Advancing Sea Ice Thickness Hindcast with Deep Learning: A WGAN-LSTM Approach
Abstract
:1. Introduction
2. Data and Methods
2.1. Dataset Description
2.1.1. The SIT Dataset
2.1.2. Atmospheric Forcing Data
2.1.3. Data Preprocessing
2.2. Model
2.2.1. Wasserstein Generative Adversarial Network
2.2.2. Long Short-Term Memory Network
2.2.3. A New Loss Function: DISO
2.2.4. WGAN-LSTM
2.3. Performance Evaluation
2.3.1. Accuracy Evaluation of SIT Hindcast
2.3.2. Uncertainty Quantification
3. Experiment Settings
4. Results and Qualitative Analysis
4.1. Generated Features
4.2. Model Hindcast Results
4.3. Model Evaluation
4.4. Model Generalization Ability Evaluation and Physical Process
5. Conclusions
- We propose a novel DL-based WGAN-LSTM method for small-scale Arctic SIT hindcasting, which alleviates the challenge of DL to address the insufficient amount of data for Arctic SIT prediction.
- Compared with LSTM, the robustness and generalization ability of the WGAN-LSTM model is improved. The synthetic data generated by WGAN contains various possible sea ice change scenarios, which enables LSTM to better adapt to sea ice changes in different environments during the training process, and can more accurately capture the time-series features of SIT changes, thus improving the prediction accuracy and reducing the overfitting phenomenon.
- Using a new comprehensive index DISO as the loss function, the anomalies appearing in the testing process are effectively corrected, but it can cause the model to become overconfident.
- We demonstrate that the model prediction results can accurately reflect the physical relationship between air temperature and ice thickness.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GAN | Generative adversarial network |
WGAN | Wasserstein Generative adversarial network |
LSTM | Long short-term memory |
DL | Deep learning |
SIT | Sea ice thickness |
SW | Snow depth |
SIMBA | Sea ice mass balance buoy |
ERA5 | European Centre for Medium-Range Weather Forecasts Reanalysis version 5 |
MOSAiC | Multidisciplinary drifting Observatory for the Study of Arctic Climate |
weed | 10 m wind field |
fsw | Surface solar radiation downwards |
t2m | 2 m air temperature |
tp | Total precipitation |
tcc | Proportion of total cloud cover |
MAE | Mean absolute error |
RMSE | Root mean square error |
RMSD | Center root mean square error |
DISO | Distance between Indices of Simulation and Observation |
MC | Monte Carlo |
LeakyReLU | Leaky Rectified Linear Unit |
RMSprop | Root Mean Square Propagation |
AdamW | Adam with Weight Decay |
References
- Francis, J.A.; Chan, W.; Leathers, D.J.; Miller, J.R.; Veron, D.E. Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett. 2009, 36, L07503. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Change 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Curry, J.A.; Schramm, J.L.; Ebert, E.E. Sea Ice-Albedo Climate Feedback Mechanism. J. Clim. 1995, 8, 240–247. [Google Scholar] [CrossRef]
- Storlazzi, C.D.; Gingerich, S.B.; Van Dongeren, A.; Cheriton, O.M.; Swarzenski, P.W.; Quataert, E.; Voss, C.I.; Field, D.W.; Annamalai, H.; Piniak, G.A. Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Sci. Adv. 2018, 4, eaap9741. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef]
- Huang, J.; Hitchcock, P.; Maycock, A.C.; Mckenna, C.M.; Tian, W. Northern hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions. Commun. Earth Environ. 2021, 2, 147. [Google Scholar] [CrossRef]
- Hou, Y.; Cai, W.; Holland, D.M.; Cheng, X.; Zhang, J.; Wang, L.; Johnson, N.C.; Xie, F.; Sun, W.; Yao, Y.; et al. A surface temperature dipole pattern between Eurasia and North America triggered by the Barents–Kara sea-ice retreat in boreal winter. Environ. Res. Lett. 2022, 17, 114047. [Google Scholar] [CrossRef]
- Bailey, H.; Hubbard, A.; Klein, E.S.; Mustonen, K.R.; Welker, J.M. Arctic sea-ice loss fuels extreme European snowfall. Nat. Geosci. 2021, 14, 283–288. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, Y.; Zhang, Y.; Koo, J.H. Arctic sea ice, Eurasia snow, and extreme winter haze in China. Sci. Adv. 2017, 3, e160275. [Google Scholar] [CrossRef]
- Smith, L.C.; Stephenson, S.R. New Trans-Arctic shipping routes navigable by midcentury. Proc. Natl. Acad. Sci. USA 2013, 3, E1191–E1195. [Google Scholar] [CrossRef]
- Liu, M.; Kronbak, J. The potential economic viability of using the Northern Sea Route (NSR) as an alternative route between Asia and Europe. J. Transp. Geogr. 2010, 8, 434–444. [Google Scholar] [CrossRef]
- Stephenson, S.R.; Smith, L.C.; Agnew, J.A. Divergent long-term trajectories of human access to the Arctic. Nat. Clim. Change 2011, 1, 156–160. [Google Scholar] [CrossRef]
- Rigot- Müller, P.; Cheaitou, A.; Etienne, L.; Faury, O.; Fedi, L. The role of polarseaworthiness in shipping planning for infrastructure projects in the Arctic: The case of Yamal LNG plant. Transp. Res. Part A Policy Pract. 2022, 155, 330–353. [Google Scholar] [CrossRef]
- Sallila, H.; Farrell, S.L.; McCurry, J.; Rinne, E. Assessment of contemporary satellite sea ice thickness products for Arctic sea ice. Cryosphere 2019, 13, 1187–1213. [Google Scholar] [CrossRef]
- Gu, F.; Zhang, R.; Tian-Kunze, X.; Han, B.; Zhu, L.; Cui, T.; Yang, Q. Sea Ice Thickness Retrieval Based on GOCI Remote Sensing Data: A Case Study. Remote Sens. 2021, 13, 936. [Google Scholar] [CrossRef]
- Landy, J.C.; Dawson, G.J.; Tsamados, M.; Bushuk, M.; Stroeve, J.C.; Howell, S.E.L.; Krumpen, T.; Babb, D.G.; Komarov, A.S.; Heorton, H.D.B.S. A year-round satellite sea-ice thickness record from CryoSat-2. Nature 2022, 609, 517–522. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, X.; Bi, H.; Ren, Y.; Liang, Y.; Li, G.; Li, X. Understanding Arctic Sea Ice Thickness Predictability by a Markov Model. J. Clim. 2023, 36, 4879–4897. [Google Scholar] [CrossRef]
- Hunke, E.C.; Hebert, D.A.; Lecomte, O. Level-ice melt ponds in the Los Alamos sea ice model, CICE. Ocean Model. 2013, 71, 26–42. [Google Scholar] [CrossRef]
- Girard, L.; Amitrano, D.; Weiss, J. Failure as a critical phenomenon in a progressive damage model. J. Stat. Mech. Theory Exp. 2010, 2010, 577–611. [Google Scholar] [CrossRef]
- Rösel, A.; Itkin, P.; King, J.; Divine, D.; Wang, C.; Granskog, M.A.; Krumpen, T.; Gerland, S. Thin sea ice, thick snow, and widespread negative freeboard observed during N-ICE2015 north of Svalbard. J. Geophys. Res. Oceans 2018, 123, 1156–1176. [Google Scholar] [CrossRef]
- Jackson, K.; Wilkinson, J.; Maksym, T.; Meldrum, D.; Beckers, J.; Haas, C.; Mackenzie, D. A Novel and Low-Cost Sea Ice Mass Balance Buoy. J. Atmos. Ocean. Technology. 2013, 30, 2676–2688. [Google Scholar] [CrossRef]
- Nicolaus, M.; Perovich, D.K.; Spreen, G.; Granskog, M.A.; Albedyll, L.V.; Angelopoulos, M.; Anhaus, P.; Arndt, S.; Belter, H.J.; Bessonov, V.; et al. Overview of the MOSAiC expedition: Snow and sea ice. Elem. Sci. Anthr. 2022, 10, 000046. [Google Scholar] [CrossRef]
- Rabe, B.; Heuzé, C.; Regnery, J.; Aksenov, Y.; Allerholt, J.; Athanase, M.; Bai, Y.; Basque, C.; Bauch, D.; Baumann, T.M.; et al. Overview of the MOSAiC expedition: Physical oceanography. Elem. Sci. Anthr. 2022, 10, 00062. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Chi, J.; Kim, H.C. Prediction of Arctic Sea Ice Concentration Using a Fully Data Driven Deep Neural Network. Remote Sens. 2017, 9, 1305. [Google Scholar] [CrossRef]
- Liu, L. A review of deep learning for cryospheric studies. In Deep Learning for the Earth Science: A Comprehensive Approach to Remote Sensing, Climate Science, and Geosciences; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 258–268. [Google Scholar]
- Anderson, T.R.; Hosking, J.S.; Pérez-Ortiz, M.; Paige, B.; Elliott, A.; Russell, C.; Law, S.; Jones, D.C.; Wilkinson, J.; Phillips, T. Seasonal Arctic sea ice forecasting with probabilistic deep learning. Nat. Commun. 2021, 12, 5124. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, W. A data-driven deep learning model for weekly sea ice concentration prediction of the pan-arctic during the melting season. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4304819. [Google Scholar] [CrossRef]
- Song, C.T.; Zhu, J.; Li, X.C. Assessments of Data-Driven Deep Learning Models on One-Month Predictions of Pan-Arctic Sea Ice Thickness. Adv. Atmos. Sci. 2024, 41, 1379–1390. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. In Proceedings of the 29th Annual Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 7–12 December 2015. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the 28th Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein Generative Adversarial Networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017. [Google Scholar]
- Xu, Z.; Du, J.; Wang, J.J.; Jiang, C.X.; Ren, Y. Satellite Image Prediction Relying on GAN and LSTM Neural Networks. In Proceedings of the IEEE International Conference on Communications (IEEE ICC), Shanghai, China, 20–24 May 2019. [Google Scholar]
- Mavsar, M.; Morimoto, J.; Ude, A. GAN-Based Semi-Supervised Training of LSTM Nets for Intention Recognition in Cooperative Tasks. IEEE Robot. Autom. Lett. 2024, 9, 263–270. [Google Scholar] [CrossRef]
- Bousmina, A.; Selmi, M.; Ben Rhaiem, M.A.; Farah, I.R. A Hybrid Approach Based on GAN and CNN-LSTM for Aerial Activity Recognition. Remote Sens. 2023, 15, 3626. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Lei, R.B.; Cheng, B.; Hoppmann, M.; Zhang, F.Y.; Zuo, G.Y.; Hutchings, J.K.; Lin, L.; Lan, M.S.; Wang, H.Z.; Regnery, J.; et al. Seasonality and timing of sea ice mass balance and heat fluxes in the Arctic transpolar drift during 2019–2020. Elem. Sci. Anthr. 2022, 10, 000089. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Elman, J.L. Finding Structure in Time. Cogn. Sci. 1990, 14, 179–211. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, X.; Zhou, Q.; Chen, D.; Li, J. DISO: A rethink of Taylor diagram. Int. J. Climatol. 2019, 39, 2825–2832. [Google Scholar] [CrossRef]
- Hu, Z.; Hu, Q.; Zhang, C.; Chen, X.; Li, Q. Evaluation of Reanalysis, Spatially-interpolated and Satellite Remotely-sensed Precipitation data sets in Central Asia. J. Geophys. Res.-At. 2016, 121, 5648–5663. [Google Scholar] [CrossRef]
- Kononenko, I. Bayesian neural networks. Biol. Cybern. 1989, 61, 361–370. [Google Scholar] [CrossRef]
- Gal, Y.; Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning. Int. J. Neural Syst. 2004, 14, 69–106. [Google Scholar]
Variable | Source | Abbreviation or Calculation | Units |
---|---|---|---|
10 m wind field | ERA5 | wind | m/s |
Surface solar radiation downwards | ERA5 | fsw | W/m2 |
2 m air temperature | ERA5 | t2m | ℃ |
Total precipitation | ERA5 | tp | mm/h |
Proportion of total cloud cover | ERA5 | tcc | % |
Module | Parameter | Values |
---|---|---|
WGAN generator | Noise vector dimension z | 100 |
Number of layers | five layers | |
Activation function | LeakyReLU; output layer: tanh | |
Number of neurons in each layer | (128, 256, 512, 1024, 192) | |
WGAN discriminator | Number of layers | three layers |
Activation function | LeakyReLU; output layer: tanh | |
Number of neurons in each layer | (512, 256, 1) | |
WGAN model | Optimizer | RMSprop (lr = 0.00005) |
Batch size | 64 | |
Number of epoch | 1000 | |
Loss function | Wasserstein loss | |
LSTM model | Input frame resizing | 24 × 7 |
Batch size | 256 | |
Number of LSTM layers | 2 | |
Number of epoch | 50 | |
Dropout rate | 0.3 | |
Optimizer | AdamW |
Dataset | R | RMSD | MAE | DISO |
---|---|---|---|---|
Obs | 1 | 0 | 0 | 0 |
LSTM | ||||
WGAN-LSTM | ||||
WGAN-LSTM-DISO |
Model | MAE | RMSD | R | DISO |
---|---|---|---|---|
LSTM | 2.295 | 2.825 | 0.999 | 0.020 |
WGAN-LSTM | 0.242 | 0.887 | 0.999 | 0.005 |
WGAN-LSTM-DISO | 0.260 | 0.798 | 0.999 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, B.; Liu, Y.; Lu, P.; Wang, L.; Liao, H. Advancing Sea Ice Thickness Hindcast with Deep Learning: A WGAN-LSTM Approach. Water 2025, 17, 1263. https://doi.org/10.3390/w17091263
Gao B, Liu Y, Lu P, Wang L, Liao H. Advancing Sea Ice Thickness Hindcast with Deep Learning: A WGAN-LSTM Approach. Water. 2025; 17(9):1263. https://doi.org/10.3390/w17091263
Chicago/Turabian StyleGao, Bingyan, Yang Liu, Peng Lu, Lei Wang, and Hui Liao. 2025. "Advancing Sea Ice Thickness Hindcast with Deep Learning: A WGAN-LSTM Approach" Water 17, no. 9: 1263. https://doi.org/10.3390/w17091263
APA StyleGao, B., Liu, Y., Lu, P., Wang, L., & Liao, H. (2025). Advancing Sea Ice Thickness Hindcast with Deep Learning: A WGAN-LSTM Approach. Water, 17(9), 1263. https://doi.org/10.3390/w17091263