The Influence of a Eutrophic Lake to the River Downstream: Spatiotemporal Algal Composition Changes and the Driving Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Sampling
2.3. Phytoplankton Data and Environmental Variables
2.4. Statistical Analysis
3. Results
3.1. Physical and Chemical Variables
Dataset | Parameters | Unit | Mean | Range | No. |
---|---|---|---|---|---|
Dataset1 (9 stations spread over the entire Pudu River in August (September) and November 2010, March 2011) | WT | °C | 17.49 | 12.8 (Mar.)–24.0 (Sept.) | 81 |
pH | - | 7.56 | 6.4 (Nov.)–8.6 (Mar.) | 81 | |
SS | mg/L | 71.85 | 35 (Nov.)–120 (Mar.) | 81 | |
DO | mg/L | 7.60 | 3.6 (Aug.)–13.0 (Sept.) | 81 | |
CODMn | mg/L | 3.98 | 1.05 (Aug.)–8.48 (Mar.) | 81 | |
CODCr | mg/L | 27.39 | 7.2 (Mar.)–57.0 (Mar.) | 81 | |
BOD5 | mg/L | 4.29 | 0.5 (Sept.)–13.0 (Sept.) | 81 | |
NH3–N | mg/L | 1.73 | 0.137 (Sept.)–5.360 (Mar.) | 81 | |
TP | mg/L | 0.49 | 0.017 (Mar.)–4.008 (Nov.) | 81 | |
TN | mg/L | 3.70 | 0.516 (Sept.)–10.110 (Mar.) | 81 | |
Chla | mg/L | 4.64 | 0.3 (Nov.)–28.5 (Mar.) | 81 | |
Dataset2 (11 stations spread over the Tanglang River in September 2013) c | WT | °C | 22.04 | 20.66 (T2–8)–23.32 (D2) | 11 |
Length | km | 35.80 | −2.04 (D1)–114.60 (T5) | 11 | |
Turbidity | NTU+ | 80.45 | 53.7 (T2–4)–185.4 (T4) | 11 | |
Velocity | m/s | 0.54 | 0.05 (T1)–1.556 (T2–6) | 10 a | |
TT | d | 0.42 | 0.339 (T1)–1.557 (T5) | 9 b | |
DO | mg/L | 8.08 | 4.13 (T2–6)–13.22 (D2) | 11 | |
TP | mg/L | 1.05 | 0.22 (D2)–2.92 (T4) | 11 | |
TN | mg/L | 12.10 | 4.31 (T2–6)–31.85 (T2–7) | 11 | |
PO43− | mg/L | 0.41 | 0.084 (T2)–1.44 (T2–7) | 11 | |
Si | mg/L | 1.74 | 0.2 (D1)–4.06 (T2–8) | 11 |
3.2. Spatial Site Grouping Based on Environmental Variables
Sites | Three Clusters | Five Clusters | ||||
---|---|---|---|---|---|---|
Dry Season | Normal Season | Rainy Season | Dry Season | Normal Season | Rainy Season | |
S1 | 1 | 1 | 1 | 1 | 1 | 1 |
S2 | 1 | 1 | 1 | 2 | 1 | 2 |
S3 | 1 | 1 | 2 | 3 | 2 | 3 |
S4 | 2 | 1 | 3 | 4 | 2 | 4 |
S5 | 2 | 1 | 3 | 4 | 3 | 4 |
S6 | 2 | 1 | 3 | 4 | 2 | 4 |
S7 | 3 | 2 | 2 | 5 | 4 | 3 |
S8 | 3 | 3 | 3 | 5 | 5 | 5 |
S9 | 3 | 3 | 2 | 5 | 5 | 3 |
3.3. Spatial and Temporal Phytoplankton Compositions
3.4. Relationships between Phytoplankton Abundance and Environmental Variables in the Dianchi Lake-to-the Tanglang River in September 2013
Abundance | Length | Velocity | TT | WT | Turbidity | DO | TN | TP | PO43− | Si |
---|---|---|---|---|---|---|---|---|---|---|
Total abundance | −0.690 * | −0.163 | −0.619 * | 0.544 | 0.652 | 0.273 | −0.165 | 0.008 | −0.502 | −0.586 |
Cyanobacteria | −0.696 * | −0.186 | −0.617 * | 0.556 | 0.638 | 0.294 | −0.161 | −0.003 | −0.516 | −0.593 |
Chlorophyta | 0.248 | 0.564 | 0.044 | −0.366 | 0.229 | −0.521 | −0.043 | 0.254 | 0.418 | 0.253 |
Bacillariophyta | 0.370 | 0.297 | 0.331 | −0.362 | −0.412 | −0.229 | −0.262 | −0.053 | 0.235 | 0.350 |
Microcystis | −0.677 * | −0.141 | −0.585 | 0.510 | 0.654 * | −0.234 | −0.164 | 0.023 | −0.509 | −0.573 |
4. Discussion
4.1. The Influence of an Upstream Eutrophic Lake on Temporal and Spatial Phytoplankton Composition Variations in the River Downstream
4.2. Impacts of Environmental Variables on the Spatial Phytoplankton Variations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, Y.C.; Yu, Q.; Zhu, D.J.; Liu, Z.W. Possible influencing factors on phytoplankton growth and decay in rivers: Review and perspective. J. Hydroelectr. Eng. 2014, 33, 186–195. (In Chinese) [Google Scholar]
- Hilton, J.; O’Hare, M.; Bowes, M.J.; Jones, J.I. How green is my river? A new paradigm of eutrophication in rivers. Sci. Total Environ. 2006, 365, 66–83. [Google Scholar] [CrossRef] [PubMed]
- Istvánovics, V.; Honti, M.; Vörös, L.; Kozma, Z. Phytoplankton dynamics in relation to connectivity, flow dynamics and resource availability—The case of a large, lowland river, the Hungarian Tisza. Hydrobiologia 2010, 637, 121–141. [Google Scholar] [CrossRef]
- Tavernini, S.; Pierobon, E.; Viaroli, P. Physical factors and dissolved reactive silica affect phytoplankton community structure and dynamics in a lowland eutrophic river (Po river, Italy). Hydrobiologia 2011, 669, 213–225. [Google Scholar] [CrossRef]
- Abonyi, A.; Leitão, M.; Lançon, A.M.; Padisák, J. Phytoplankton functional groups as indicators of human impacts along the River Loire (France). Hydrobiologia 2012, 698, 233–249. [Google Scholar] [CrossRef]
- Prygiel, J.; Leitão, M. Cyanophycean blooms in the reservoir of Val Joly (northern France) and their development in downstream rivers. Hydrobiologia 1994, 289, 85–96. [Google Scholar] [CrossRef]
- Paerl, H.W.; Xu, H.; McCarthy, M.J.; Zhu, G.; Qin, B.; Li, Y.; Gardner, W.S. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res. 2011, 45, 1973–1983. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Zhu, G.; Gao, G.; Zhang, Y.; Li, W.; Paerl, H.W.; Carmichael, W.W. A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management. Environ. Manag. 2010, 45, 105–112. [Google Scholar] [CrossRef]
- Bahnwart, M.; Hübener, T.; Schubert, H. Downstream changes in phytoplankton composition and biomass in a lowland river–lake system (Warnow River, Germany). Hydrobiologia 1998, 391, 99–111. [Google Scholar] [CrossRef]
- Reynolds, C.S. Ecology of Phytoplankton; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Allan, J.D.; Castillo, M.M. Stream Ecology: Structure and Function of Running Waters; Springer Science & Business Media: London, UK, 2007. [Google Scholar]
- Hudon, C.; Paquet, S.; Jarry, V. Downstream variations of phytoplankton in the St. Lawrence River (Quebec, Canada). Hydrobiologia 1996, 337, 11–26. [Google Scholar] [CrossRef]
- Sullivan, B.E.; Prahl, F.G.; Small, L.F.; Covert, P.A. Seasonality of phytoplankton production in the Columbia River: A natural or anthropogenic pattern? Geochim. Cosmochim. Acta 2001, 65, 1125–1139. [Google Scholar] [CrossRef]
- Sherman, B.S.; Webster, I.T.; Jones, G.J.; Oliver, R.L. Transitions between Auhcoseira and Anabaena dominance in a turbid river weir pool. Limnol. Oceanogr. 1998, 43, 1902–1915. [Google Scholar]
- Huisman, J.; Sharples, J.; Stroom, J.M.; Visser, P.M.; Kardinaal, W.E.A.; Verspagen, J.M.; Sommeijer, B. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 2004, 85, 2960–2970. [Google Scholar] [CrossRef]
- Li, F.P.; Zhang, H.P.; Zhu, Y.P.; Xiao, Y.H.; Chen, L. Effect of flow velocity on phytoplankton biomass and composition in a freshwater lake. Sci. Total Environ. 2013, 447, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Harris, G.P.; Baxter, G. Inter-annual variability in phytoplankton biomass and species composition in a subtropical reservoir. Freshw. Biol. 1996, 35, 545–560. [Google Scholar] [CrossRef]
- Yang, Y.H.; Zhou, F.; Guo, H.C.; Sheng, H.; Liu, H.; Dao, X.; He, C.J. Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods. Environ. Monit. Assess. 2010, 170, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Nanjing Institute of Geography and Limnology. Environments and Sedimentation of Fault Lakes, Yunnan Province; Science Press: Beijing, China, 1989. (In Chinese) [Google Scholar]
- Wan, N.; Song, L.; Wang, R.; Liu, J. The spatio-temporal distribution of algal biomass in Dianchi Lake and its impact factors. Acta Hydrobol. Sin. 2008, 32, 184–188. (In Chinese) [Google Scholar] [CrossRef]
- Wei, Z.; Zheng, S.F.; Chu, Z.S.; Huang, G.Z.; Jin, X.C. Major growth control factors of Microcystis aeruginosa in Lake Dianchi. Acta Sci. Circumst. 2010, 30, 1472–1478. (In Chinese) [Google Scholar]
- Qian, C.Y.; Deng, X.Y.; Xu, J.H.; Wang, R.N.; Zhao, J.C.; Zhu, Y.X. The investigation of the algae in the Tanglangchuan River. J. Yunnan Univ. 1985, 7, 123–137. (In Chinese) [Google Scholar]
- Yu, Q.; Chen, Y.C.; Zhu, D.J.; Liu, Z.W. Pollutant source apportionment of the middle and lower reaches of the Pudu River in Southwest China. In Proceedings of the 35th IAHR World Congress, Chengdu, China, 8–13 September 2013; p. 165.
- Jin, X.C.; Tu, Q.Y. Criterion of Eutrophication Survey on Lakes; Environmental Science: Beijing, China, 1990. (In Chinese) [Google Scholar]
- Hu, H.J.; Wei, Y.X. The Freshwater Algae in China: Systematics, Taxanomy and Ecology; Science Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Simeonov, V.; Tsakovski, S.; Lavric, T.; Simeonova, P.; Puxbaum, H. Multivariate statistical assessment of air quality: A case study. Microchim. Acta 2004, 148, 293–298. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Sinha, S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—A case study. Anal. Chim. Acta 2005, 538, 355–374. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Huszar, V.; Kruk, C.; Naselli-Flores, L.; Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton. Res. 2002, 24, 417–428. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Blooms like it hot. Science 2008, 320, 57–58. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Pei, H.; Hu, W.; Tian, C.; Hao, D.; Wei, J.; Feng, Y. Spatiotemporal distribution pattern of cyanobacteria community and its relationship with the environmental factors in Hongze Lake, China. Environ. Monit. Assess. 2014, 186, 6919–6933. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Chen, Y.C.; Liu, Z.W.; Zhu, D.J.; Wang, H.R. Longitudinal succession of phytoplankton composition in lake-to-river system. In Proceedings of the 10th International Symposium on Ecohydraulics, Trondheim, Norway, 23–27 June 2014.
- Becker, V.; Caputo, L.; Ordóñez, J.; Marcé, R.; Armengol, J.; Crossetti, L.O.; Huszar, V.L.M. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Res. 2010, 44, 3345–3354. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.S.; Descy, J.P. The production, biomass and structure of phytoplankton in large rivers. Large Rivers 1996, 10, 161–187. [Google Scholar]
- Zhu, M.; Zhu, G.; Zhao, L.; Yao, X.; Zhang, Y.; Gao, G.; Qin, B.Q. Influence of algal bloom degradation on nutrient release at the sediment–water interface in Lake Taihu, China. Environ. Sci. Pollut. Res. 2013, 20, 1803–1811. [Google Scholar] [CrossRef]
- Bowes, M.J.; Gozzard, E.; Johnson, A.C.; Scarlett, P.M.; Roberts, C.; Read, D.S.; Armstrong, L.K. Spatial and temporal changes in chlorophyll-a concentrations in the River Thames basin, UK: Are phosphorus concentrations beginning to limit phytoplankton biomass? Sci. Total Environ. 2012, 426, 45–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, C.S.; Glaister, M.S. Spatial and temporal changes in phytoplankton abundance in the upper and middle reaches of the River Severn. Large Rivers 1993, 9, 1–22. [Google Scholar]
- Bum, B.K.; Pick, F.R. Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnol. Oceanogr. 1996, 7, 1572–1577. [Google Scholar]
- Lynam, C.P.; Cusack, C.; Stokes, D. A methodology for community-level hypothesis testing applied to detect trends in phytoplankton and fish communities in Irish waters. Estuar. Coast. Shelf Sci. 2010, 87, 451–462. [Google Scholar] [CrossRef]
- Chen, Y.C.; Zhang, D.; Tang, L. The spatial and temporal variations of phosphate concentrations and their relationships with algal growth in Lake Dianchi, China. Ecol. Environ. Sci. 2010, 19, 1363–1368. (In Chinese) [Google Scholar]
- Devercelli, M.; O’Farrell, I. Factors affecting the structure and maintenance of phytoplankton functional groups in a nutrient rich lowland river. Limnologica 2013, 43, 67–78. [Google Scholar] [CrossRef]
- Baykal, T.; Açıkgöz, İ; Udoh, A.U.; Yildiz, K. Seasonal variations in phytoplankton composition and biomass in a small lowland river-lake system (Melen River, Turkey). Turk. J. Biol. 2011, 35, 485–501. [Google Scholar]
- Walks, D.J. Persistence of plankton in flowing water. Can. J. Fish. Aquat. Sci. 2007, 64, 1693–1702. [Google Scholar] [CrossRef]
- Mihaljević, M.; Stević, F. Cyanobacterial blooms in a temperate river-floodplain ecosystem: The importance of hydrological extremes. Aquat. Ecol. 2011, 45, 335–349. [Google Scholar] [CrossRef]
- Mitrovic, S.M.; Hardwick, L.; Dorani, F. Use of flow management to mitigate cyanobacterial blooms in the Lower Darling River, Australia. J. Plankton Res. 2011, 33, 229–241. [Google Scholar] [CrossRef]
- Grabowska, M. The role of a eutrophic lowland reservoir in shaping the composition of river phytoplankton. Ecohydrol. Hydrobiol. 2012, 12, 231–242. [Google Scholar] [CrossRef]
- Grabowska, M.; Mazur-Marzec, H. The effect of cyanobacterial blooms in the Siemianówka Dam Reservoir on the phytoplankton structure in the Narew River. Oceabol. Hydrobiol. Stud. 2011, 40, 19–26. [Google Scholar]
- Istvánovics, V.; Honti, M. Efficiency of nutrient management in controlling eutrophication of running waters in the Middle Danube Basin. Hydrobiologia 2012, 686, 55–71. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Descy, J.P.; Padisák, J. Are phytoplankton dynamics in rivers so different from those in shallow lakes? Hydrobiologia 1994, 289, 1–7. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, Z.W.; Chen, Y.C.; Zhu, D.J. Modelling daily variation in the vertical distribution of Microcystis. China Environ. Sci. 2015. in press (In Chinese) [Google Scholar]
- Paerl, H.W.; Hall, N.S.; Calandrino, E.S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced changes. Sci. Total Environ. 2011, 409, 1739–1745. [Google Scholar] [CrossRef] [PubMed]
- Long, T.Y.; Wu, L.; Meng, G.H.; Guo, W.H. Numerical simulation for impacts of hydrodynamic conditions on algae growth in Chongqing Section of Jialing River, China. Ecol. Model. 2011, 222, 112–119. [Google Scholar] [CrossRef]
- Huisman, J.; Arrayás, M.; Ebert, U.; Sommeijer, B. How do sinking phytoplankton species manage to persist? Am. Nat. 2002, 3, 245–254. [Google Scholar] [CrossRef]
- Bukaveckas, P.A.; MacDonald, A.; Aufdenkampe, A.; Chick, J.H.; Havel, J.E.; Schultz, R.; Angradi, T.R.; Bolgrien, D.W.; Jicha, T.M.; Taylor, D. Phytoplankton abundance and contributions to suspended particulate matter in the Ohio, Upper Mississippi and Missouri Rivers. Aquat. Sci. 2011, 73, 419–436. [Google Scholar] [CrossRef]
- Neal, C.; Hilton, J.; Wade, A.J.; Neal, M.; Wickham, H. Chlorophyll-a in the rivers of eastern England. Sci. Total Environ. 2006, 365, 84–104. [Google Scholar] [CrossRef] [PubMed]
- Istvànovic, V.; Honti, M. Phytoplankton growth in three rivers: The role of meroplankton and the benthic retention hypothesis. Limnol. Oceanogr. 2011, 56, 1439–1452. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Chen, Y.; Liu, Z.; De Giesen, N.V.; Zhu, D. The Influence of a Eutrophic Lake to the River Downstream: Spatiotemporal Algal Composition Changes and the Driving Factors. Water 2015, 7, 2184-2201. https://doi.org/10.3390/w7052184
Yu Q, Chen Y, Liu Z, De Giesen NV, Zhu D. The Influence of a Eutrophic Lake to the River Downstream: Spatiotemporal Algal Composition Changes and the Driving Factors. Water. 2015; 7(5):2184-2201. https://doi.org/10.3390/w7052184
Chicago/Turabian StyleYu, Qian, Yongcan Chen, Zhaowei Liu, Nick Van De Giesen, and Dejun Zhu. 2015. "The Influence of a Eutrophic Lake to the River Downstream: Spatiotemporal Algal Composition Changes and the Driving Factors" Water 7, no. 5: 2184-2201. https://doi.org/10.3390/w7052184
APA StyleYu, Q., Chen, Y., Liu, Z., De Giesen, N. V., & Zhu, D. (2015). The Influence of a Eutrophic Lake to the River Downstream: Spatiotemporal Algal Composition Changes and the Driving Factors. Water, 7(5), 2184-2201. https://doi.org/10.3390/w7052184