Importance of Geographic Information System (GIS) Application to Reduce the Impact of Flood Disasters in Malaysia: A Meta-Analysis
Abstract
:1. Introduction
2. Article Review Method
3. Natural Phenomenon
3.1. Natural Hazard
Authors | Locations | Economic and Non-Economic Losses |
---|---|---|
[30] | Upper Awash River Basin, Ethiopia | Economic
|
[31] | Ratnapura, Sri Lanka | Economic
|
[32] | Central Indus River, Pakistan | Economic
|
[33] | Japan | Economic
|
[34] | Global | Economic
|
[35] | Spain | Economic
|
3.2. Natural Hazard in Shah Alam and Klang, Selangor State
3.3. Natural Hazard in the Kuala Lumpur Mega-Urban Region
3.4. Natural Hazard on the East Coast of Peninsular Malaysia
4. The Use of GIS Applications to Manage Floods in Malaysia
- Published between 2000 and 2022.
- Keywords used: GIS, flood risk mapping, natural hazard management, flood management, Malaysia.
- Focused on the gaps in using GIS in Malaysia and globally.
4.1. Flood Susceptibility Mapping
4.2. Flood Zone Identification
4.3. Urban Flood Risk Analysis
4.4. Post-Disaster Assessment
4.5. Flood Plain Management
5. Use of GIS Applications Globally for the Management of Floods
6. Gaps in Using GIS Applications for Natural Hazard Management in Malaysia
Reference | Location | Using GIS in Hazard and Disaster Management | |
---|---|---|---|
Pre-Disaster | Post-Disaster | ||
[79] | Dhaka City, Bangladesh | Earthquake Risk Index | Designing a low-emission development strategy |
Increase drainage capacity | Defining and shaping open learning around risk and resilience. | ||
[49] | Poland | Using GIS and traffic engineering tools in flood emergency response to increase flood operation efficiency | Modern computer tools to analyse the effectiveness of the self-evacuation of the population by private vehicle transport |
[80] | United State | Risk assessment and risk reduction by using E3R (Emergency Response and Risk Reduction) for a variety of hazards | Develop organisational and community capacity, including more visual details about selected assets such as schools, facilities where large numbers of people may assemble, and government buildings. |
[81] | Brazil | Hydrological assessment to represent hazard by using arithmetic operators and weights for evaluating influences of significant factor | Floodplain mapping software by using MIKE FLOOD, HEC-GeoRAS, and RiverCAD |
[82] | Malaysia | Flood risk assessment and remote sensing using GIS | Mapping flood areas and protected areas to improve flood management |
[83] | Philippines | Flood risk assessment and analysis using AHP for evaluating risk | Improve research and application in education |
[84] | Sindh Province, Pakistan | Flood hazard mapping and flood shelter suitability analysis | Analytic hierarchy process (AHP) techniques to further identify the severity of future flood risk |
[50] | Africa | Mapping floodplains and flood disaster risks by presenting the physical extent of the risk | Used statistical methods to model changes in the peak flow of water |
[85] | Fukushima, Japan | Radiation measurements in the Fukushima area were mapped using ArcGIS | Used flood risk mapping to track the location of shelters and the number of evacuees |
[86] | Queensland, Australia | Disaster risk management by communicating infrastructures and evaluating disaster plans | Measures land use planning to interact with the spatial dimension of a disaster. |
7. GIS Implementation Cost in Malaysia
8. Lack of Data Availability in Malaysia
9. Conclusions and Recommendations
- Establish a Centralized GIS Database: Government organisations and urban planners should work together to establish and manage a centralised database that combines topographic, land use, and flood history information.
- Use AI and Remote Sensing: AI algorithms can be used to improve flood modelling’s prediction power, while remote sensing technology can be used to augment historical data gaps.
- Utilize Community-Generated Data: Promote citizen science projects to gather local flood data, as this can enhance GIS applications and increase data accuracy.
- Encourage Interagency Collaboration: To guarantee data exchange, technical know-how, and financing for GIS-related projects, cultivate alliances among regional administrations, federal agencies, and international organisations.
- GIS should be integrated with other planning tools by urban planners in order to create land use plans and zoning laws that reduce the danger of flooding and encourage resilient development.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coburn, A.W.; Spence, R.J.S.; Pomonis, A. Factors Determining Human Casualty Levels in Earthquakes: Mortality Prediction in Building Collapse. In Proceedings of the Tenth World Conference on Earthquake Engineering, Madrid, Spain, 19–24 July 1992; Volume 10, pp. 5989–5994. [Google Scholar]
- Prasad, A.S.; Francescutti, L.H. Natural Disasters. In International Encyclopedia of Public Health; Elsevier: Amsterdam, The Netherlands, 2016; p. 215. [Google Scholar]
- Ahmed, M.F. Climate Change Adaptation and Mitigation Measures at Local and National Levels for Sustainable Development. Int. J. Clim. Change Strateg. Manag. 2023, 15, 577–578. [Google Scholar] [CrossRef]
- Hidalgo, J.; Baez, A.A. Natural disasters. Crit. Care Clin. 2019, 35, 591–607. [Google Scholar] [CrossRef] [PubMed]
- Ha, H.; Bui, Q.D.; Nguyen, H.D.; Pham, B.T.; Lai, T.D.; Luu, C. A Practical Approach to Flood Hazard, Vulnerability, and Risk Assessing and Mapping for Quang Binh Province, Vietnam. Environ. Dev. Sustain. 2023, 25, 1101–1130. [Google Scholar] [CrossRef]
- Mokhtar, M.; Ahmed, M.F.; Lee, K.E.; Alam, L.; Goh, C.T.; Elfithri, R.; Tajam, J.; Wong, A.K.H. Achieving Sustainable Coastal Environment in Langkawi, Malaysia. Borneo J. Mar. Sci. Aquac. 2017, 1, 7–15. [Google Scholar] [CrossRef]
- Safiah Yusmah, M.Y.; Bracken, L.J.; Sahdan, Z.; Norhaslina, H.; Melasutra, M.D.; Ghaffarianhoseini, A.; Sumiliana, S.; Shereen Farisha, A.S. Understanding Urban Flood Vulnerability and Resilience: A Case Study of Kuantan, Pahang, Malaysia. Nat. Hazards 2020, 101, 551–571. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Alam, L.; Ta, G.C.; Mohamed, C.A.R.; Mokhtar, M. A Review on the Environmental Pollution of Langat River, Malaysia. Asian J. Water Environ. Pollut. 2016, 13, 25–31. [Google Scholar] [CrossRef]
- Zulkafli, S.A.; Abd Majid, N.; Rainis, R. Spatial Analysis on the Variances of Landslide Factors Using Geographically Weighted Logistic Regression in Penang Island, Malaysia. Sustainability 2023, 15, 852. [Google Scholar] [CrossRef]
- Hakim, H.M.; Selamat, S.N.; Majid, N.A.; Rasudin, N.S.; Rahman, M.A.; Ismail, S.A.; Edinur, H.A. Landslide at Father’s Organic Farm: DVI and the Health Indicators During Monsoons. Malays. J. Med. Health Sci. 2023, 19, 250–254. [Google Scholar]
- Marengo, J.A.; Alcantara, E.; Cunha, A.P.; Seluchi, M.; Nobre, C.A.; Dolif, G.; Goncalves, D.; Dias, M.A.; Cuartas, L.A.; Bender, F.; et al. Flash floods and landslides in the city of Recife, Northeast Brazil after heavy rain on May 25–28, 2022: Causes, impacts, and disaster preparedness. Weather. Clim. Extrem. 2023, 39, 100545. [Google Scholar] [CrossRef]
- UN Department of Economic and Social Affairs. Flood Management and Climate Change Adaptation in Malaysia; UN Department of Economic and Social Affairs: New York, NY, USA, 2023. [Google Scholar]
- Muzamil, S.A.H.B.S.; Zainun, N.Y.; Ajman, N.N.; Sulaiman, N.; Khahro, S.H.; Rohani, M.M.; Mohd, S.M.B.; Ahmad, H. Proposed Framework for the Flood Disaster Management Cycle in Malaysia. Sustainability 2022, 14, 4088. [Google Scholar] [CrossRef]
- Farid Ahmed, M.; Mokhtar, M.B.; Lim, C.K.; Suza, I.A.B.C.; Ayob, K.A.K.; Khirotdin, R.P.K.; Majid, N.A. Integrated River Basin Management for Sustainable Development: Time for Stronger Action. Water 2023, 15, 2497. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Mokhtar, M.B.; Alam, L. Factors Influencing People’s Willingness to Participate in Sustainable Water Resources Management in Malaysia. J. Hydrol. Reg. Stud. 2020, 31, 100737. [Google Scholar] [CrossRef]
- Department of Irrigation and Drainage. Managing the Flood Problem in Malaysia; Department of Irrigation and Drainage: Cyberjaya, Malaysia, 2020.
- Coppola, D.P. Hazards. In Introduction to International Disaster Management; Elsevier: Amsterdam, The Netherlands, 2015; p. 40. [Google Scholar]
- Hwang, M.Y. Flood Preparedness, Response and Recovery of Flood Affected Business Owners in Shah Alam in 2021. 2022. Available online: http://eprints.utar.edu.my/5837/ (accessed on 4 December 2024).
- Gao, G.; San, L.H.; Zhu, Y. Flood Inundation Analysis in Penang Island (Malaysia) Based on InSAR Maps of Land Subsidence and Local Sea Level Scenarios. Water 2021, 13, 1518. [Google Scholar] [CrossRef]
- Zainuddin, M.Z. Banjir: Perlu Cepat Bertindak Elak Kesan Ekonomi. Berita Harian, 20 December 2021. Available online: https://www.bharian.com.my/bisnes/lain-lain/2021/12/901553/banjir-perlu-cepat-bertindak-elak-kesan-ekonomi (accessed on 4 December 2024).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Mudashiru, R.B.; Sabtu, N.; Abdullah, R.; Saleh, A.; Abustan, I. A Comparison of Three Multi-Criteria Decision-Making Models in Mapping Flood Hazard Areas of Northeast Penang, Malaysia. Nat. Hazards 2022, 112, 1903–1939. [Google Scholar] [CrossRef]
- Metych, M. Natural Disaster; Encyclopedia Britannica: Edinburgh, UK, 2023. [Google Scholar]
- Harrison, C.G.; Williams, P.R. A Systems Approach to Natural Disaster Resilience. Simul. Model. Pract. Theory 2016, 65, 11–31. [Google Scholar] [CrossRef]
- Federal Emergency Management Agency Mitigation Division. Multi-Hazard Loss Estimation Methodology; Federal Emergency Management Agency Mitigation Division: Hyattsville, MD, USA, 2005.
- Hua, A.K. Sistem Informasi Geografi (GIS): Pengenalan Kepada Perspektif Komputer. Geogr. J. Soc. Space 2015, 11, 24–31. [Google Scholar]
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial Data for Landslide Susceptibility, Hazard, and Vulnerability Assessment: An Overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Simon, N.; Akhir, J.M.; Napiah, A.; Kee, T.H. Pemetaan Potensi Bencana Tanah Runtuh Menggunakan Faktor Penilaian Bencana Tanah Runtuh Dengan Pendekatan GIS (IN MALAY), Landslide Hazard Potential Mapping Using Landslide Hazard Evaluation Factor with GIS Approach. Bull. Geol. Soc. Malays. 2009, 55, 47–53. [Google Scholar] [CrossRef]
- Nor Diana, M.I.; Muhamad, N.; Taha, M.R.; Osman, A.; Alam, M.M. Social Vulnerability Assessment for Landslide Hazards in Malaysia: A Systematic Review Study. Land 2021, 10, 315. [Google Scholar] [CrossRef]
- Hagos, Y.G.; Andualem, T.G.; Yibeltal, M.; Mengie, M.A. Flood Hazard Assessment and Mapping Using GIS Integrated with Multi-Criteria Decision Analysis in Upper Awash River Basin, Ethiopia. Appl. Water Sci. 2022, 12, 148. [Google Scholar] [CrossRef]
- De Silva, M.; Kawasaki, A. Modeling the Association between Socioeconomic Features and Risk of Flood Damage: A Local-scale Case Study in Sri Lanka. Risk Anal. 2022, 42, 2735–2747. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, I.; Ahmad, S.R.; Ashraf, U.; Khan, M. Community Perspectives to Improve Flood Management and Socio-Economic Impacts of Floods at Central Indus River, Pakistan. Int. J. Disaster Risk Reduct. 2023, 92, 103718. [Google Scholar] [CrossRef]
- Tezuka, S.; Takiguchi, H.; Kazama, S.; Sato, A.; Kawagoe, S.; Sarukkalige, R. Estimation of the Effects of Climate Change on Flood-Triggered Economic Losses in Japan. Int. J. Disaster Risk Reduct. 2014, 9, 58–67. [Google Scholar] [CrossRef]
- Hamidifar, H.; Nones, M. Spatiotemporal Variations of Riverine Flood Fatalities: 70 Years Global to Regional Perspective. River 2023, 2, 222–238. [Google Scholar] [CrossRef]
- González, P.A.; Ruiz, N.S.; Delgado, R.C.; Martínez, J.A.C. Disasters in Spain from 1950–2020: Impact on Public Health. Prehosp. Disaster Med. 2023, 38, 264–269. [Google Scholar] [CrossRef]
- Sim, K.B.; Lee, M.L.; Wong, S.Y. A Review of Landslide Acceptable Risk and Tolerable Risk. Geoenvironmental Disasters 2022, 9, 3. [Google Scholar] [CrossRef]
- Available online: https://www.malaysianow.com/my/news/2021/12/28/di-sebalik-banjir-kerap-di-shah-alam (accessed on 21 November 2024).
- Available online: https://www.astroawani.com/berita-malaysia/banjir-di-selangor-taburan-hujan-luar-biasa-jumlah-mangsa-dijangka-cecah-5000-mb-337067 (accessed on 20 November 2024).
- Available online: https://www.ummahtoday.com.my/kerap-hujan-lebat-longkang-tersumbat-punca-banjir-di-selangor/ (accessed on 20 November 2024).
- Available online: https://www.bharian.com.my/berita/nasional/2021/12/904586/banjir-48-kematian-5-masih-hilang-pdrm (accessed on 20 November 2024).
- HikersBay Climate Conditions in Klang. 2018. Available online: https://hikersbay.com/climate-conditions/malaysia/klang/climate-conditions-in-klang.html?lang=en#google_vignette (accessed on 15 November 2024).
- Sauti, N.S.; Daud, M.E.; Kaamin, M.; Remali, N. Teknologi Georuang Dalam Analisis Potensi Dan Pemetaan Risiko Tsunami Di Pantai Barat Semenanjung Malaysia. Sains Malays. 2021, 50, 929–943. [Google Scholar] [CrossRef]
- The Star Floods: Pahang Latest State to Be Hit, More Evacuees Recorded in Terengganu, Kelantan. 2022. Available online: https://hikersbay.com/climate-conditions/malaysia/klang/climate-conditions-in-klang.html?lang=en#google_vignette (accessed on 15 November 2024).
- Aydin, H.E.; Iban, M.C. Predicting and Analyzing Flood Susceptibility Using Boosting-Based Ensemble Machine Learning Algorithms with SHapley Additive ExPlanations. Nat. Hazards 2023, 116, 2957–2991. [Google Scholar] [CrossRef]
- Pettinger, L.; Forkert, K.; Goffey, A. The Promises of Creative Industry Higher Education: An Analysis of University Prospectuses in Malaysia. Int. J. Cult. Policy 2018, 24, 466–484. [Google Scholar] [CrossRef]
- Chau, V.N.; Holland, J.; Cassells, S.; Tuohy, M. Using GIS to Map Impacts upon Agriculture from Extreme Floods in Vietnam. Appl. Geogr. 2013, 41, 65–74. [Google Scholar] [CrossRef]
- Lin, L.; Tang, C.; Liang, Q.; Wu, Z.; Wang, X.; Zhao, S. Rapid Urban Flood Risk Mapping for Data-Scarce Environments Using Social Sensing and Region-Stable Deep Neural Network. J. Hydrol. 2023, 617, 128758. [Google Scholar] [CrossRef]
- Ziwei, L.; Xiangling, T.; Liju, L.; Yanqi, C.; Xingming, W.; Dishan, Y. GIS-Based Risk Assessment of Flood Disaster in the Lijiang River Basin. Sci. Rep. 2023, 13, 6160. [Google Scholar] [CrossRef] [PubMed]
- Borowska-Stefańska, M.; Balážovičová, L.; Goniewicz, K.; Kowalski, M.; Kurzyk, P.; Masný, M.; Wiśniewski, S.; Žoncová, M.; Khorram-Manesh, A. Emergency Management of Self-Evacuation from Flood Hazard Areas in Poland. Transp. Res. Part D Transp. Environ. 2022, 107, 103307. [Google Scholar] [CrossRef]
- Ntajal, J.; Lamptey, B.L.; Mahamadou, I.B.; Nyarko, B.K. Flood Disaster Risk Mapping in the Lower Mono River Basin in Togo, West Africa. Int. J. Disaster Risk Reduct. 2017, 23, 93–103. [Google Scholar] [CrossRef]
- Bagheri, M.; Zaiton Ibrahim, Z.; Mansor, S.; Manaf, L.A.; Akhir, M.F.; Talaat, W.I.A.W.; Beiranvand Pour, A. Land-Use Suitability Assessment Using Delphi and Analytical Hierarchy Process (D-AHP) Hybrid Model for Coastal City Management: Kuala Terengganu, Peninsular Malaysia. ISPRS Int. J. Geo-Inf. 2021, 10, 621. [Google Scholar] [CrossRef]
- Mohameda, M.A.; Zamana, A.Q.M.; Kajewskib, S.; Trigunarsyahc, B. Enhancing Flood Disaster Management in Klang Valley. J. Kejuruter. 2024, 36, 2709–2715. [Google Scholar] [CrossRef]
- Bhuiyan, T.R.; Er, A.C.; Muhamad, N.; Pereira, J.J. Evaluating the Cumulative Costs of Small-Scale Flash Floods in Kuala Lumpur, Malaysia. J. Hydrol. 2022, 612, 128181. [Google Scholar] [CrossRef]
- Radi, M.F.M.; Hashim, J.H.; Jaafar, M.H.; Hod, R.; Ahmad, N.; Nawi, A.M.; Baloch, G.M.; Ismail, R.; Ayub, N.I.F. Lessons on Environmental Health and Disaster Preparedness, Response and Recovery from the Severe Kelantan Flooding in 2014. Int. J. Emerg. Manag. 2019, 15, 26–53. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood Susceptibility Analysis and Its Verification Using a Novel Ensemble Support Vector Machine and Frequency Ratio Method. Stoch. Environ. Res. Risk Assess. 2015, 29, 1149–1165. [Google Scholar] [CrossRef]
- Ghani, A.A.; Chang, C.K.; Leow, C.S.; Zakaria, N.A. Sungai Pahang Digital Flood Mapping: 2007 Flood. Int. J. River Basin Manag. 2012, 10, 139–148. [Google Scholar] [CrossRef]
- Merz, B.; Thieken, A.H.; Gocht, M. Flood Risk Mapping At The Local Scale: Concepts and Challenges. In Flood Risk Management in Europe; Springer: Dordrecht, The Netherlands, 2007; pp. 231–251. [Google Scholar]
- Sharir, K.; Roslee, R.; Lee, K.E.; Simon, N. Landslide Factors and Susceptibility Mapping on Natural and Artificial Slopes in Kundasang, Sabah. Sains Malays. 2017, 46, 1531–1540. [Google Scholar] [CrossRef]
- Roslee, R.; Jamaluddin, T.A.; Talip, M.A. Application of GIS in Landslide Risk Assessment (LRA): A Case Study of the Kota Kinabalu Area, Sabah, Malaysia. Bull. Geol. Soc. Malays. 2011, 57, 69–83. [Google Scholar] [CrossRef]
- Majid, N.A.; Zulkafli, S.A.; Zakaria, S.Z.S.; Razman, M.R.; Ahmed, M.F. Spatial Pattern Analysis on Landslide Incidents in Kuala Lumpur, Malaysia. Ecol. Environ. Conserv. 2022, 28, 1624–1627. [Google Scholar] [CrossRef]
- Sauti, N.S.; Daud, M.E.; Kaamin, M.; Sahat, S. Earthquake Risk Assessment of Sabah, Malaysia Based on Geospatial Approach. Int. J. Integr. Eng. 2022, 14, 38–48. [Google Scholar] [CrossRef]
- Ho, J.C. Coastal Flood Risk Assessment and Coastal Zone Management. Case Study Seberang Perai Kuantan Pekan Malaysia. 2009, pp. 1–84. Available online: https://www.researchgate.net/publication/41199004_Coastal_flood_risk_assessment_and_coastal_zone_management_A_case_study_of_Seberang_Perai_and_Kuantan_Pekan_in_Malaysia (accessed on 24 January 2024).
- Peiris, P.S.H. Geographical Information System (GIS) For Disaster Management. Univ. Moratuwa 2020, 1, 1–10. [Google Scholar]
- Ibrahim, M.B.; Salisu, S.A.; Musa, A.A.; Abussalam, B.; Hamza, S.M. Framework for the Identification of Shallow Ground Movement in Modified Slopes (an Expert Opinion). IOP Conf. Ser. Earth Environ. Sci. 2022, 1064, 12055. [Google Scholar] [CrossRef]
- METMalaysia. Weather Phenomena; METMalaysia: Petaling Jaya, Malaysia, 2023.
- van Westen, C.J.; Rengers, N.; Soeters, R. Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. Nat. Hazards 2003, 30, 399–419. [Google Scholar] [CrossRef]
- Abdrabo, K.I.; Kantoush, S.A.; Saber, M.; Sumi, T.; Habiba, O.M.; Elleithy, D.; Elboshy, B. Integrated Methodology for Urban Flood Risk Mapping at the Microscale in Ungauged Regions: A Case Study of Hurghada, Egypt. Remote Sens. 2020, 12, 3548. [Google Scholar] [CrossRef]
- Van Alphen, J.; Martini, F.; Loat, R.; Slomp, R.; Passchier, R. Flood Risk Mapping in Europe, Experiences and Best Practices. J. Flood Risk Manag. 2009, 2, 285–292. [Google Scholar] [CrossRef]
- Remondo, J.; Bonachea, J.; Cendrero, A. Quantitative Landslide Risk Assessment and Mapping on the Basis of Recent Occurrences. Geomorphology 2008, 94, 496–507. [Google Scholar] [CrossRef]
- Rajbhandari, P.C.L.; Alam, B.M.; Akther, M.S. Application of GIS for Landslide Hazard Zonation and Mapping Disaster Prone Area: A Study of Kulekhani Watershed, Nepal. Plan Plus 2002, 1, 117–123. [Google Scholar]
- Barrile, V.; Meduri, G.M.; Bilotta, G.; Trungadi, U.M. GPS- GIS and Neural Networks for Monitoring Control, Cataloging the Prediction and Prevention in Tectonically Active Areas. Procedia-Soc. Behav. Sci. 2016, 223, 909–914. [Google Scholar] [CrossRef]
- Vatseva, R.; Solakov, D.; Tcherkezova, E.; Simeonova, S.; Trifonova, P. Applying GIS in Seismic Hazard Assessment and Data Integration for Disaster Management. In Intelligent Systems for Crisis Management: Geo-Information for Disaster Management; Springer: Berlin/Heidelberg, Germany, 2013; pp. 171–183. [Google Scholar]
- Farhan, A.; Akhyar, H. Analysis of Tsunami Disaster Map by Geographic Information System (GIS): Aceh Singkil-Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2017, 56, 12002. [Google Scholar] [CrossRef]
- Jitt-Aer, K.; Wall, G.; Jones, D.; Teeuw, R. Use of GIS and Dasymetric Mapping for Estimating Tsunami-Affected Population to Facilitate Humanitarian Relief Logistics: A Case Study from Phuket, Thailand. Nat. Hazards 2022, 113, 185–211. [Google Scholar] [CrossRef]
- Cankaya, Z.C.; Suzen, M.L.; Yalciner, A.C.; Kolat, C.; Zaytsev, A.; Aytore, B. A New GIS-Based Tsunami Risk Evaluation: MeTHuVA (METU Tsunami Human Vulnerability Assessment) at Yenikapı, Istanbul. Earth Planets Space 2016, 68, 133. [Google Scholar] [CrossRef]
- Lateh, H.; Muniandy, V. ICT Implementation among Malaysian Schools: GIS, Obstacles and Opportunities. Procedia-Soc. Behav. Sci. 2010, 2, 2846–2850. [Google Scholar] [CrossRef]
- Ibrahim, I.; Samah, A.A.; Fauzi, R. Land Surface Temperature and Biophysical Factors in Urban Planning. Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 2012, 6, 645–650. [Google Scholar]
- Lateh, H.; Muniandy, V. GIS Dalam Pendidikan Geografi Di Malaysia: Cabaran Dan Potensi. Geogr. J. Soc. Space 2011, 7, 42–52. [Google Scholar]
- Walia, A. The Importance of GIS in Disaster and Emergency Management. In Proceedings of the Asian Ministerial Conference on Disaster Risk Reduction, Bangkok, Thailand, 23–26 June 2014; p. 112. [Google Scholar]
- Farris, M.T.; Laska, S.; Wesley, M.; Sternhell, R. Successful Application of GIS Technology for Post-9/11 Disaster Management: Overcoming Challenges, Capitalising on Advantages. Int. J. Risk Assess. Manag. 2006, 6, 423. [Google Scholar] [CrossRef]
- Soares, P.V.; Pereira, S.Y.; Simoes, S.J.C.; de Paula Bernardes, G.; Barbosa, S.A.; Trannin, I.C.B. The Definition of Potential Infiltration Areas in Guaratinguetá Watershed, Paraíba Do Sul Basin, Southeastern Brazil: An Integrated Approach Using Physical and Land-Use Elements. Environ. Earth Sci. 2012, 67, 1685–1694. [Google Scholar] [CrossRef]
- Anuar, M.R.; Sardi, M.F. The Use of Geographic Information Systems in Flood Disaster Management; 2022. Available online: https://dewankosmik.jendeladbp.my/2022/12/13/4914/ (accessed on 24 November 2024).
- Gacu, J.G.; Monjardin, C.E.F.; Senoro, D.B.; Tan, F.J. Flood Risk Assessment Using GIS-Based Analytical Hierarchy Process in the Municipality of Odiongan, Romblon, Philippines. Appl. Sci. 2022, 12, 9456. [Google Scholar] [CrossRef]
- Sajjad, A.; Lu, J.; Aslam, R.W.; Ahmad, M. Flood Disaster Mapping Using Geospatial Techniques: A Case Study of the 2022 Pakistan Floods. Environ. Sci. Proc. 2023, 25, 78. [Google Scholar] [CrossRef]
- Nagata, T.; Halamka, J.; Himeno, S.; Himeno, A.; Kennochi, H.; Hashizume, M. Using a Cloud-Based Electronic Health Record During Disaster Response: A Case Study in Fukushima, March 2011. Prehosp. Disaster Med. 2013, 28, 383–387. [Google Scholar] [CrossRef]
- Zerger, A.; Smith, D.I. Impediments to Using GIS for Real-Time Disaster Decision Support. Comput. Environ. Urban Syst. 2003, 27, 123–141. [Google Scholar] [CrossRef]
- Abd Majid, N.; Rizal Razman, M.; Zarina Syed Zakaria, S.; Farid Ahmed, M.; Azwani Zulkafli, S. Flood Disaster in Malaysia: Approach Review, Causes and Application of Geographic Information System (GIS) for Mapping of Flood Risk Area. Ecol. Environ. Conserv. 2020, 27, S1–S8. [Google Scholar]
- Temrin, S.N.A.; Awang, A. Bencana Banjir Dan Tahap Pengetahuan Penduduk Terhadap Pengurusan Banjir Di Serian Sarawak. Malays. J. Soc. Space 2017, 13, 22–36. [Google Scholar] [CrossRef]
- Musa, S.M.; Chan, N.W.; Ku Mahamud, K.R.; Karim, A.; Zaini, M. Faktor Polisi Dan Tindakan Pengurusan Banjir Dalam Mempengaruhi Keberkesanan Pelaksanaan Manual Saliran Mesra Alam (MSMA). In Proceedings of the Prosiding Seminar Serantau Ke, Pekanbaru, Indonesia, 6–7 May 2013; Volume 2. [Google Scholar]
- Fauzi, R. Isu, Cabaran Dan Prospek Aplikasi Dan Perlaksanaan Sistem Maklumat Geografi Di Malaysia: Satu Pengamatan. Geogr. Online Malays. J. Soc. Space 2015, 11, 118–127. [Google Scholar]
- Houmsi, M.R.; Ismail, Z.B.; Ziarh, G.F.; Hamed, M.M.; Ishak, D.S.b.M.; Muhammad, M.K.I.; Mokhtar, M.Z.b.; Sa’adi, Z.; Shahid, S. Relative Influence of Meteorological Variables of Human Thermal Stress in Peninsular Malaysia. Sustainability 2023, 15, 12842. [Google Scholar] [CrossRef]
- DID Malaysian Department of Irrigation and Drainage (MDID). Available online: https://www.water.gov.my/ (accessed on 19 November 2024).
- Wang, X.; Xu, J.; Zhou, Y. Applications of Geographic Information Systems in Mosquito Monitoring. J. Mosq. Res. 2024, 14, 161–171. [Google Scholar] [CrossRef]
- Thohir, N.B.M. Malaysian University Pre-and Post-Flood Risk Reduction Strategies; The University of Manchester: Manchester, UK, 2023; ISBN 9798381845914. [Google Scholar]
- Azad, W.H.; Hassan, M.H.; Ghazali, N.H.M.; Weisgerber, A.; Ahmad, F. National Flood Forecasting and Warning System of Malaysia: An Overview. In International Conference on Dam Safety Management and Engineering; Springer: Singapore, 2019; pp. 264–273. [Google Scholar]
- Chong, K.L. Estimating Time of Concentration by Reflecting Flood Inundation Effects and Hazard Mapping. 2017. Available online: https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/227602/2/dkogk04376.pdf (accessed on 4 December 2024).
- Bell, V.; Rehan, B.; Hasan-Basri, B.; Houghton-Carr, H.; Miller, J.; Reynard, N.; Sayers, P.; Stewart, E.; Toriman, M.E.; Yusuf, B. Flood Impacts across Scales: Towards an Integrated Multi-Scale Approach for Malaysia. In Proceedings of the 4th European Conference on Flood Risk Management (FLOODrisk2020), Online, 22–24 June 2021. [Google Scholar]
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rainfall (mm) | 166 | 135 | 175 | 222 | 168 | 116 | 140 | 157 | 190 | 215 | 257 | 203 |
Temperature (°C) | 31 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 31 | 31 | 31 |
Natural Hazard | Frequency | |
---|---|---|
2017 | 2018 | |
Flood | 90 | 10 |
Flash Flood | 226 | 123 |
Fire | 90 | 92 |
Landslide | 27 | 9 |
Storm | 57 | 51 |
High Tide | 47 | 0 |
Stakeholder | Project GIS | Year |
---|---|---|
JUPEM | Digital Cadastre Database National Topography Database | 1980 |
Agriculture Department | Agricultural Soil Source GIS Database | 1990 |
Ministry of Land & Cooperative Development | NaLIS | 1992 |
PDC | Penang GIS Database (PEGIS) | 1992 |
Ministry of Guild Territory | ArcGISWlk | 1996 |
MACRES/ARSM | Remote Sensing Data Applications and Technologies | 1998 |
Authors | Location | Flood Incident | Impact GIS |
---|---|---|---|
[46] | Vietnam | Floods in the North Central Coast Region | Describe how flood hazard mapping and GIS technology are used to assess the possible effects of severe floods on Vietnam’s Quang Nam Province’s agricultural land. |
[30] | Ethiopia | Flood at Upper Awash River Basin, Ethiopia | Able to identify areas prone to flood in the future by producing flood hazard mapping using GIS and multi-criteria evaluation (MCE) method. |
[47] | Zhengzhou, China | Urban flooding happened in central Zhengzhou | Using social sensing and a neural network dubbed RS-DNN, flood risk mapping in data-scarce contexts can be created, and places where flooding is likely to occur can be predicted. |
[22] | Penang, Malaysia | Flooding at Northeast Penang, Malaysia | Can improve flood management by producing flood hazard mapping using the AHP method |
[48] | China | Rainstorm causing a flood disaster in the Lijiang River | Can enhance the risk assessment for flood and rainfall disasters and serve as a scientific reference for developing a system to prevent food and rainstorm disasters in the Guilin Region. |
[49] | Poland | A flood disaster that affected 45% of victims and resulted in 11% of disaster-related deaths | Can help improve the effectiveness of flood operations and encourage people to leave areas. |
[50] | Africa | In the flood disaster, over 127,880 people were affected | Easily readable maps give a visual impression of flood disasters |
Disaster | Topic | Objective | Reference |
---|---|---|---|
Flood | Analysing and verifying flood vulnerability using a new ensemble support vector machine and frequency ratio technique | Flood event prediction using different kernel functions | [55] |
Digital flood mapping of the Pahang River: 2007 flood | Flood area mapping | [56] | |
Concepts and Difficulties of Local Flood Risk Mapping | Definition and use of flood risk mapping | [57] | |
An analysis of three multi-criteria decision-making algorithms for mapping Northeast Penang, Malaysia’s flood hazard areas | Multi-criteria decision-making models in mapping flood hazard | [22] | |
Mapping of Flash Flood Hot Spots in Kuala Lumpur | Buffer analysis and interpolation using GIS | [7] | |
Landslide | Potential mapping of landslide disasters using a GIS methodology and landslide disaster assessment parameters | Evaluate the relationship between development and landslides | [58] |
Using GIS to assess landslide risk (LRA): An example from the Kota Kinabalu region of Sabah, Malaysia | Demonstrate the ability of GIS techniques as an integrated tool to handle semi-quantitative data in LRA spatial research. | [59] | |
Using artificial neural networks (Ann) to map slope failure prevention zones on Penang Island, Malaysia, using geographic information systems (GIS) | Spatial factors affecting slope failure using GIS | [60] | |
Tsunami | Using Geospatial Technology to Map and Analyse Tsunami Risk on Malaysia’s West Coast Peninsula | Analyse the potential and map the tsunami risk areas | [42] |
Earthquake | Earthquake risk mapping in Sabah using geographic information systems | Earthquake risk mapping | [61] |
Disaster | Topic | Objective | Reference |
---|---|---|---|
Flood | An Integrated Approach to Microscale Urban Flood Risk Mapping in Unmeasured Areas: An Analysis of Hurghada, Egypt | Flood risk area mapping | [67] |
European flood risk mapping: lessons learned and best practices | Flood risk mapping | [68] | |
Landslide | Quantitative mapping and assessment of landslide risk based on recent events | Risk assessment and mapping | [69] |
Using GIS to Map Disaster-Prone Areas and Zonate Landslides: An Analysis of Nepal’s Kulekhani Watershed | Landslide hazard and disaster mapping area | [70] | |
Earthquake | GPS-GIS and neural networks are used for monitoring, control, cataloguing, prediction, and prevention in tectonically active areas. | Prediction and prevention of tectonic areas | [71] |
Using GIS to Assess Seismic Hazards and Integrate Data for Disaster Management | Integrate basic geo-datasets in thematic mapping products | [72] | |
Tsunami | GIS and Remote Sensing for the Tsunami Inundation Model | Flood risk mapping | [73] |
A case study from Phuket, Thailand, demonstrating the use of GIS and asymmetric mapping to estimate the population affected by tsunamis to streamline humanitarian aid operations | Estimating the affected populations using ArcGIS software version 10.3 | [74] | |
Map analysis of the tsunami tragedy in Aceh Singkil, Indonesia, using a Geographic Information System (GIS) | Tsunami disaster mapping area | [73] | |
At Yenikapı, Istanbul, MeTHuVA (METU tsunami human vulnerability assessment) is a novel GIS-based tsunami risk assessment. | Tsunami risk and vulnerability mapping | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leeonis, A.N.; Ahmed, M.F.; Mokhtar, M.B.; Halder, B.; Lim, C.K.; Majid, N.A.; Scholz, M. Importance of Geographic Information System (GIS) Application to Reduce the Impact of Flood Disasters in Malaysia: A Meta-Analysis. Water 2025, 17, 181. https://doi.org/10.3390/w17020181
Leeonis AN, Ahmed MF, Mokhtar MB, Halder B, Lim CK, Majid NA, Scholz M. Importance of Geographic Information System (GIS) Application to Reduce the Impact of Flood Disasters in Malaysia: A Meta-Analysis. Water. 2025; 17(2):181. https://doi.org/10.3390/w17020181
Chicago/Turabian StyleLeeonis, Adam Narashman, Minhaz Farid Ahmed, Mazlin Bin Mokhtar, Bijay Halder, Chen Kim Lim, Nuriah Abd Majid, and Miklas Scholz. 2025. "Importance of Geographic Information System (GIS) Application to Reduce the Impact of Flood Disasters in Malaysia: A Meta-Analysis" Water 17, no. 2: 181. https://doi.org/10.3390/w17020181
APA StyleLeeonis, A. N., Ahmed, M. F., Mokhtar, M. B., Halder, B., Lim, C. K., Majid, N. A., & Scholz, M. (2025). Importance of Geographic Information System (GIS) Application to Reduce the Impact of Flood Disasters in Malaysia: A Meta-Analysis. Water, 17(2), 181. https://doi.org/10.3390/w17020181