeza Espasa, A.; Molina Sánchez, L.; Rodríguez Perulero, A. Radionuclides as Natural Tracers of the Interaction between Groundwater and Surface Water in the River Andarax, Spain. J. Environ. Radioact. 2017, 180, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, J.; Meinikmann, K.; Krause, S. Groundwater–Surface Water Interactions: Recent Advances and Interdisciplinary Challenges. Water 2020, 12, 296. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Y.; Wenninger, J.; Uhlenbrook, S.; Wang, X.; Wan, L. Groundwater and Surface-Water Interactions and Impacts of Human Activities in the Hailiutu Catchment, Northwest China. Hydrogeol. J. 2017, 25, 1341–1355. [Google Scholar] [CrossRef]
- Hildebrandt, A.; Guillamón, M.; Lacorte, S.; Tauler, R.; Barceló, D. Impact of Pesticides Used in Agriculture and Vineyards to Surface and Groundwater Quality (North Spain). Water Res. 2008, 42, 3315–3326. [Google Scholar] [CrossRef]
- van Driezum, I.H.; Chik, A.H.S.; Jakwerth, S.; Lindner, G.; Farnleitner, A.H.; Sommer, R.; Blaschke, A.P.; Kirschner, A.K.T. Spatiotemporal Analysis of Bacterial Biomass and Activity to Understand Surface and Groundwater Interactions in a Highly Dynamic Riverbank Filtration System. Sci. Total Environ. 2018, 627, 450–461. [Google Scholar] [CrossRef]
- Chen, K.; Chen, X.; Stegen, J.C.; Villa, J.A.; Bohrer, G.; Song, X.; Chang, K.-Y.; Kaufman, M.; Liang, X.; Guo, Z.; et al. Vertical Hydrologic Exchange Flows Control Methane Emissions from Riverbed Sediments. Environ. Sci. Technol. 2023, 57, 4014–4026. [Google Scholar] [CrossRef]
- Correa, R.E.; Cardenas, M.B.; Rodolfo, R.S.; Lapus, M.R.; Davis, K.L.; Giles, A.B.; Fullon, J.C.; Hajati, M.-C.; Moosdorf, N.; Sanders, C.J.; et al. Submarine Groundwater Discharge Releases CO2 to a Coral Reef. ACS EST Water 2021, 1, 1756–1764. [Google Scholar] [CrossRef]
- Winter, T.C. Relation of Streams, Lakes, and Wetlands to Groundwater Flow Systems. Hydrogeol. J. 1999, 7, 28–45. [Google Scholar] [CrossRef]
- Larned, S.T.; Gooseff, M.N.; Packman, A.I.; Rugel, K.; Wondzell, S.M. Groundwater–Surface-Water Interactions: Current Research Directions. Freshw. Sci. 2015, 34, 92–98. [Google Scholar] [CrossRef]
- Jolly, I.D.; McEwan, K.L.; Holland, K.L. A Review of Groundwater–Surface Water Interactions in Arid/Semi-Arid Wetlands and the Consequences of Salinity for Wetland Ecology. Ecohydrology 2008, 1, 43–58. [Google Scholar] [CrossRef]
- Schmadel, N.M.; Ward, A.S.; Kurz, M.J.; Fleckenstein, J.H.; Zarnetske, J.P.; Hannah, D.M.; Blume, T.; Vieweg, M.; Blaen, P.J.; Schmidt, C.; et al. Stream Solute Tracer Timescales Changing with Discharge and Reach Length Confound Process Interpretation. Water Resour. Res. 2016, 52, 3227–3245. [Google Scholar] [CrossRef]
- Landon, M.K.; Rus, D.L.; Edwin Harvey, F. Comparison of Instream Methods for Measuring Hydraulic Conductivity in Sandy Streambeds. Ground Water 2001, 39, 870–885. [Google Scholar] [CrossRef]
- Yao, Y.; Huang, X.; Liu, J.; Zheng, C.; He, X.; Liu, C. Spatiotemporal Variation of River Temperature as a Predictor of Groundwater/Surface-Water Interactions in an Arid Watershed in China. Hydrogeol. J. 2015, 23, 999–1007. [Google Scholar] [CrossRef]
- Munz, M.; Oswald, S.E.; Schmidt, C. Analysis of Riverbed Temperatures to Determine the Geometry of Subsurface Water Flow around In-Stream Geomorphological Structures. J. Hydrol. 2016, 539, 74–87. [Google Scholar] [CrossRef]
- Naranjo, G.; Cruz-Fuentes, T.; Cabrera, M.C.; Custodio, E. Estimating Natural Recharge by Means of Chloride Mass Balance in a Volcanic Aquifer: Northeastern Gran Canaria (Canary Islands, Spain). Water 2015, 7, 2555–2574. [Google Scholar] [CrossRef]
- Kalbus, E.; Schmidt, C.; Molson, J.W.; Reinstorf, F.; Schirmer, M. Influence of Aquifer and Streambed Heterogeneity on the Distribution of Groundwater Discharge. Hydrol. Earth Syst. Sci. 2009, 13, 69–77. [Google Scholar] [CrossRef]
- Trauth, N.; Fleckenstein, J.H. Single Discharge Events Increase Reactive Efficiency of the Hyporheic Zone. Water Resour. Res. 2017, 53, 779–798. [Google Scholar] [CrossRef]
- Trauth, N.; Schmidt, C.; Vieweg, M.; Oswald, S.E.; Fleckenstein, J.H. Hydraulic Controls of In-Stream Gravel Bar Hyporheic Exchange and Reactions. Water Resour. Res. 2015, 51, 2243–2263. [Google Scholar] [CrossRef]
- Banerjee, D.; Ganguly, S. A Review on the Research Advances in Groundwater-Surface Water Interaction with an Overview of the Phenomenon. Water 2023, 15, 1552. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Liu, F.; Guo, H. Advances and Trends in Hydrogeochemical Studies: Insights from Bibliometricanalysis. Earth Sci. Front. 2022, 29, 25–36. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Y.; Jiang, X. South-to-North Water Transfers and Water Science & Technology. S. N. Water Transf. Water Sci. Technol. 2022, 20, 218–229. [Google Scholar] [CrossRef]
- Wang, X.; Jia, S.; Xu, Y.J.; Liu, Z.; Mao, B. Dual Stable Isotopes to Rethink the Watershed-Scale Spatiotemporal Interaction between Surface Water and Groundwater. J. Environ. Manage. 2024, 351, 119728. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Zhou, P.; Wang, G.; Zhang, B.; Shi, Z.; Liao, F.; Li, B.; Chen, X.; Guo, L.; Dang, X.; et al. Hydrochemical and Isotopic Interpretation of Interactions between Surface Water and Groundwater in Delingha, Northwest China. J. Hydrol. 2021, 598, 126243. [Google Scholar] [CrossRef]
- Yin, Z.; Luo, Q.; Wu, J.; Xu, S.; Wu, J. Identification of the Long-Term Variations of Groundwater and Their Governing Factors Based on Hydrochemical and Isotopic Data in a River Basin. J. Hydrol. 2021, 592, 125604. [Google Scholar] [CrossRef]
- Okwir, G.; Kumar, S.; Pramod, K.S.; Gao, H.; Njau, K.N. Conceptualization of Groundwater-Surface Water Interaction with Evidence from Environmental Isotopes and Hydrogeochemistry in Lake Babati Basin in Northern Tanzania. Groundw. Sustain. Dev. 2023, 21, 100940. [Google Scholar] [CrossRef]
- Modie, L.T.; Kenabatho, P.K.; Stephens, M.; Mosekiemang, T. Investigating Groundwater and Surface Water Interactions Using Stable Isotopes and Hydrochemistry in the Notwane River Catchment, South East Botswana. J. Hydrol.-Reg. Stud. 2022, 40, 101014. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Wang, W.; Zhu, C.; Chen, Y.; Liu, X.; Zhang, T. Water Quality and Interaction between Groundwater and Surface Water Impacted by Agricultural Activities in an Oasis-Desert Region. J. Hydrol. 2023, 617, 128937. [Google Scholar] [CrossRef]
- Meng, B. Study on the Interaction between Surface Water and Groundwater in Seasonally Frozen Soil Area: A Case Study of Songhua River Basin in Sanjiang Plain. Master’s Thesis, Jilin University, Changchun, China, 2022. [Google Scholar]
- Mahlknecht, J.; Schneider, J.; Merkel, B.; de León, I.N.; Bernasconi, S. Groundwater Recharge in a Sedimentary Basin in Semi-Arid Mexico. Hydrogeol. J. 2004, 12, 511–530. [Google Scholar] [CrossRef]
- Woessner, W.W. Groundwater-Surface Water Exchange; The Groundwater Project: Guelph, ON, Canada, 2020; ISBN 978-1-77705-415-1. [Google Scholar]
- Chabi, B.G.; Alassane, A.; Kpegli, K.A.R.; Lawson, F.M.A.; Zakari, A.A.; Koukpohounsi, B.D.; Boukari, O.T.; Vouillamoz, J.-M.; Yalo, N.; Mama, D.; et al. Characterising Groundwater and Surface-Water Interconnections Using Hydrogeology, Hydrochemistry and Stable Isotopes in the Oueme Delta, Southern Benin. Hydrogeol. J. 2023, 31, 1229–1243. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, Y. Global Research Trends and Hotspots on Submarine Groundwater Discharge (SGD): A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2020, 17, 830. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Deng, W.; Chen, P. Climate Change in the Sanjiang Plain Disturbed by Large-Scale Reclamation. J. Geogr. Sci. 2002, 12, 405–412. [Google Scholar] [CrossRef]
- Yin, X.; Chu, Y.; Yang, W. Relationships between marsh and precipitation, terrain surface water, groundwater in Sanjiang Plain. Chin. J. Eco-Agric. 2003, 11, 157–158. [Google Scholar]
- Yang, X.; Yang, W.; Zhang, F.; Chu, Y.; Wang, Y. Geological Investigation and Evaluation of Groundwater Resources Potential and Ecological Environment in the Sanjiang Plain; Geological Publishing House: Beijing, China, 2008; ISBN 978-7-116-06094-4. [Google Scholar]
- Guo, Y.; Zhang, W.; Cao, W.; Qu, C.; Zhao, M. Analysis of the relationship between river water and groundwater recharge and drainage in the Jiamusi River section of Songhua River. J. Heilongjiang Hydrol. Univ. 1997, 24, 53–58. [Google Scholar]
- Wang, X.; Zhang, G.; Xu, Y.J.; Sun, G. Identifying the Regional-Scale Groundwater-Surface Water Interaction on the Sanjiang Plain, Northeast China. Environ. Sci. Pollut. Res. 2015, 22, 16951–16961. [Google Scholar] [CrossRef]
- Zhang, B.; Song, X.; Zhang, Y.; Han, D.; Tang, C.; Yang, L.; Wang, Z.; Liu, T. A Study of the Interrelation between Surface Water and Groundwater Using Isotopes and Chlorofluorocarbons in Sanjiang Plain, Northeast China. Environ. Earth Sci. 2014, 72, 3901–3913. [Google Scholar] [CrossRef]
- Jia, S.; Dai, Z.; Du, X.; Meng, B.; Yang, Z.; Lan, T. Quantitative Evaluation of Groundwater and Surface Water Interaction Characteristics during a Dry Season. Water Environ. J. 2021, 35, 1348–1361. [Google Scholar] [CrossRef]
- Deng, Y.; Ye, X.; Feng, J.; Guo, H.; Du, X. Assessment of Soil-Groundwater Nitrogen Cycling Processes in the Agricultural Region through Flux Model, Stable Isotope. J. Hydrol. 2024, 639, 131604. [Google Scholar] [CrossRef]
- Kalbus, E.; Reinstorf, F.; Schirmer, M. Measuring Methods for Groundwater – Surface Water Interactions: A Review. Hydrol. Earth Syst. Sci. 2006, 10, 873–887. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Güler, C.; Thyne, G.D.; McCray, J.E.; Turner, K.A. Evaluation of Graphical and Multivariate Statistical Methods for Classification of Water Chemistry Data. Hydrogeol. J. 2002, 10, 455–474. [Google Scholar] [CrossRef]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Deuterium and Oxygen-18 Isotope Composition of Precipitation and Atmospheric Moisture. Hydrol. Process. 2000, 14, 1341–1355. [Google Scholar] [CrossRef]
- Cao, J.; Chi, B.; Wang, W.; Gong, H.; Cao, Y.; Liang, X. Applied Hydrogeology; Science Press: Beijing, China, 2006; ISBN 7-03-017547-6. [Google Scholar]
- Ye, X.; Wu, Y.; Du, X.; Li, W. A comprehensive discrimination method for the genetic type of groundwater regime of phreatic water: A case study in the Songhua River basin of the Sanjiang Plain. Adv. Water Sci. 2022, 33, 68–78. [Google Scholar] [CrossRef]
- Duy, N.L.; Nguyen, T.V.K.; Nguyen, D.V.; Tran, A.T.; Nguyen, H.T.; Heidbüchel, I.; Merz, B.; Apel, H. Groundwater Dynamics in the Vietnamese Mekong Delta: Trends, Memory Effects, and Response Times. J. Hydrol. Reg. Stud. 2021, 33, 100746. [Google Scholar] [CrossRef]
- Lou, H.; Yang, S.; Hao, F.; Jiang, L.; Zhao, C.; Ren, X.; Wang, Y.; Wang, Z. SMAP, RS-DTVGM, and in-Situ Monitoring: Which Performs Best in Presenting the Soil Moisture in the Middle-High Latitude Frozen Area in the Sanjiang Plain, China? J. Hydrol. 2019, 571, 300–310. [Google Scholar] [CrossRef]
- Ye, X.; Zhou, Y.; Lu, Y.; Du, X. Hydrochemical Evolution and Quality Assessment of Groundwater in the Sanjiang Plain, China. Water 2022, 14, 1265. [Google Scholar] [CrossRef]
- Liu, J.; Song, X.; Yuan, G.; Sun, X.; Yang, L. Stable Isotopic Compositions of Precipitation in China. Tellus B Chem. Phys. Meteorol. 2014, 66, 22567. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H. Conjunctive Use of Groundwater and Surface Water for Paddy Rice Irrigation in Sanjiang Plain, North-East China. Irrig. Drain. 2020, 69, 142–152. [Google Scholar] [CrossRef]
- Fu, Q.; Li, T.; Liu, D.; Dong, H. Simulation Study of the Sustainable Utilization of Urban Water Resources Based on System Dynamics: A Case Study of Jiamusi. Water Supply 2016, 16, 980–991. [Google Scholar] [CrossRef]
- Barlow, P.M.; Leake, S.A.; Fienen, M.N. Capture Versus Capture Zones: Clarifying Terminology Related to Sources of Water to Wells. Groundwater 2018, 56, 694–704. [Google Scholar] [CrossRef]
- Li, H.; Du, X.; Lu, X.; Fang, M. Analysis of Groundwater Overexploitation Based on Groundwater Regime Information. Groundwater 2023, 61, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Du, S.; An, R.; Yao, Z. A new discussion on groundwater system and stimulated recharge mechanism in the Sanjiang Plain. J. Heilongjiang Hydrol. Univ. 2008, 5–7. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Chen, Y.; Wang, W.; Zhang, T.; Qin, J. Groundwater Dynamic Influenced by Intense Anthropogenic Activities in a Dried-up River Oasis of Central Asia. Hydrol. Res. 2022, 53, 532–546. [Google Scholar] [CrossRef]
Section Number | Hydrological Station Involved | Location | Well Number (Distance from Shore (km)) |
---|---|---|---|
A1 | Jiamusi | Right Bank | 10,778,640 (1.3), 10,778,190 (3.8) |
A2 | Jiamusi | Left Bank | 10,778,470 (0.4), 10,778,490 (3.5) |
B1 | Fujin | Right Bank | 10,700,151 (1.1), 10,577,040 (2.1) |
B2 | Fujin | Left Bank | 10,779,610 (0.25), 10,779,600 (0.4), 10779630 (1.1) |
C1 | Tongjiang | Right Bank | 10,473,050 (1.5), 10,473,240 (2.1) |
Groundwater Samples (34 in Total) | Surface Water Samples (9 in Total) | |||||||
---|---|---|---|---|---|---|---|---|
Indicators | Min | Max | Mean | COV (%) | Min | Max | Mean | COV (%) |
Ca2+ | 8.19 | 295.15 | 65.24 | 84 | 17.48 | 27.97 | 22.38 | 14 |
Mg2+ | 1.35 | 81.60 | 17.56 | 83 | 4.05 | 6.52 | 4.96 | 17 |
Na+ | 3.93 | 102.50 | 27.72 | 80 | 3.02 | 16.66 | 9.93 | 42 |
K+ | 1.16 | 20.69 | 5.07 | 99 | 1.71 | 3.37 | 2.87 | 17 |
HCO3− | 32.95 | 514.03 | 152.25 | 66 | 72.49 | 138.39 | 98.85 | 21 |
SO42− | 0.09 | 302.97 | 33.18 | 161 | 1.59 | 12.76 | 4.78 | 83 |
Cl− | 0.88 | 446.61 | 63.17 | 127 | 5.27 | 14.07 | 10.35 | 27 |
pH | 5.88 | 7.04 | 6.44 | 4 | 6.61 | 7.49 | 7.23 | 4 |
TDS | 90.19 | 1544.75 | 449.34 | 63 | 127.01 | 232.29 | 171.13 | 19 |
Sample | δD (‰) | δ18O (‰) | ||||
---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | |
Surface water (12 in total) | −86.2 | −75.1 | −77.8 | −11.7 | −9.8 | −10.3 |
Groundwater (27 in total) | −95.1 | −77.7 | −84.3 | −12.6 | −9.2 | −10.9 |
Location | Jiamusi | Wutong River | Puyang | Fujin | Leye | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Data | Right Bank | Left Bank | Right Bank | Left Bank | Right Bank | Left Bank | Right Bank | Left Bank | Right Bank | Left Bank | |
Distance from riverbank (km) | 1.2 | 2.5 | 4.0 | 1.0 | 3.5 | 5.0 | 4.0 | 1.7 | 1.3 | 3.4 | |
Ratio of river recharge (%) | 75.73 | 62.07 | 28.21 | 86.82 | 82.64 | 58.38 | 59.07 | 89.92 | 81.61 | 67.49 | |
Ratio of rain recharge (%) | 24.27 | 37.93 | 71.79 | 13.18 | 17.36 | 41.62 | 40.93 | 10.08 | 18.39 | 32.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Fang, Y.; Meng, B.; Guo, H.; Du, X. Identification of Groundwater–Surface Water Interaction Using Combined Hydraulic and Hydrogeochemical Methods. Water 2024, 16, 2777. https://doi.org/10.3390/w16192777
Li Z, Fang Y, Meng B, Guo H, Du X. Identification of Groundwater–Surface Water Interaction Using Combined Hydraulic and Hydrogeochemical Methods. Water. 2024; 16(19):2777. https://doi.org/10.3390/w16192777
Chicago/Turabian StyleLi, Zihan, Yongjun Fang, Bo Meng, Hui Guo, and Xinqiang Du. 2024. "Identification of Groundwater–Surface Water Interaction Using Combined Hydraulic and Hydrogeochemical Methods" Water 16, no. 19: 2777. https://doi.org/10.3390/w16192777
APA StyleLi, Z., Fang, Y., Meng, B., Guo, H., & Du, X. (2024). Identification of Groundwater–Surface Water Interaction Using Combined Hydraulic and Hydrogeochemical Methods. Water, 16(19), 2777. https://doi.org/10.3390/w16192777