Hydrochemical Characteristics and Indication to Geothermal Genesis of Low–Medium-Temperature Convection Geothermal Field in Yanshan Orogenic Basin, China
Abstract
:1. Introduction
2. Regional Overview
3. Data Acquisition
4. Results and Discussion
4.1. Hydrogeochemical Characteristics
4.2. Source of Supply
4.3. Supply Elevation Estimation
4.4. Thermal Reservoir Equilibrium State and Thermal Reservoir Temperature Estimation
4.5. Estimation of Geothermal Water Circulation Depth
4.6. Indication of Geothermal Origin
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kong, Y.; Pang, Z.; Shao, H.; Kolditz, O. Optimization of Well-Doublet Placement in Geothermal Reservoirs Using Numerical Simulation and Economic Analysis. Environ. Earth Sci. 2017, 76, 118. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, W.; Liang, J.; Lin, W.; Liu, Z.; Wang, W. Evaluation of Geothermal Resources Potential in China. Acta Geosci. Sinica 2017, 38, 449–459. [Google Scholar] [CrossRef]
- Mallapaty, S. How China Could Be Carbon Neutral by Mid-century. Nature 2020, 586, 482–483. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, T.; Feng, B.; Yuan, Y.; Li, F.; Feng, G.; Jiang, Z. Thermal and Fluid Processes in a Closed-Loop Geothermal System Using CO2 as a Working Fluid. Renew. Energ. 2020, 154, 351–367. [Google Scholar] [CrossRef]
- Yuan, W.; Zhang, D.; Zhang, Y.; Gao, J.; Liu, T.; Zhai, H.; Jin, G.; Wang, G.; Zhang, B. Performance of MultiWell Exploitation and Reinjection in a Small-Scale Shallow Geothermal Reservoir in Huailai County. Front. Earth Sci. 2021, 9, 786389. [Google Scholar] [CrossRef]
- Yuan, W.; Lei, X.; Liu, T.; Wang, S.; Xing, Y.; Zhu, R.; Yang, F.; Zhang, D.; Gao, J.; Zhang, B. Mechanism and Prediction of Geothermal Resources Controlled by Neotectonics in Mountainous Areas: A Case Study of Southeastern Zhangjiakou City, China. Front. Earth Sci. 2022, 10, 787156. [Google Scholar] [CrossRef]
- Liu, M.; He, T.; Wu, Q.; Guo, Q. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its Indicating Significance. Earth Sci. 2020, 45, 2221–2233. Available online: https://kns.cnki.net/kcms/detail/42.1874.P.20191113.164.002.html (accessed on 4 October 2023).
- Zhao, J.; Zhang, W.; Ma, F.; Zhu, X.; Zhang, H.; Wang, G. Geochemical characteristics of the geothermal fluid in the Rongcheng geothermal field, Xiong’an New Area. Acta Geol. Sin. 2020, 94, 1991–2001. [Google Scholar] [CrossRef]
- Moore, J.P.; Walsh, J.J. Quantitative Analysis of Cenozoic Faults and Fractures and Their Impact on Groundwater Flow in the Bedrock Aquifers of Ireland. Hydrogeol. J. 2021, 29, 2613–2632. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, H.; Li, J.; Teng, Y.; Zhang, B.; Li, Y.; Wang, G. Chemical field characteristics of geothermal water in Xiong’an New Area, and analysis on the influencing factors. Geol. China 2022, 49, 1711–1722. Available online: http://kns.cnki.net/kcms/detail/11.1167.P.20211026.1819.002.html (accessed on 4 October 2023).
- Zhai, Y.; Wang, J.; Teng, Y.; Zuo, R. Hydrogeochemical and isotopic evidence of groundwater evolution and recharge in aquifers in Beijing Plain, China. Environ. Earth Sci. 2013, 69, 2167–2177. [Google Scholar] [CrossRef]
- Vaselli, O.; Higueras, P.; Nisi, B.; María Esbrí, J.; Cabassi, J.; Martínez-Coronado, A.; Tassi, F.; Rappuoli, D. Distribution of Gaseous Hg in the Mercury Mining District of Mt. Amiata (Central Italy): A Geochemical Survey Prior the Reclamation Project. Environ. Res. 2013, 125, 179–187. [Google Scholar] [CrossRef]
- Hanson, M.C.; Oze, C.; Horton, T.W. Identifying Blind Geothermal Systems with Soil CO2 Surveys. Appl. Geochem. 2014, 50, 106–114. [Google Scholar] [CrossRef]
- Pinti, D.L.; Castro, M.C.; Lopez-Hernandez, A.; Han, G.; Shouakar-Stash, O.; Hall, C.M.; Ramírez-Montes, M. Fluid circulation and reservoir conditions of the los humeros geothermal field (lhgf), mexico, as revealed by a noble gas survey. J. Volcanol. Geotherm. Res. 2017, 333, 104–115. [Google Scholar] [CrossRef]
- Rodríguez, F.; Pérez, N.M.; Melián, G.V.; Padrón, E.; Hernández, P.A.; Asensio-Ramos, M.; Padilla, G.D.; Barrancos, J.; D’Auria, L. Exploration of Deep-Seated Geothermal Reservoirs in the Canary Islands by Means of Soil CO2 Degassing Surveys. Renew. Energ. 2021, 164, 1017–1028. [Google Scholar] [CrossRef]
- Tian, J.; Pang, Z.; Guo, Q.; Wang, Y.; Li, J.; Huang, T.; Kong, Y. Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the Eastern Himalayan Syntax. Geothermics 2018, 74, 92–105. [Google Scholar] [CrossRef]
- Das, P.; Maya, K.; Padmalal, D. Hydrochemistry, geothermometry and origin of the low temperature thermal springs of South Konkan region, India. Geothermics 2021, 90, 101997. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, Z.; Ni, B.; Hou, F.; Shen, M. Hydrogen and Oxygen Isotopic Studies of Thermal Waters in Xizang. Acta Sci. Nat. Univ. Pekin. 1982, 1, 99–106. [Google Scholar] [CrossRef]
- Shi, M.; Zhang, J.; Yin, X.; Yang, N.; Jiang, H. Hydrochemistry characteristic analysis of low- medium temperature convective geothermal resources in Jiaodong Peninsula. Acta Geol. Sin. 2019, 93, 138–148. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, H.; Zhang, J.; Wang, Y.; Tian, L. Hydrochemistry and environmental isotopic characteristics and formation ages analysis of geothermal fluids in Gansu Province. Arid. Land Geogr. 2020, 43, 1496–1504. [Google Scholar]
- Song, M.; Gong, L.; Wang, X.; Meng, S.; Lv, L.; Liu, Y. Study on chemical characteristics and scale corrosion of geothermal water in fuping county. Geol. Rev. 2020, 66, 146–148. [Google Scholar] [CrossRef]
- Xing, Y.; Yu, H.; Liu, Z.; Li, J.; Liu, S.; Han, S.; Wang, G. Study on ChemicalGenesis of Deep Geothermal Fluid in Gaoyang Geothermal Field. Front. Earth Sci. 2022, 9, 787222. [Google Scholar] [CrossRef]
- Wei, H. A Discussion on Geothermal Resource in Zhangjiakou. Coal Geol. China 2006, 4, 38–41. [Google Scholar]
- Wang, W.; Li, G.; Li, H.; Hou, J.; Fang, W.; Yang, F. Hydrogeochemical characteristics and origin of the geothermal fluid in Tangquan area, Hebei Province. Geol. China 2013, 40, 1935–1941. [Google Scholar]
- Qi, B.S.; Feng, C.J.; Tan, C.X.; Zhang, P.; Meng, J. Application of comprehensive geophysical-drilling exploration to detect the buried North Boundary active Fault Belt of Yanqing-Fanshan Basin in Sangyuan Town, Beijing-Zhangjiakou area. Geol. China 2019, 46, 468–481. [Google Scholar] [CrossRef]
- André, L.; Manceau, J.C.; Bourbon, P.; Wuilleumier, A. Cyclic variations of sulfate and boron concentrations and isotopes in deep groundwaters in the Aquitaine Basin, France. Appl. Geochem. 2020, 123, 104818. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, L.; Li, S.; Wang, Z.; Ye, Z.; Chen, J.; Yang, Z. Hydrogeochemical characteristics and source identification of geothermal waters in Jiangmen, Guangdong Province. Environ. Chem. 2020, 39, 512–523. Available online: https://kns.cnki.net/kcms/detail/11.1844.x.20200327.1040.052.html (accessed on 10 October 2023).
- Seal, R.R. Sulfur Isotope Geochemistry of Sulfide Minerals. Rev. Mineral. Geochem. 2006, 61, 633–677. [Google Scholar] [CrossRef]
- Olivier, B.; Lorine, B.; Alexis, D.; Julien, F.; Mathieu, P.; Thierry, L.; Eliot, C.; Nicolas, L.; Christophe, P.; Benjamin, W.; et al. Iron-oxidizer hotspots formed by intermittent oxic–anoxic fluid mixing in fractured rocks. Nat. Geosci. 2020, 13, 149–155. [Google Scholar] [CrossRef]
- Alekseyev, V.A.; Kochnova, L.N.; Cherkasova, E.V.; Tyutyunnik, O.A. Possible reasons for elevated fluorine concentrations in groundwaters of carbonate rocks. Geochem. Int. 2010, 48, 68–82. [Google Scholar] [CrossRef]
- Li, C.; Chen, Z.; Wang, G.; Jin, T.; Li, Y.; Luo, T.; Mao, T. Geochemical Characteristics and Origin of Geothermal Water in Southeastern Guizhou, China. Bull. Mineral. Petrol. Geochem. 2020, 39, 614–625. [Google Scholar] [CrossRef]
- Zhao, J. Study on the Spatial Structure of Deep Thermal Storage and the Process of Hydrothermal Differentiation in Xiong’an New Area. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2020. [Google Scholar]
- Liu, C.; Wang, W.; Zhang, G.; Zhu, H.; Wang, J.; Guo, Y. Hydrochemical and Isotope (18O, 2H and 3H) Characteristics of Karst Water in Central Shandong Province: A Case Study of the Pingyi-Feixian Region. Minerals 2022, 12, 154. [Google Scholar] [CrossRef]
- Zheng, S.; Hou, F.; Ni, B. Hydrogen and Oxygen Isotopic Studies of Atmospheric Precipitation in Our Country. Chin. Sci. Bull. 1983, 13, 801–806. [Google Scholar]
- Ni, G.; Zhang, H.; Wei, Y.; Hu, Y. Hydrogeochemical and Isotope Characteristics of Geothermal Fluid in Sichuan. Adv. New Renew. Energy 2016, 4, 184–194. Available online: https://kns.cnki.net/kcms/detail/44.1698.tk.20160623.1636.020.html (accessed on 15 October 2023).
- Zhang, B.; Xu, J.; Ma, Z.; Shen, Z.; Qi, L. Analysis on groundwater supply sources using hydrogen and oxygen isotope data—A case study of Yanggu-Qihe salient, northwestern Shandong, China. Geol. Bull. China 2010, 29, 603–609. [Google Scholar]
- Chen, L. Isotopic characteristic Analysis of Hydrogen—Oxygen Environment in Geothermal Water in Fujian Province. Geol. Fujian 2019, 38, 61–68. [Google Scholar]
- Clark Ian, D.; Peter, F. Environmental Isotopes in Hydrogeology; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim. Et Cosmochim. Acta 1988, 52, 2749–2765. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, N. Methods on studies of paleogeotemperature on sedimentary basins with oil and gas. Prog. Geophys. 1992, 4, 46–62. [Google Scholar]
- Pirlo, M.C. Hydrogeochemistry and geothermometry of thermal groundwaters from the Birdsville Track Ridge, Great Artesian Basin, South Australia. Geothermics 2004, 33, 743–774. [Google Scholar] [CrossRef]
- Zhang, B. Hydrogeochemical Characteristics and Formation Conditions of the Geothermal Water in Northwestern Shandong Province. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2011. [Google Scholar]
Serial Number | Test Index | Unit | Test Site | Test Method (Instrument) |
---|---|---|---|---|
1 | pH | None | Field | Portable Multi-parameter Fast Water Quality Analyzer (HANNA-HI9828, Melrose, MA, USA) |
2 | TDS | mg/L | Field | Portable Multi-parameter Fast Water Quality Analyzer |
3 | COD | mg/L | Field | Portable Multi-parameter Fast Water Quality Analyzer |
4 | Total hardness | mg/L | Field | Portable Multi-parameter Fast Water Quality Analyzer |
5 | Ca2+ | mg/L | Indoor | Inductively Coupled Plasma Emission Spectrometer (ICP-AES, Waltham, MA, USA) |
6 | K+ | mg/L | Indoor | Inductively Coupled Plasma Emission Spectrometer |
7 | Na+ | mg/L | Indoor | Inductively Coupled Plasma Emission Spectrometer |
8 | Mg2+ | mg/L | Indoor | Inductively Coupled Plasma Emission Spectrometer |
9 | SO42− | mg/L | Indoor | Ion Chromatograph (ICP-1000, Waltham, MA, USA) |
10 | HCO3− | mg/L | Indoor | Ion Chromatograph |
11 | Cl− | mg/L | Indoor | Ion Chromatograph |
12 | NH4+ | mg/L | Indoor | Ion Chromatograph |
13 | Fe | mg/L | Indoor | Inductively Coupled Plasma Emission Spectrometer Method (ICP-AES, Waltham, MA, USA) |
14 | Mn | mg/L | Indoor | Inductively Coupled Plasma Mass Spectrometry (ICP-MS, Waltham, MA, USA) |
15 | Cu | mg/L | Indoor | Inductively Coupled Plasma Mass Spectrometry |
16 | Zn | mg/L | Indoor | Inductively Coupled Plasma Mass Spectrometry |
17 | NO3− | mg/L | Indoor | Ion Chromatograph (ICP-1000, Waltham, MA, USA) |
18 | NO2− | mg/L | Indoor | Ion Chromatograph |
19 | F− | mg/L | Indoor | Ion Chromatograph |
20 | Pb | mg/L | Indoor | Inductively Coupled Plasma Mass Spectrometry |
21 | As | mg/L | Indoor | Inductively Coupled Plasma Mass Spectrometry |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, W.; Xing, Y.; Wei, M.; Guo, X.; Liu, J.; Gao, J.; Zhang, C.; Zhai, Y. Hydrochemical Characteristics and Indication to Geothermal Genesis of Low–Medium-Temperature Convection Geothermal Field in Yanshan Orogenic Basin, China. Water 2024, 16, 433. https://doi.org/10.3390/w16030433
Yuan W, Xing Y, Wei M, Guo X, Liu J, Gao J, Zhang C, Zhai Y. Hydrochemical Characteristics and Indication to Geothermal Genesis of Low–Medium-Temperature Convection Geothermal Field in Yanshan Orogenic Basin, China. Water. 2024; 16(3):433. https://doi.org/10.3390/w16030433
Chicago/Turabian StyleYuan, Wenzhen, Yifei Xing, Meihua Wei, Xinran Guo, Jin Liu, Jun Gao, Changsheng Zhang, and Yuanzheng Zhai. 2024. "Hydrochemical Characteristics and Indication to Geothermal Genesis of Low–Medium-Temperature Convection Geothermal Field in Yanshan Orogenic Basin, China" Water 16, no. 3: 433. https://doi.org/10.3390/w16030433
APA StyleYuan, W., Xing, Y., Wei, M., Guo, X., Liu, J., Gao, J., Zhang, C., & Zhai, Y. (2024). Hydrochemical Characteristics and Indication to Geothermal Genesis of Low–Medium-Temperature Convection Geothermal Field in Yanshan Orogenic Basin, China. Water, 16(3), 433. https://doi.org/10.3390/w16030433