Contaminants in the Water Environment: Significance from the Perspective of the Global Environment and Health
1. Introduction
2. Sources and Types of Contaminants
- (a)
- Industrial discharge: Factories release heavy metals (e.g., lead, mercury, cadmium), solvents, and POPs, contaminating nearby water bodies;
- (b)
- Agricultural runoff: Fertilizers, pesticides, and herbicides introduce nitrates, phosphates, and toxic compounds into aquatic systems, leading to eutrophication and ecosystem imbalances;
- (c)
- Urban wastewater: Household products, pharmaceuticals, and personal care products enter sewage systems, ultimately reaching natural water sources;
- (d)
- Atmospheric deposition: Airborne contaminants, including polycyclic aromatic hydrocarbons (PAHs) and mercury, settle into water bodies through precipitation, illustrating the global environmental transport of pollutants;
- (e)
- Natural sources: Environmental processes such as volcanic eruptions, wildfires, dust storms, the natural weathering of heavy metals from soils and rocks, and the decomposition of organic matter contribute to contamination.
3. The Global Impact of Water Contamination
4. The Health Risks Associated with Water Contaminants
5. Advances in Detection and Monitoring
6. Conclusions and Call to Action
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kim, S.; Kim, Y.; Moon, H.B. Contamination and historical trends of legacy and emerging plasticizers in sediment from highly industrialized bays of Korea. Sci. Total Environ. 2021, 765, 142751. [Google Scholar] [CrossRef]
- Shen, A.; Lee, S.; Ra, K.; Suk, D.; Moon, H.B. Historical trends of perfluoroalkyl substances (PFASs) in dated sediments from semi-enclosed bays of Korea. Mar. Pollut. Bull. 2018, 128, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Hu, G.; Yan, Y.; Yu, R.; Cui, J.; Wang, X.; Yan, Y. Source apportionment of heavy metals in urban road dust in a continental city of eastern China: Using Pb and Sr isotopes combined with multivariate statistical analysis. Atmos. Environ. 2019, 201, 201–211. [Google Scholar] [CrossRef]
- Liu, M.; Qadeer, A.; Anis, M.; Ajmal, Z.; Bekele, T.G.; Wang, S.; Jiang, X.; Leung, K.M.Y. Occurrence of per- and polyfluoroalkyl substances (PFAS): A special reference to their monitoring, distribution, and environmental fate. In Emerging Aquatic Contaminants, One Health Framework for Risk Assessment and Remediation in the Post COVID-19 Anthropocene; Elsevier: Amsterdam, The Netherlands, 2023; pp. 173–202. [Google Scholar] [CrossRef]
- Bekele, T.G.; Zhao, H.; Wang, Q.; Chen, J. Bioaccumulation and Trophic Transfer of Emerging Organophosphate Flame Retardants in the Marine Food Webs of Laizhou Bay, North China. Environ. Sci. Technol. 2019, 53, 13417–13426. [Google Scholar] [CrossRef] [PubMed]
- Qadeer, A.; Kirsten, K.L.; Ajmal, Z.; Jiang, X.; Zhao, X. Alternative Plasticizers As Emerging Global Environmental and Health Threat: Another Regrettable Substitution? Environ. Sci. Technol. 2022, 56, 1482–1488. [Google Scholar] [CrossRef]
- Qadeer, A.; Mubeen, S.; Liu, M.; Bekele, T.G.; Ohoro, C.R.; Adeniji, A.O.; Alraih, A.M.; Ajmal, Z.; Alshammari, A.S.; Al-Hadeethi, Y.; et al. Global environmental and toxicological impacts of polybrominated diphenyl ethers versus organophosphate esters: A comparative analysis and regrettable substitution dilemma. J. Hazard. Mater. 2024, 466, 133543. [Google Scholar] [CrossRef]
- Yang, J.; Qadeer, A.; Liu, M.; Zhu, J.; Huang, Y.; Du, W.; Wei, X. Occurrence, source, and partition of PAHs, PCBs, and OCPs in the multiphase system of an urban lake, Shanghai. Appl. Geochem. 2019, 106, 17–25. [Google Scholar] [CrossRef]
- Jiang, Q.; Hanari, N.; Miyake, Y.; Okazawa, T.; Lau, R.K.F.; Chen, K.; Wyrzykowska, B.; Ka, M.; Yamashita, N.; Lam, P.K.S. Health risk assessment for polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans, and polychlorinated naphthalenes in seafood from Guangzhou and Zhoushan, China. Environ. Pollut. 2007, 148, 31–39. [Google Scholar] [CrossRef]
- Qadeer, A.; Liu, M.; Yang, J.; Liu, X.; Khan, S.; Huang, Y.; Mamun, H.A.; Gao, D.; Yang, Y. Trophodynamics and parabolic behaviors of polycyclic aromatic hydrocarbons in an urbanized lake food web, Shanghai. Ecotoxicol. Environ. Saf. 2019, 178, 17–24. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, X.J.; Wu, J.P.; Liu, J.; Wang, J.; Chen, S.J.; Mai, B.X. Contaminant pattern and bioaccumulation of legacy and emerging organhalogen pollutants in the aquatic biota from an e-waste recycling region in South China. Environ. Toxicol. Chem. 2010, 29, 852–859. [Google Scholar] [CrossRef]
- Cheng, X.; Li, X. 20-year variations of nutrients (N and P) and their impacts on algal growth in Lake Dianshan, China. J. Lake Sci. 2008, 20, 409–419. [Google Scholar]
- Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B. Eutrophication of Lake Waters in China: Cost, Causes, and Control. Environ. Manag. 2010, 45, 662–668. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance; threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, S.; Wu, H.; Chen, Q.; Ruan, R.; Chen, L.; Liu, Q. Temporal and spatial variation of fish assemblages in Dianshan Lake, Shanghai, China. Chin. J. Oceanol. Limnol. 2014, 32, 799–809. [Google Scholar] [CrossRef]
- Baroudi, F.; Al Alam, J.; Fajloun, Z.; Millet, M. Snail as sentinel organism for monitoring the environmental pollution; a review. Ecol. Indic. 2020, 113, 106240. [Google Scholar] [CrossRef]
- Muqi, X.; Jiang, Z.; Yuyao, H.; Yurong, G.; Shen, Z.; Yijian, T.; Chengqing, Y.; Zijian, W. The ecological degradation and restoration of baiyangdian lake, China. J. Freshw. Ecol. 1998, 13, 433–446. [Google Scholar] [CrossRef]
- Qadeer, A.; Saqib, Z.A.; Ajmal, Z.; Xing, C.; Khalil, S.K.; Usman, M.; Huang, Y.; Bashir, S.; Ahmad, Z.; Ahmed, S.; et al. Concentrations, pollution indices and health risk assessment of heavy metals in road dust from two urbanized cities of Pakistan: Comparing two sampling methods for heavy metals concentration. Sustain. Cities Soc. 2020, 53, 101959. [Google Scholar] [CrossRef]
- Lim, H.S.; Lee, J.S.; Chon, H.T.; Sager, M. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea. J. Geochem. Explor. 2008, 96, 223–230. [Google Scholar] [CrossRef]
- Wei, X.; Gao, B.; Wang, P.; Zhou, H.; Lu, J. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicol. Environ. Saf. 2015, 112, 186–192. [Google Scholar] [CrossRef]
- Chen, X.; Liu, M.; Ma, J.; Liu, X.; Liu, D.; Chen, Y.; Li, Y.; Qadeer, A. Health risk assessment of soil heavy metals in housing units built on brownfields in a city in China. J. Soils Sediments 2017, 17, 1741–1750. [Google Scholar] [CrossRef]
- Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q.M.R. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef]
- Hu, G.; Dai, J.; Mai, B.; Luo, X.; Cao, H.; Wang, J.; Li, F.; Xu, M. Concentrations and Accumulation Features of Organochlorine Pesticides in the Baiyangdian Lake Freshwater Food Web of North China. Arch. Environ. Contam. Toxicol. 2010, 58, 700–710. [Google Scholar] [CrossRef]
- Zawiyah, S.; Man, Y.B.C.; Nazimah, S.A.H.; Chin, C.K.; Tsukamoto, I.; Hamanyza, A.H.; Norhaizan, I. Determination of organochlorine and pyrethroid pesticides in fruit and vegetables using SAX/PSA clean-up column. Food Chem. 2007, 102, 98–103. [Google Scholar] [CrossRef]
- Gilden, R.C.; Huffling, K.; Sattler, B. Pesticides and Health Risks. J. Obstet. Gynecol. Neonatal Nurs. 2010, 39, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Shen, Q.; Liu, F.; Ma, J.; Xu, G.; Wang, Y.; Wu, M. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J. Hazard. Mater. 2012, 235–236, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Chang, B.; Xagoraraki, I. Human Health Risk Assessment of Pharmaceuticals in Water: Issues and Challenges Ahead. Int. J. Environ. Res. Public Health 2010, 7, 3929–3953. [Google Scholar] [CrossRef]
- Qadeer, A.; Ajmal, Z.; Usman, M.; Zhao, X.; Chang, S. Agricultural plastic mulching as a potential key source of microplastic pollution in the terrestrial ecosystem and consequences. Resour. Conserv. Recycl. 2021, 175, 105855. [Google Scholar] [CrossRef]
- Sun, A.; Wang, W.X. Human Exposure to Microplastics and Its Associated Health Risks. Environ. Health 2023, 1, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Vethaak, A.D.; Legler, J. Microplastics and human health: Knowledge gaps should be addressed to ascertain the health risks of microplastics. Science 2021, 371, 672–674. [Google Scholar] [CrossRef]
- WHO. Drinking-Water. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-water (accessed on 27 March 2025).
- Deaths Attributed to Unsafe Water Sources, 2021, (n.d.). Available online: https://ourworldindata.org/grapher/deaths-due-to-unsafe-water-sources?time=latest (accessed on 27 March 2025).
- Fang, J.; Zhao, H.; Zhang, Y.; Lu, M.; Cai, Z. Atmospheric pressure chemical ionization in gas chromatography-mass spectrometry for the analysis of persistent organic pollutants. Trends Environ. Anal. Chem. 2020, 25, e00076. [Google Scholar] [CrossRef]
- da Costa Filho, B.M.; Duarte, A.C.; Santos, T.A.P.R. Environmental monitoring approaches for the detection of organic contaminants in marine environments: A critical review. Trends Environ. Anal. Chem. 2022, 33, e00154. [Google Scholar] [CrossRef]
- Guo, W.; Pan, B.; Sakkiah, S.; Yavas, G.; Ge, W.; Zou, W.; Tong, W.; Hong, H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int. J. Environ. Res. Public Health 2019, 16, 4361. [Google Scholar] [CrossRef] [PubMed]
- Caroleo, F.; Magna, G.; Naitana, M.L.; Di Zazzo, L.; Martini, R.; Pizzoli, F.; Muduganti, M.; Lvova, L.; Mandoj, F.; Nardis, S.; et al. Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring. Sensors 2022, 22, 2649. [Google Scholar] [CrossRef] [PubMed]
- Van Acker, T.; Theiner, S.; Bolea-Fernandez, E.; Vanhaecke, F.; Koellensperger, G. Inductively coupled plasma mass spectrometry. Nat. Rev. Methods Prim. 2023, 3, 52. [Google Scholar] [CrossRef]
- Malik, L.A.; Bashir, A.; Qureashi, A.; Pandith, A.H. Detection and removal of heavy metal ions: A review. Environ. Chem. Lett. 2019, 17, 1495–1521. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Mustapha, K.B.; Abdulkareem, M.; Fuensanta, A.U.; Pecunia, V.; Dancer, C.E.J. Toward artificial intelligence and machine learning-enabled frameworks for improved predictions of lifecycle environmental impacts of functional materials and devices. MRS Commun. 2023, 13, 795–811. [Google Scholar] [CrossRef]
- Brown, N.; Ertl, P.; Lewis, R.; Luksch, T.; Reker, D.; Schneider, N. Artificial intelligence in chemistry and drug design. J. Comput. Aided Mol. Des. 2020, 34, 709–715. [Google Scholar] [CrossRef]
- Basile, A.O.; Yahi, A.; Tatonetti, N.P. Artificial Intelligence for Drug Toxicity and Safety. Trends Pharmacol. Sci. 2019, 40, 624–635. [Google Scholar] [CrossRef]
- Jeong, J.; Choi, J. Artificial Intelligence-Based Toxicity Prediction of Environmental Chemicals: Future Directions for Chemical Management Applications. Environ. Sci. Technol. 2022, 56, 7532–7543. [Google Scholar] [CrossRef]
- Hui, Y.; Huang, Z.; Alahi, M.E.E.; Nag, A.; Feng, S.; Mukhopadhyay, S.C. Recent Advancements in Electrochemical Biosensors for Monitoring the Water Quality. Biosensors 2022, 12, 551. [Google Scholar] [CrossRef]
- Yaroshenko, I.; Kirsanov, D.; Marjanovic, M.; Lieberzeit, P.A.; Korostynska, O.; Mason, A.; Frau, I.; Legin, A. Real-Time Water Quality Monitoring with Chemical Sensors. Sensors 2020, 20, 3432. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Giwa, A. Advances in real-time water quality monitoring using triboelectric nanosensors. J. Mater. Chem. A 2025, 13, 11134–11158. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Kirsten, K.L.; Qadeer, A. Contaminants in the Water Environment: Significance from the Perspective of the Global Environment and Health. Water 2025, 17, 1257. https://doi.org/10.3390/w17091257
Jiang X, Kirsten KL, Qadeer A. Contaminants in the Water Environment: Significance from the Perspective of the Global Environment and Health. Water. 2025; 17(9):1257. https://doi.org/10.3390/w17091257
Chicago/Turabian StyleJiang, Xia, Kelly L. Kirsten, and Abdul Qadeer. 2025. "Contaminants in the Water Environment: Significance from the Perspective of the Global Environment and Health" Water 17, no. 9: 1257. https://doi.org/10.3390/w17091257
APA StyleJiang, X., Kirsten, K. L., & Qadeer, A. (2025). Contaminants in the Water Environment: Significance from the Perspective of the Global Environment and Health. Water, 17(9), 1257. https://doi.org/10.3390/w17091257