137Cs-Based Assessment of Soil Erosion Rates in a Morphologically Diverse Catchment with Varying Soil Types and Vegetation Cover: Relationship with Soil Properties and RUSLE Model Predictions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Approach
2.2. Soil Analysis
2.3. Erosion Assessment Methods
2.3.1. The Profile Distribution (PD) Model
2.3.2. The Revised Universal Soil Loss Equation (RUSLE) Model
2.4. Data Analysis
3. Results
3.1. Physiographic Properties of the Sampling Locations
3.2. Physicochemical Properties of the Soil Samples
3.3. Soil Indices for Assessing Structural Quality and Susceptibility to Erosion
3.4. Soil Erosion Rates Estimated by the PD Model and Relationships with Physiographic Factors
3.5. Soil Erosion Rates Estimated by the RUSLE Model
3.6. Correlation of Estimated Soil Erosion Rates with Soil Physicochemical Properties and Indicators of Soil Structural Stability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PD | Profile Distribution |
USLE | Universal Soil Loss Equation |
RUSLE | Revised Universal Soil Loss Equation |
ALOS DEM | Advanced Land Observing Satellite Digital Elevation Model |
CV | Coefficient of Variation |
SOM | Soil Organic Matter |
OC | Organic Carbon |
References
- Cao, Y.; Ouyang, Z.Y.; Zheng, H.; Huang, Z.G.; Wang, X.K.; Miao, H. Effects of Forest Plantations on Rainfall Redistribution and Erosion in the Red Soil Region of Southern China. Land Degrad. Dev. 2008, 19, 321–330. [Google Scholar] [CrossRef]
- Kayet, N.; Pathak, K.; Chakrabarty, A.; Sahoo, S. Evaluation of Soil Loss Estimation Using the RUSLE Model and SCS-CN Method in Hillslope Mining Areas. Int. Soil Water Conserv. Res. 2018, 6, 31–42. [Google Scholar] [CrossRef]
- Hou, D.; Bolan, N.S.; Tsang, D.C.W.; Kirkham, M.B.; O’Connor, D. Sustainable Soil Use and Management: An Interdisciplinary and Systematic Approach. Sci. Total Environ. 2020, 729, 138961. [Google Scholar] [CrossRef] [PubMed]
- Quinton, J.N.; Fiener, P. Soil Erosion on Arable Land: An Unresolved Global Environmental Threat. Prog. Phys. Geogr. 2024, 48, 136–161. [Google Scholar] [CrossRef]
- Berhe, A.A.; Barnes, R.T.; Six, J.; Marín-Spiotta, E. Role of Soil Erosion in Biogeochemical Cycling of Essential Elements: Carbon, Nitrogen, and Phosphorus. Annu. Rev. Earth Planet. Sci. 2018, 46, 521–548. [Google Scholar] [CrossRef]
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil Quality: A Concept, Definition, and Framework for Evaluation (A Guest Editorial). Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef]
- Fullen, M.A. Soil Organic Matter and Erosion Processes on Arable Loamy Sand Soils in the West Midlands of England. Soil Technol. 1991, 4, 19–31. [Google Scholar] [CrossRef]
- Fullen, M.A.; Brandsma, R.T. Property Changes by Erosion of Loamy Sand Soils in East Shropshire, UK. Soil Technol. 1995, 8, 1–15. [Google Scholar] [CrossRef]
- Fullen, M.A.; Yi, Z.; Brandsma, R.T. Comparison of Soil and Sediment Properties of a Loamy Sand Soil. Soil Technol. 1997, 10, 35–45. [Google Scholar] [CrossRef]
- Kreznor, W.R.; Olson, K.R.; Banwart, W.L.; Johnson, D.L. Soil, Landscape, and Erosion Relationships in a Northwest Illinois Watershed. Soil Sci. Soc. Am. J. 1989, 53, 1763–1771. [Google Scholar] [CrossRef]
- Pennock, D.J. Chapter 7 Effects of Soil Redistribution on Soil Quality: Pedon, Landscape, and Regional Scales. Dev. Soil Sci. 1997, 25, 167–185. [Google Scholar] [CrossRef]
- Van Oost, K.; Govers, G.; Van Muysen, W.; Quine, T.A. Modeling Translocation and Dispersion of Soil Constituents by Tillage on Sloping Land. Soil Sci. Soc. Am. J. 2000, 64, 1733–1739. [Google Scholar] [CrossRef]
- Ampontuah, E.O.; Robinson, J.S.; Nortcliff, S. Assessment of Soil Particle Redistribution on Two Contrasting Cultivated Hillslopes. Geoderma 2006, 132, 324–343. [Google Scholar] [CrossRef]
- Pennock, D.J. New Perspectives on the Soil Erosion-Soil Quality Relationship; IAEA: Vienna, Austria, 1998. [Google Scholar]
- FAO and ITPS. Status of the World’s Soil Resources (SWSR)—Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015. [Google Scholar]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An Assessment of the Global Impact of 21st Century Land Use Change on Soil Erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Barceló, D.; Panagos, P. Soil and Water Threats in a Changing Environment. Environ. Res. 2020, 186, 109501. [Google Scholar] [CrossRef]
- Panagos, P.; Standardi, G.; Borrelli, P.; Lugato, E.; Montanarella, L.; Bosello, F. Cost of Agricultural Productivity Loss Due to Soil Erosion in the European Union: From Direct Cost Evaluation Approaches to the Use of Macroeconomic Models. Land. Degrad. Dev. 2018, 29, 471–484. [Google Scholar] [CrossRef]
- Arias Navarro, C.; Baritz, R.; Jones, A.; Akca, E.; Aldrian, U.; Alewell, C.; Anzalone, E.; Arcidiacono, A.; Auclerc, A.; Aydinsakir, K.; et al. The State of Soils in Europe; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar]
- Transforming Our World: The 2030 Agenda for Sustainable Development | Department of Economic and Social Affairs. Available online: https://sdgs.un.org/2030agenda (accessed on 29 December 2024).
- Boix-Fayos, C.; Martínez-Mena, M.; Arnau-Rosalén, E.; Calvo-Cases, A.; Castillo, V.; Albaladejo, J. Measuring Soil Erosion by Field Plots: Understanding the Sources of Variation. Earth Sci. Rev. 2006, 78, 267–285. [Google Scholar] [CrossRef]
- Kearney, S.P.; Fonte, S.J.; García, E.; Smukler, S.M. Improving the Utility of Erosion Pins: Absolute Value of Pin Height Change as an Indicator of Relative Erosion. Catena 2018, 163, 427–432. [Google Scholar] [CrossRef]
- Orr, B. A Rapid Method of Estimating Soil Erosion Using Trapped Sediment: A Case Study from a Forest Road on the Cumberland Plateau of Tennessee. Mt. Res. Dev. 1996, 16, 419. [Google Scholar] [CrossRef]
- Albert, J.; Lang, W.; Michael Aust, M.; Bolding, C.; Kevin, J.; McGuire, E.B.S. Comparing Sediment Trap Data with Erosion Models for Evaluation of Forest Haul Road Stream Crossing Approaches. Trans. ASABE 2017, 60, 393–408. [Google Scholar] [CrossRef]
- Wade, C.R.; Bolding, M.C.; Aust, W.M.; Iii, W.A.L.; Schilling, E.B. Schilling Comparing Sediment Trap Data with the USLE-Forest, RUSLE2, and WEPP-Road Erosion Models for Evaluation of Bladed Skid Trail BMPs. Trans. ASABE 2012, 55, 403–414. [Google Scholar] [CrossRef]
- Zapata, F. The Use of Environmental Radionuclides as Tracers in Soil Erosion and Sedimentation Investigations: Recent Advances and Future Developments. Soil Tillage Res. 2003, 69, 3–13. [Google Scholar] [CrossRef]
- Parwada, C.; Chipomho, J.; Tibugari, H. Comparison of Conventional and Artificial Fallout Radionuclide (FRNs) Methods in Assessing Soil Erosion. Sustain. Environ. 2023, 9, 2236406. [Google Scholar] [CrossRef]
- Guzmán, G.; Quinton, J.N.; Nearing, M.A.; Mabit, L.; Gómez, J.A. Sediment Tracers in Water Erosion Studies: Current Approaches and Challenges. J. Soils Sediments 2013, 13, 816–833. [Google Scholar] [CrossRef]
- Low, A.J. The Effect of Cultivation on the Structure and Other Physical Characteristics of Grassland and Arable Soils (1945–1970). J. Soil Sci. 1972, 23, 363–380. [Google Scholar] [CrossRef]
- Ebeid, M.M.; Lal, R.; Hall, G.F.; Miller, E. Erosion Effects on Soil Properties and Soybean Yield of a Miamian Soil in Western Ohio in a Season with below Normal Rainfall. Soil Technol. 1995, 8, 97–108. [Google Scholar] [CrossRef]
- Fenton, T.E.; Kazemi, M.; Lauterbach-Barrett, M.A. Erosional Impact on Organic Matter Content and Productivity of Selected Iowa Soils. Soil. Tillage Res. 2005, 81, 163–171. [Google Scholar] [CrossRef]
- Malo, D.D.; Schumacher, T.E.; Doolittle, J.J. Long-Term Cultivation Impacts on Selected Soil Properties in the Northern Great Plains. Soil Tillage Res. 2005, 81, 277–291. [Google Scholar] [CrossRef]
- Karydas, C.G.; Panagos, P.; Gitas, I.Z. A Classification of Water Erosion Models According to Their Geospatial Characteristics. Int. J. Digit. Earth 2014, 7, 229–250. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The New Assessment of Soil Loss by Water Erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses, A Guide to Conservation Planning; The USDA Agricultural Handbook No. 537; U.S. Department of Agriculture: Washington, DC, USA, 1978. [Google Scholar]
- Renard, K.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); US Department of Agriculture, Agriculture Handbook No.703USDA; USDA: Washington, DC, USA, 1997. [Google Scholar]
- Mabit, L.; Benmansour, M.; Walling, D.E. Comparative Advantages and Limitations of the Fallout Radionuclides 137Cs, 210Pbex and 7Be for Assessing Soil Erosion and Sedimentation. J. Environ. Radioact. 2008, 99, 1799–1807. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Walling, D.E. Using 137Cs Measurements to Investigate the Influence of Erosion and Soil Redistribution on Soil Properties. Appl. Radiat. Isot. 2011, 69, 717–726. [Google Scholar] [CrossRef]
- Parsons, A.J.; Foster, I.D.L. What Can We Learn about Soil Erosion from the Use of 137Cs? Earth Sci. Rev. 2011, 108, 101–113. [Google Scholar] [CrossRef]
- Meusburger, K.; Evrard, O.; Alewell, C.; Borrelli, P.; Cinelli, G.; Ketterer, M.; Mabit, L.; Panagos, P.; van Oost, K.; Ballabio, C. Plutonium Aided Reconstruction of Caesium Atmospheric Fallout in European Topsoils. Sci. Rep. 2020, 10, 11858. [Google Scholar] [CrossRef] [PubMed]
- Komissarov, M.; Golosov, V.; Zhidkin, A.; Fomicheva, D.; Konoplev, A. The Cross-Verification of Different Methods for Soil Erosion Assessment of Natural and Agricultural Low Slopes in the Southern Cis-Ural Region of Russia. Land 2024, 13, 1767. [Google Scholar] [CrossRef]
- Walling, D.E.; He, Q.; Whelan, P.A. Using 137Cs Measurements to Validate the Application of the AGNPS and ANSWERS Erosion and Sediment Yield Models in Two Small Devon Catchments. Soil Tillage Res. 2003, 69, 27–43. [Google Scholar] [CrossRef]
- Konz, N.; Baenninger, D.; Konz, M.; Nearing, M.; Alewell, C. Process Identification of Soil Erosion in Steep Mountain Regions. Hydrol. Earth Syst. Sci. 2010, 14, 675–686. [Google Scholar] [CrossRef]
- Lazarević, R. Map Erosion SR Serbia 1: 500000. Institute of Forestry and Wood Industry of Serbia; Department of Erosion and Melioration: Belgrade, Serbia, 1983. [Google Scholar]
- Đokić, M.; Manić, M.; Đorđević, M.; Gocić, M.; Čupić, A.; Jović, M.; Dragović, R.; Gajić, B.; Smičiklas, I.; Dragović, S. Remote Sensing and Nuclear Techniques for High-Resolution Mapping and Quantification of Gully Erosion in the Highly Erodible Area of the Malčanska River Basin, Eastern Serbia. Environ. Res. 2023, 235, 116679. [Google Scholar] [CrossRef]
- Manić, M.; Đorđević, M.; Đokić, M.; Dragović, R.; Kićović, D.; Đorđević, D.; Jović, M.; Smičiklas, I.; Dragović, S. Remote Sensing and Nuclear Techniques for Soil Erosion Research in Forest Areas: Case Study of the Crveni Potok Catchment. Front. Environ. Sci. 2022, 10, 897248. [Google Scholar] [CrossRef]
- Menkovic, L.; Koscal, M.; Milivojevic, M.; Djokic, M. Morphostructure Relations on the Territory of the Republic of Serbia. Glas. Srp. Geogr. Drus. 2018, 98, 1–28. [Google Scholar] [CrossRef]
- Dimitrijević, M.; Dragić, D.; Karamata, S.; Petrović, B.; Sikošek, B.; Veselinović, D. Osnovna geološka karta 1:100 000, Tumač za list Aleksinac, K 34-20; Zavod za Geološka i Geollzička Istraživanja: Belgrade, Yugoslavia, 1980. [Google Scholar]
- Nikodijević, V. Soil Map of SFRY, Niš-1, 1:50,000; Secretariat for Agriculture, Forestry, and Water Management SRS: Republic Science Association SRS: Belgrade, Yugoslavia, 1979. [Google Scholar]
- Đokić, M.M. Nišava—Potamology Study. Ph.D. Thesis, University of Niš, Niš, Serbia, 2015. [Google Scholar]
- Fulajtar, E.; Mabit, L.; Renschler, C.S.; Lee, A.; Yi, Z. Use of 137 Cs for Soil Erosion Assessment; FAO: Rome, Italy, 2017. [Google Scholar]
- Laboratory of Spectrometry and Radiometry (LSRM), Moscow, 2019. SpectraLine (1.6). [Software]. Available online: http://lsrm.ru/en/products/detail.php?ELEMEN%20T_CODE=spectraline_1.6 (accessed on 4 January 2025).
- SRPS EN ISO 17892-4:2017; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 4: Determination of Particle Size Distribution. Institute for Standardization of Republic of Serbia: Belgrade, Serbia, 2017. Available online: https://iss.rs/en/project/show/iss:proj:54602 (accessed on 1 July 2024).
- ISO 10390:2021; Soil, Treated Biowaste and Sludge—Determination of PH. International Organization for Standardization: Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/75243.html (accessed on 29 December 2024).
- ISO 11265:1994; Soil Quality—Determination of the Specific Electrical Conductivity. International Organization for Standardization: Geneva, Switzerland, 1994. Available online: https://www.iso.org/standard/19243.html (accessed on 29 December 2024).
- ISO 11465:1993; Soil Quality—Determination of Dry Matter and Water Content on a Mass Basis—Gravimetric Method. International Organization for Standardization: Geneva, Switzerland, 1993. Available online: https://www.iso.org/standard/20886.html (accessed on 29 December 2024).
- ISO 10694:1995; Soil Quality—Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis). International Organization for Standardization: Geneva, Switzerland, 1995. Available online: https://www.iso.org/standard/18782.html (accessed on 29 December 2024).
- ISO 11261:1995; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 1995. Available online: https://www.iso.org/standard/19239.html (accessed on 29 December 2024).
- SRPS ISO 11466:2004; Soil Quality—Extraction of Trace Elements Soluble in Aqua Regia. SRPS: Institute for Standardization of Republic of Serbia: Belgrade, Serbia, 2004. Available online: https://iss.rs/en/project/show/iss:proj:16775 (accessed on 1 July 2024).
- ISO 22036:2024; Environmental Solid Matrices—Determination of Elements Using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). International Organization for Standardization: Geneva, Switzerland, 2024. Available online: https://www.iso.org/standard/82632.html (accessed on 29 December 2024).
- Dexter, A.R.; Richard, G.; Arrouays, D.; Czyż, E.A.; Jolivet, C.; Duval, O. Complexed Organic Matter Controls Soil Physical Properties. Geoderma 2008, 144, 620–627. [Google Scholar] [CrossRef]
- Pieri, C.J.M.G. Fertility of Soils; Springer Series in Physical Environment; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 1992; Volume 10, ISBN 978-3-642-84322-8. [Google Scholar]
- Walling, D.E.; He, Q. Improved Models for Estimating Soil Erosion Rates from Cesium-137 Measurements. J. Environ. Qual. 1999, 28, 611–622. [Google Scholar] [CrossRef]
- Byrne, A.R. Radioactivity in Fungi in Slovenia, Yugoslavia, Following the Chernobyl Accident. J. Environ. Radioact. 1988, 6, 177–183. [Google Scholar] [CrossRef]
- Popović, D.; Spasić-Jokić, V. Consequences of the Chernobyl Disaster in the Region of the Republic of Serbia. Vojnosanit. Pregl. 2006, 63, 481–487. [Google Scholar] [CrossRef]
- Federal Committee for Labour, Health and Social Policy. The Level of Radioactive Contamination of Human Environment and Exposure of Population in Yugoslavia in 1986 Due to Nuclear Power Plant Disaster in Chernobyl; IAEA: Belgrade, Yugoslavia, 1987. [Google Scholar]
- Bikit, I.; Mrda, D.; Todorovic, N.; Nikolov, J.; Krmar, M.; Veskovic, M.; Slivka, J.; Hansman, J.; Forkapic, S.; Jovancevic, N. Airborne Radioiodine in Northern Serbia from Fukushima. J. Environ. Radioact. 2012, 114, 89–93. [Google Scholar] [CrossRef]
- Porto, P.; Walling, D.E.; Ferro, V. Validating the Use of Caesium-137 Measurements to Estimate Soil Erosion Rates in a Small Drainage Basin in Calabria, Southern Italy. J. Hydrol. 2001, 248, 93–108. [Google Scholar] [CrossRef]
- Porto, P.; Walling, D.E.; Ferro, V.; Di Stefano, C. Validating Erosion Rate Estimates Provided by Caesium-137 Measurements for Two Small Forested Catchments in Calabria, Southern Italy. Land. Degrad. Dev. 2003, 14, 389–408. [Google Scholar] [CrossRef]
- Xinbao, Z.; Higgitt, D.L.; Walling, D.E. A Preliminary Assessment of the Potential for Using Caesium-137 to Estimate Rates of Soil Erosion in the Loess Plateau of China. Hydrol. Sci. J. 1990, 35, 243–252. [Google Scholar] [CrossRef]
- Walling, D.E.; Quine, T.A. Use of Caesium-137 as a Tracer of Erosion and Sedimentation: Handbook for the Application of the Caesium-137 Technique; UK Overseas Development Administration Research Scheme R4579; IAEA: Vienna, Austria, 1993. [Google Scholar]
- Kumar, R.; Deshmukh, B.; Kumar, A. Using Google Earth Engine and GIS for Basin Scale Soil Erosion Risk Assessment: A Case Study of Chambal River Basin, Central India. J. Earth Syst. Sci. 2022, 131, 228. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, H. Dynamic Changes of Soil Erosion in the Taohe River Basin Using the RUSLE Model and Google Earth Engine. Water 2020, 12, 1293. [Google Scholar] [CrossRef]
- Perović, V.; Životić, L.; Kadović, R.; Dordević, A.; Jaramaz, D.; Mrvić, V.; Todorović, M. Spatial Modelling of Soil Erosion Potential in a Mountainous Watershed of South-Eastern Serbia. Environ. Earth Sci. 2013, 68, 115–128. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Shao, X.M.; Kong, X.B.; Jian, P.; Cai, Y.L. Adapting the RUSLE and GIS to Model Soil Erosion Risk in a Mountains Karst Watershed, Guizhou Province, China. Environ. Monit. Assess. 2008, 141, 275–286. [Google Scholar] [CrossRef]
- Van Der Knijff, J.; Jones, R.; Montanarella, L. Soil Erosion Risk Assessment in Italy; European Soil Bureau, European Commission: Brussels, Belgium, 1999. [Google Scholar]
- Ghosal, K.; Das Bhattacharya, S. A Review of RUSLE Model. J. Indian Soc. Remote Sens. 2020, 48, 689–707. [Google Scholar] [CrossRef]
- Williams, J.R. The EPIC Model, Chapter 25. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications: Highlands Ranch, CO, USA, 1995. [Google Scholar]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological Applications. Hydrol. Process 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H. An Efficient Method for Identifying and Filling Surface Depressions in Digital Elevation Models for Hydrologic Analysis and Modelling. Int. J. Geogr. Inf. Sci. 2006, 20, 193–213. [Google Scholar] [CrossRef]
- Rozos, D.; Skilodimou, H.D.; Loupasakis, C.; Bathrellos, G.D. Application of the Revised Universal Soil Loss Equation Model on Landslide Prevention. An Example from N. Euboea (Evia) Island, Greece. Environ. Earth Sci. 2013, 70, 3255–3266. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S.; et al. ESA WorldCover 10 m 2020 V100. 2021. Available online: https://zenodo.org/records/5571936 (accessed on 9 January 2025).
- Chen, P.; Feng, Z.; Mannan, A.; Chen, S.; Ullah, T. Assessment of Soil Loss from Land Use/Land Cover Change and Disasters in the Longmen Shan Mountains, China. Appl. Ecol. Environ. Res. 2019, 17, 11233–11247. [Google Scholar] [CrossRef]
- Kuok, K.K.K.; Mah, D.Y.S.; Chiu, P.C. Evaluation of C and P Factors in Universal Soil Loss Equation on Trapping Sediment: Case Study of Santubong River. J. Water Resour. Prot. 2013, 5, 1149–1154. [Google Scholar] [CrossRef]
- R Core Team. R A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.scirp.org/reference/referencespapers?referenceid=3582659 (accessed on 29 December 2024).
- Hazelton, P.; Murphy, B. Interpreting Soil Test Results, What Do All the Numbers Mean; CSIRO Publishing: Collingwood, Australia, 2007. [Google Scholar]
- Jones, R.J.A.; Hiederer, R.; Rusco, E.; Loveland, P.J.; Montanarella, L. The Map of Organic Carbon in Topsoils in Europe; Office for Official Publications of the European Communities: Luxembourg, 2004. [Google Scholar]
- Barthès, B.; Roose, E. Aggregate Stability as an Indicator of Soil Susceptibility to Runoff and Erosion; Validation at Several Levels. Catena 2002, 47, 133–149. [Google Scholar] [CrossRef]
- Prout, J.M.; Shepherd, K.D.; McGrath, S.P.; Kirk, G.J.D.; Haefele, S.M. What Is a Good Level of Soil Organic Matter? An Index Based on Organic Carbon to Clay Ratio. Eur. J. Soil. Sci. 2021, 72, 2493–2503. [Google Scholar] [CrossRef]
- Johannes, A.; Matter, A.; Schulin, R.; Weisskopf, P.; Baveye, P.C.; Boivin, P. Optimal Organic Carbon Values for Soil Structure Quality of Arable Soils. Does Clay Content Matter? Geoderma 2017, 302, 14–21. [Google Scholar] [CrossRef]
- Eurostat Agri-Environmental Indicator—Soil Erosion. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_soil_erosion (accessed on 9 January 2025).
- Rigol, A.; Vidal, M.; Rauret, G. An Overview of the Effect of Organic Matter on Soil–Radiocaesium Interaction: Implications in Root Uptake. J. Environ. Radioact. 2002, 58, 191–216. [Google Scholar] [CrossRef]
- Xiaojun, N.; Xiaodan, W.; Suzhen, L.; Shixian, G.; Haijun, L. 137Cs Tracing Dynamics of Soil Erosion, Organic Carbon and Nitrogen in Sloping Farmland Converted from Original Grassland in Tibetan Plateau. Appl. Radiat. Isot. 2010, 68, 1650–1655. [Google Scholar] [CrossRef] [PubMed]
- Federico, R.; Paolo, P.; Katharina, K.; Axel, M.; Adele, M. Soil Biological Indicators and Caesium-137 to Estimate Soil Erosion in Areas with Different Forest System Management. Eur. J. For. Res. 2020, 139, 67–81. [Google Scholar] [CrossRef]
- Romeo, F.; Porto, P.; Mallamaci, C.; Muscolo, A. The Relationships between Selected Soil Properties and Caesium-137 Identify Organic Carbon, Nitrogen and Water Soluble Phenols as Indicators of Soil Erosion Processes in Different Forest Stands. J. For. Res. 2021, 32, 2589–2598. [Google Scholar] [CrossRef]
- Ayoubi, S.; Zhao, S.; Yousefifard, M.; Amiri, F.; Abdi, M.R.; Abbaszadeh Afshar, F. Quantification of Mid-Term Soil Redistribution in Hilly Regions under Abandoned Rainfed Farming and Oak Forest Using 137Cs Radionuclide and Magnetic Susceptibility Techniques. Catena 2024, 244, 108270. [Google Scholar] [CrossRef]
- Meliho, M.; Nouira, A.; Benmansour, M.; Boulmane, M.; Khattabi, A.; Mhammdi, N.; Benkdad, A. Assessment of Soil Erosion Rates in a Mediterranean Cultivated and Uncultivated Soils Using Fallout 137Cs. J. Environ. Radioact. 2019, 208–209, 106021. [Google Scholar] [CrossRef] [PubMed]
- Mabit, L.; Bernard, C. Relationship between Soil 137Cs Inventories and Chemical Properties in a Small Intensively Cropped Watershed. Comptes Rendus Académie Sci. Ser. IIA-Earth Planet. Sci. 1998, 327, 527–532. [Google Scholar] [CrossRef]
- Theocharopoulos, S.P.; Florou, H.; Walling, D.E.; Kalantzakos, H.; Christou, M.; Tountas, P.; Nikolaou, T. Soil Erosion and Deposition Rates in a Cultivated Catchment Area in Central Greece, Estimated Using the 137Cs Technique. Soil Tillage Res. 2003, 69, 153–162. [Google Scholar] [CrossRef]
- Mabit, L.; Chhem-Kieth, S.; Toloza, A.; Vanwalleghem, T.; Bernard, C.; Amate, J.I.; González de Molina, M.; Gómez, J.A. Radioisotopic and Physicochemical Background Indicators to Assess Soil Degradation Affecting Olive Orchards in Southern Spain. Agric. Ecosyst. Environ. 2012, 159, 70–80. [Google Scholar] [CrossRef]
- Li, T.; Zhang, H.; Wang, X.; Cheng, S.; Fang, H.; Liu, G.; Yuan, W. Soil Erosion Affects Variations of Soil Organic Carbon and Soil Respiration along a Slope in Northeast China. Ecol. Process 2019, 8, 28. [Google Scholar] [CrossRef]
- Mesrar, H.; Sadiki, A.; Faleh, A.; Quijano, L.; Gaspar, L.; Navas, A. Vertical and Lateral Distribution of Fallout 137 Cs and Soil Properties along Representative Toposequences of Central Rif, Morocco. J. Environ. Radioact. 2017, 169–170, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Wairiu, M. Soil Organic Carbon in Relation to Cultivation and Topsoil Removal on Sloping Lands of Kolombangara, Solomon Islands. Soil Tillage Res. 2003, 70, 19–27. [Google Scholar] [CrossRef]
- He, Y.; Zhang, F.; Yang, M.; Li, X.; Wang, Z. Insights from Size Fractions to Interpret the Erosion-Driven Variations in Soil Organic Carbon on Black Soil Sloping Farmland, Northeast China. Agric. Ecosyst. Environ. 2023, 343, 108283. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, Z.; Wang, Z.; Peng, Y.; Wang, X. Soil Erosion Alters the Composition of Soil Nitrogen and Induces Nitrogen Immobilization along a Sloping Agricultural Landscape. Soil Use Manag. 2024, 40, e13067. [Google Scholar] [CrossRef]
- Khodadadi, M.; Meusburger, K.; Mirzaei, M.; Strauss, P.; Blake, W.H.; Moghaseh, E.; Alewell, C. Spatial Cross-Correlation of Surface Soil Physicochemical Properties with Soil Erosion Estimated by Fallout Radionuclides in Croplands in a Semi-Humid Region of Iran. Catena 2024, 237, 107836. [Google Scholar] [CrossRef]
- Ballabio, C.; Lugato, E.; Fernández-Ugalde, O.; Orgiazzi, A.; Jones, A.; Borrelli, P.; Montanarella, L.; Panagos, P. Mapping LUCAS Topsoil Chemical Properties at European Scale Using Gaussian Process Regression. Geoderma 2019, 355, 113912. [Google Scholar] [CrossRef] [PubMed]
- Francesca Cotrufo, M.; Lavallee, J.M.; Zhang, Y.; Hansen, P.M.; Paustian, K.H.; Schipanski, M.; Wallenstein, M.D. In-N-Out: A Hierarchical Framework to Understand and Predict Soil Carbon Storage and Nitrogen Recycling. Glob. Chang. Biol. 2021, 27, 4465–4468. [Google Scholar] [CrossRef]
- Azbouche, A.; Kessaissia, A.; Hamoudi, A.; Morsli, B.; Moulla, A.S. Land Degradation Assessment Using Fallout Cesium-137 in a Coastal Mediterranean Environment (Ténès, Algeria). EuroMediterr J. Environ. Integr. 2023, 8, 55–65. [Google Scholar] [CrossRef]
- Saç, M.M.; Uğur, A.; Yener, G.; Özden, B. Estimates of Soil Erosion Using Cesium-137 Tracer Models. Environ. Monit. Assess. 2007, 136, 461–467. [Google Scholar] [CrossRef]
- Soileau, J.M.; Hajek, B.F.; Touchton, J.T. Soil Erosion and Deposition Evidence in a Small Watershed Using Fallout Cesium-137. Soil Sci. Soc. Am. J. 1990, 54, 1712–1719. [Google Scholar] [CrossRef]
- Turnage, K.M.; Lee, S.Y.; Foss, J.E.; Kim, K.H.; Larsen, I.L. Comparison of Soil Erosion and Deposition Rates Using Radiocesium, RUSLE, and Buried Soils in Dolines in East Tennessee. Environ. Geol. 1997, 29, 1–10. [Google Scholar] [CrossRef]
- Naghdi, R.; Zahedi, S.S.; Gharibreza, M.; Gholami, V.; Mirzaei, M. Measuring Soil Erosion Rates in Hyrcanian Forests: An Application of the 137Cs Method. J. Earth Syst. Sci. 2024, 133, 28. [Google Scholar] [CrossRef]
- Konz, N.; Schaub, M.; Prasuhn, V.; Baenninger, D.; Alewell, C. Cesium-137-Based Erosion-Rate Determination of a Steep Mountainous Region. J. Plant Nutr. Soil Sci. 2009, 172, 615–622. [Google Scholar] [CrossRef]
- Bacchi, O.O.S.; Reichardt, K.; Sparovek, G. Sediment Spatial Distribution Evaluated by Three Methods and Its Relation to Some Soil Properties. Soil Tillage Res. 2003, 69, 117–125. [Google Scholar] [CrossRef]
- Bircher, P.; Liniger, H.P.; Prasuhn, V. Comparison of Long-Term Field-Measured and RUSLE-Based Modelled Soil Loss in Switzerland. Geoderma Reg. 2022, 31, e00595. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, Challenges and Limitations of Soil Erosion Modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Mekonnen, E.; Kebede, A.; Asfaw, S.; Feyissa, S. Optimizing Soil Erosion Estimates of RUSLE Model by Analyzing Land Use/Cover Dynamics in Upper Awash River Basin, Central Ethiopia. Geomatics, Nat. Hazards Risk 2023, 14, 2257363. [Google Scholar] [CrossRef]
- Yesuph, A.Y.; Dagnew, A.B. Soil Erosion Mapping and Severity Analysis Based on RUSLE Model and Local Perception in the Beshillo Catchment of the Blue Nile Basin, Ethiopia. Environ. Syst. Res. 2019, 8, 17. [Google Scholar] [CrossRef]
- Perovic, V.; Jaramaz, D.; Zivotic, L.; Cakmak, D.; Mrvic, V.; Milanovic, M.; Saljnikov, E. Design and Implementation of WebGIS Technologies in Evaluation of Erosion Intensity in the Municipality of NIS (Serbia). Environ. Earth Sci. 2016, 75, 211. [Google Scholar] [CrossRef]
- Mejía-Parada, C.; Mora-Ruiz, V.; Vallejo-Borda, J.A.; Arrieta-Baldovino, J. Influence of LS Factor Overestimation Soil Loss on RUSLE Model for Complex Topographies. J. Indian Soc. Remote Sens. 2024, 52, 1661–1674. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.-J. Soil Structure as an Indicator of Soil Functions: A Review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil Structure and Management: A Review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Totsche, K.U.; Amelung, W.; Gerzabek, M.H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Prechtel, A.; et al. Microaggregates in Soils. J. Plant Nutr. Soil Sci. 2018, 181, 104–136. [Google Scholar] [CrossRef]
- Udom, B.E.; Kamalu, O.J. Sealing Index, Air-Filled Porosity and Hydrological Behaviour of a Tropical Ultisol as Affected by Incidental Flooding and Soil Disturbance. Int. J. Soil Sci. 2016, 11, 79–86. [Google Scholar] [CrossRef]
- Valentin, C.; Bresson, L.M. Soil Crusting. In Methods of Assessment of Soil Degradation; CRC Press: Boca Raton, FL, USA, 1997; pp. 89–107. [Google Scholar]
- Bassouny, M. Soil Shrinkage, Sealing Index and Hydro-Physical Properties of Vertisols as Influenced by Long-Term Cultivation Systems in Northern Egypt. J. Soil Sci. Agric. Eng. 2018, 9, 173–181. [Google Scholar] [CrossRef]
- Wang, X.; Cammeraat, E.L.H.; Cerli, C.; Kalbitz, K. Soil Aggregation and the Stabilization of Organic Carbon as Affected by Erosion and Deposition. Soil. Biol. Biochem. 2014, 72, 55–65. [Google Scholar] [CrossRef]
- Carter, M.R.; Stewart, B.A. Structure and Organic Matter Storage in Agricultural Soils; Carter, M.R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-100-307-556-1. [Google Scholar]
Variable | Mean | SD * | CV ** | Skewness | Kurtosis | Min. | Median | Max. |
---|---|---|---|---|---|---|---|---|
Topography | ||||||||
Altitude (m) | 485 | 107.4 | 22.16 | 0.27 | −1.25 | 303 | 464 | 673 |
Slope (°) | 12 | 5.2 | 41.89 | 0.31 | −0.52 | 3 | 11 | 23 |
Soil physicochemical properties | ||||||||
Coarse sand (%) | 14.4 | 6.31 | 43.78 | 0.59 | 1.78 | 2.30 | 14.75 | 34.50 |
Fine sand (%) | 15.0 | 7.29 | 48.66 | 1.43 | 2.91 | 3.7 | 14.0 | 39.7 |
Silt (%) | 43.3 | 10.50 | 24.23 | 0.41 | −0.61 | 24.8 | 40.5 | 66.4 |
Clay (%) | 27.3 | 13.45 | 49.32 | 0.08 | −1.48 | 9.2 | 29.0 | 52.6 |
Water content (%) | 3.3 | 1.71 | 51.93 | 0.14 | −1.42 | 0.9 | 3.1 | 6.3 |
pH (H2O) | 6.9 | 1.27 | 18.59 | −0.10 | −1.24 | 4.6 | 6.6 | 8.6 |
EC (mS m−1) | 7 | 3.14 | 47.61 | 0.80 | −0.48 | 3 | 6 | 13 |
OC (%) | 3.090 | 1.12 | 36.20 | 0.04 | −0.93 | 0.900 | 3.033 | 5.027 |
N (%) | 0.259 | 0.09 | 36.93 | 0.95 | 1.12 | 0.110 | 0.232 | 0.541 |
OC/N | 11.9 | 2.23 | 19.16 | 0.83 | 0.80 | 8.2 | 11.8 | 18.3 |
Ca (mg kg−1) | 23,480 | 41,898 | 178.5 | 2.54 | 6.21 | 453 | 6770 | 178,000 |
Al (mg kg−1) | 23,310 | 10,164 | 43.61 | 0.18 | −0.24 | 5110 | 22,700 | 48,300 |
Fe (mg kg−1) | 30,780 | 8388 | 27.25 | 0.08 | −0.39 | 13,200 | 30,300 | 46,300 |
K (mg kg−1) | 3780 | 1831 | 48.47 | 0.14 | −0.96 | 737 | 3465 | 7510 |
Mg (mg kg−1) | 6460 | 4831 | 74.75 | 2.06 | 5.81 | 608 | 5275 | 24,700 |
Mn (mg kg−1) | 773 | 4096 | 52.98 | 0.83 | −0.44 | 288 | 604 | 1800 |
137Cs (Bq kg−1) | 15.0 | 6.95 | 46.47 | 0.17 | −1.22 | 3.4 | 14.5 | 27.6 |
Indicators of soil structure stability | ||||||||
OC/Clay | 0.156 | 0.109 | 70.16 | 0.91 | −0.28 | 0.022 | 0.117 | 0.399 |
St (%) | 7.6 | 2.71 | 35.4 | −0.14 | −0.95 | 2.3 | 7.8 | 11.9 |
Erosion rates (t ha−1 y−1) | ||||||||
PD model | 14.7 | 11.15 | 75.75 | 0.75 | 0.07 | 0.4 | 13.1 | 43.3 |
RUSLE | 12.7 | 16.63 | 130.3 | 1.43 | 1.34 | 0.1 | 5.5 | 62.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čupić, A.; Smičiklas, I.; Manić, M.; Đokić, M.; Dragović, R.; Đorđević, M.; Gocić, M.; Jović, M.; Topalović, D.; Gajić, B.; et al. 137Cs-Based Assessment of Soil Erosion Rates in a Morphologically Diverse Catchment with Varying Soil Types and Vegetation Cover: Relationship with Soil Properties and RUSLE Model Predictions. Water 2025, 17, 526. https://doi.org/10.3390/w17040526
Čupić A, Smičiklas I, Manić M, Đokić M, Dragović R, Đorđević M, Gocić M, Jović M, Topalović D, Gajić B, et al. 137Cs-Based Assessment of Soil Erosion Rates in a Morphologically Diverse Catchment with Varying Soil Types and Vegetation Cover: Relationship with Soil Properties and RUSLE Model Predictions. Water. 2025; 17(4):526. https://doi.org/10.3390/w17040526
Chicago/Turabian StyleČupić, Aleksandar, Ivana Smičiklas, Miloš Manić, Mrđan Đokić, Ranko Dragović, Milan Đorđević, Milena Gocić, Mihajlo Jović, Dušan Topalović, Boško Gajić, and et al. 2025. "137Cs-Based Assessment of Soil Erosion Rates in a Morphologically Diverse Catchment with Varying Soil Types and Vegetation Cover: Relationship with Soil Properties and RUSLE Model Predictions" Water 17, no. 4: 526. https://doi.org/10.3390/w17040526
APA StyleČupić, A., Smičiklas, I., Manić, M., Đokić, M., Dragović, R., Đorđević, M., Gocić, M., Jović, M., Topalović, D., Gajić, B., & Dragović, S. (2025). 137Cs-Based Assessment of Soil Erosion Rates in a Morphologically Diverse Catchment with Varying Soil Types and Vegetation Cover: Relationship with Soil Properties and RUSLE Model Predictions. Water, 17(4), 526. https://doi.org/10.3390/w17040526