Eco-Restoration of Coal Mine Spoil: Biochar Application and Carbon Sequestration for Achieving UN Sustainable Development Goals 13 and 15
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Biochar Production, Characterization and Field Incubation
2.3. Soil Sampling
2.4. Plant Biodiversity and Vegetation Analysis
2.5. Herbaceous Biomass and Litter Analysis
2.6. Soil Characterization
2.6.1. Soil Carbon Fractionation
2.6.2. Soil Physico-Chemical Properties
2.7. Carbon Sequestration Study
2.8. Statistics
3. Results and Discussions
3.1. Biochar Characteristics
3.2. Plant Biodiversity and Vegetation Analysis
3.3. Estimation of Biomass Carbon Stock
3.4. Herbaceous Biomass and Litter Analysis C-Stock
3.5. Mine Spoil Properties
3.5.1. Inorganic, Biogenic and Coal Carbon Estimation
3.5.2. Other Physio-Chemical Properties
3.6. Total C-Pool
4. Future Recommendations
- (i)
- A biochar based chrono-sequence study in the RMS to study the trends in carbon stock for a prolonged period of time.
- (ii)
- Field based long term studies are needed to understand the behaviour of carbon that is fixed in the soil by biochar application. Studies need to be done to ensure that the carbon in the biochar is fixed in soil for a long period of time and not emitted into the atmosphere.
- (iii)
- Effect of biochar application on the existing humus of the RMS.
- (iv)
- Conducting life cycle assessment (LCA) to confirm that net soil-ecosystem C pools is increased by biochar application.
- (v)
- Environmental cost benefit by biochar application should be carried out for the applicability of biochar.
- (vi)
- Developing techniques for the large-scale production of biochar in the field itself will help reduce the transportation cost.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubey, P.; Singh, A.; Raghubanshi, A.; Abhilash, P.C. Steering the restoration of degraded agroecosystems during the United Nations Decade on Ecosystem Restoration. J. Environ. Manag. 2020, 280, 111798. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Maiti, S.K. Biochar-assisted eco-restoration of coal mine degraded land to meet United Nation Sustainable Development Goals. Land Degrad. Dev. 2021, 32, 4494–4508. [Google Scholar] [CrossRef]
- Angulo-Mosquera, L.S.; Alvarado-Alvarado, A.A.; Rivas-Arrieta, M.J.; Cattaneo, C.R.; Rene, E.R.; García-Depraect, O. Production of solid biofuels from organic waste in developing countries: A review from sustainability and economic feasibility perspectives. Sci. Total Environ. 2021, 795, 148816. [Google Scholar] [CrossRef]
- Shahid, M.K.; Batool, A.; Kashif, A.; Nawaz, M.H.; Aslam, M.; Iqbal, N.; Choi, Y. Biofuels and biorefineries: Development, application and future perspectives emphasizing the environmental and economic aspects. J. Environ. Manag. 2021, 297, 113268. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.K. Ecorestoration of Coal Mine Degraded Lands; Springer: New Delhi, India, 2013. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K.; Singh, A.K. Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India. Sci. Total Environ. 2017, 583, 153–162. [Google Scholar] [CrossRef]
- Frouz, J.; Hüblov, L. Contrasting effect of coniferous and broadleaf trees on soil carbon storage during reforestation of forest soils and afforestation of agricultural and post-mining soils. J. Environ. Manag. 2021, 290, 112567. [Google Scholar] [CrossRef]
- Maiti, S.K.; Ghosh, D. Plant–soil interactions as a restoration tool. In Climate Change and Soil Interactions; Prasad, M.N.V., Pietrzykowski, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 689–730. [Google Scholar]
- Chen, Y.; Liu, Z.; Rao, X.; Wang, X.; Liang, C.; Lin, Y.; Zhou, L.; Cai, X.A.; Fu, S. Carbon storage and allocation pattern in plant biomass among different forest plantation stands in Guangdong, China. Forests 2015, 6, 794–808. [Google Scholar] [CrossRef] [Green Version]
- Ussiri, A.N.; Lal, R. Method for Determining Coal Carbon in the Reclaimed Minesoils Contaminated with Coal. Soil Sci. Soc. Am. J. 2008, 72, 231–237. [Google Scholar] [CrossRef]
- Ghosh, D.; Masto, R.E.; Maiti, S.K. Ameliorative effect of Lantana camara biochar on coal mine spoil and growth of maize (Zea mays). Soil Use Manag. 2020, 36, 726–739. [Google Scholar] [CrossRef]
- Kumari, S.; Maiti, S.K. Reclamation of coalmine spoils with topsoil, grass, and legume: A case study from India. Environ. Earth Sci. 2019, 78, 1–14. [Google Scholar] [CrossRef]
- Raj, D.; Kumar, A.; Maiti, S.K. Mercury remediation potential of Brassica juncea (L.) Czern. for clean-up of flyash contaminated sites. Chemosphere 2020, 248, 125857. [Google Scholar] [CrossRef] [PubMed]
- Frouz, J.; Kuraz, M. Changes in Some Physical Properties of Soils in the Chronosequence of Self Overgrown Dumps of the Sokolov Quarry-Dump Complex Czechia. Eurasian Soil Sci. 2012, 45, 266–272. [Google Scholar] [CrossRef]
- Józefowska, A.; Pietrzykowski, M.; Frouz, J. Geoderma The effects of tree species and substrate on carbon sequestration and chemical and biological properties in reforested post-mining soils. Geoderma 2017, 292, 9–16. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R. Soil organic carbon stock for reclaimed minesoils in northeastern Ohio. L. Degrad. Dev. 2005, 16, 377–386. [Google Scholar] [CrossRef]
- Akala, V.A.; Lal, R. Soil organic carbon pools and sequestration rates in reclaimed minesoils in Ohio. J. Environ. Qual. 2001, 30, 2098–2104. [Google Scholar] [CrossRef]
- Tripathi, N.; Shekhar, R.; Nathanail, C.P. Mine spoil acts as a sink of carbon dioxide in Indian dry tropical environment. Sci. Total Environ. 2014, 468–469, 1162–1171. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Masto, R.E.; Cerdà, A.; Ram, L.C. Rhizosphere soil indicators for carbon sequestration in a reclaimed coal mine spoil. Catena 2016, 141, 100–108. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Novak, J.M.; Ippolito, J.A.; Ducey, T.F.; Watts, D.W.; Spokas, K.A.; Trippe, K.M.; Sigua, G.C.; Johnson, M.G. Remediation of an acidic mine spoil: Miscanthus biochar and lime amendment affects metal availability, plant growth, and soil enzyme activity. Chemosphere 2018, 205, 709–718. [Google Scholar] [CrossRef]
- Lal, R. Biochar and Soil Carbon Sequestration. Agric. Environ. Appl. Biochar Adv. Barriers 2015, 43210, 175–197. [Google Scholar] [CrossRef]
- Wang, T.; Camps-Arbestain, M.; Hedley, M. Predicting C aromaticity of biochars based on their elemental composition. Org. Geochem. 2013, 62, 1–6. [Google Scholar] [CrossRef]
- Demisie, W.; Liu, Z.; Zhang, M. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena 2014, 121, 214–221. [Google Scholar] [CrossRef]
- Masto, R.E.; Kumar, S.; Rout, T.K.; Sarkar, P.; George, J.; Ram, L.C. Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. Catena 2013, 111, 64–71. [Google Scholar] [CrossRef]
- Fidel, R.B.; Laird, D.A.; Parkin, T.B. Impact of Biochar Organic and Inorganic Carbon on Soil CO2 and N2O Emissions. J. Environ. Qual. 2017, 46, 505–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, D.; Maiti, S.K. Effect of invasive weed biochar amendment on soil enzymatic activity and respiration of coal mine spoil: A laboratory experiment study. Biochar 2021. [Google Scholar] [CrossRef]
- Ghosh, D.; Maiti, S.K. Can biochar reclaim coal mine spoil? J. Environ. Manag. 2020, 272, 111097. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change; IGES: Kanagawa, Japan, 2006. [Google Scholar]
- FAO, Food and agriculture organization (FAO). Global Forest Resources Assessment 2005. Global Assessment of Growing Stock, Biomass and Carbon Stock. 2005. Available online: www.fao.org/docrep/013/i1757e/i1757e.pdf (accessed on 15 September 2021).
- Nath, J.A.; Sileshi, G.W.; Kumar, A. Land Use Policy Bamboo based family forests offer opportunities for biomass production and carbon farming in North East India. Land Use Policy 2018, 75, 191–200. [Google Scholar] [CrossRef]
- Majumder, A.F.; Das, A.K.; Nath, A.J. Biomass storage and carbon sequestration in priority bamboo species in relation to village physiography. Int. J. Ecol. Environ. Sci. 2019, 45, 85–95. [Google Scholar]
- Thakur, T.K.; Swamy, S.L.; Bijalwan, A.; Dobriyal, M.J. Assessment of biomass and net primary productivity of a dry tropical forest using geospatial technology. J. For. Res. 2019, 30, 157–170. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; PHI Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Ahirwal, J.; Maiti, S.K. Assessment of carbon sequestration potential of revegetated coal mine overburden dumps: A chronosequence study from dry tropical climate. J. Environ. Manag. 2017, 201, 369–377. [Google Scholar] [CrossRef]
- Das, R.; Maiti, S.K. Estimation of carbon sequestration in reclaimed coalmine degraded land dominated by Albizia lebbeck, Dalbergia sissoo and Bambusa arundinacea plantation: A case study from Jharia Coalfields, India. Int. J. Coal Sci. Technol. 2016, 3, 246–266. [Google Scholar] [CrossRef] [Green Version]
- Čížková, B.; Woś, B.; Pietrzykowski, M.; Frouz, J. Development of soil chemical and microbial properties in reclaimed and unreclaimed grasslands in heaps after opencast lignite mining. Ecol. Eng. 2018, 123, 103–111. [Google Scholar] [CrossRef]
- Ahirwal, J.; Kumar, A.; Maiti, S.K. Effect of Fast-Growing Trees on Soil Properties and Carbon Storage in an Afforested Coal Mine. Minerals 2020, 10, 840. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K. Development of Technosol properties and recovery of carbon stock after 16 years of revegetation on coal mine degraded lands, India. Catena 2018, 166, 114–123. [Google Scholar] [CrossRef]
- Singh, A.N.; Zeng, D.H.; Chen, F.S. Effect of young woody plantations on carbon and nutrient accretion rates in a redeveloping soil on coalmine spoil in a dry tropical environment, India. Land Degrad. Dev. 2006, 17, 13–21. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K. Assessment of soil carbon pool, carbon sequestration and soil CO2 flux in unreclaimed and reclaimed coal mine spoils. Environ. Earth Sci. 2018, 77, 9. [Google Scholar] [CrossRef]
- Rodríguez-vila, A.; Asensio, V.; Forján, R.; Covelo, E.F. Carbon fractionation in a mine soil amended with compost and biochar and vegetated with Brassica juncea L. J. Geochem. Explor. 2016, 169, 137–143. [Google Scholar] [CrossRef]
- Das, R.; Maiti, S.K. Importance of carbon fractionation for the estimation of carbon sequestration in reclaimed coalmine soils-A case study from Jharia coalfields, Jharkhand, India. Ecol. Eng. 2016, 90, 135–140. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Masto, R.E. Effect of fly ash on carbon mineralization of biochar and organic manures added to mine spoil. SN Appl. Sci. 2019, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Fang, H.; Deng, X.; Ying, J.; Lv, W.; Shi, Y.; Zhou, G. Biochar application increased ecosystem carbon sequestration capacity in a Moso bamboo forest. For. Ecol. Manag. 2020, 475, 118447. [Google Scholar] [CrossRef]
- Blanco-canqui, H.; Acharya, B.S.; Laird, D.A.; Heaton, E.A. Soil carbon increased by twice the amount of biochar carbon applied after 6 years: Field evidence of negative priming. GCB Bioenergy 2020, 12, 240–251. [Google Scholar] [CrossRef]
Characteristics | Values |
---|---|
Yield (%) | 51.87 ± 2.27 |
pH Water (1:5; w/v) | 7.75 ± 1.62 |
EC Water (1:5; w/v) (mS cm−1) | 4.70 ± 0.12 |
C (%) | 68.25 ± 4.58 |
H (%) | 35.39 ± 5.22 |
N (%) | 13.62 ± 2.40 |
H/C | 0.51 ± 0.22 |
C/N | 5.01 ± 1.28 |
OC (%) | 42.24 ± 0.89 |
Porosity (%) | 78 ± 4.00 |
Bulk density (g cm−3) | 0.25 ± 0.01 |
Reclamation Type | Location | Age | Total Biomassk (Mg C ha−1) | Tree Carbon Stock (Mg C ha−1) | CO2 Sequestered * (Mg ha−1) | References |
---|---|---|---|---|---|---|
Albizia lebbeck | Singrauli, India | 4–5 | 17.28 | 8.64 | 31.70 | [41] |
Albizia procera | 8.48 | 4.24 | 15.56 | |||
Tectona grandis | 7.34 | 3.67 | 12.36 | |||
Dendrocalamus strictus | 15.02 | 7.51 | 27.56 | |||
Mixed Plantation | Singrauli, India | 10 | 15.64 | 13.68 | 50.20 | [18] |
Reclaimed dump | Jharia, India | 5 | 18.07 | 9.03 | 33.14 | [42] |
Reference forest | 55.25 | 27.63 | 101.40 | |||
Albizia lebbeck | Jharia, India | 8 | 73.66 | 34.62 | 127.05 | [39] |
Albizia procera | 55.76 | 10.89 | 39.96 | |||
Dalbergia sisso | 83.28 | 26.21 | 96.19 | |||
Natural forest | 250.28 | 117.63 | 431.702 | |||
RMS | Damoda eco-restoration, Jharia, India | 8 | 25.18 | 12.59 | 46.17 | Present Study |
RF | 61.26 | 30.63 | 112.41 | |||
UMS | 7.05 | 3.52 | 12.93 |
Soil Parameters | RMS | BC30 | BC60 | RF | UMS |
---|---|---|---|---|---|
Soil Fraction (<2 mm size)% | 63.10 ± 12.06 b | 63.10 ± 12.06 b | 63.10 ± 12.06 b | 88.12 ± 6.57 a | 25.6 ± 3.4 c |
Non- Soil Fraction (>2 mm size)% | 36.89 ± 12.04 b | 36.89 ± 12.04 b | 36.89 ± 12.04 b | 11.88 ± 3.20 c | 74.4 ± 3.3 a |
pH(water, 1:2.5, w/v) | 7.15 ± 0.41 b | 9.66 ± 0.2 a | 9.53 ± 0.57 a | 6.12 ± 1.22 c | 6.3 ± 0.4 c |
EC (water, 1:2.5, w/v) dS/m | 0.16 ± 0.27 a | 0.09 ± 0.3 c | 0.1 ± 0.56 b | 0.11 ± 0.08 b | 0.17 ± 0.06 ab |
CEC (C mol kg−1) | 8.22 ± 1.55 c | 13.25 ± 4.22 b | 18.39 ± 0.38 a | 13.1 ± 0.27 b | 5.22 ± 1.54 d |
Moisture Content (%) | 5.37 ± 5.35 d | 8.14 ± 0.12 b | 10.77 ± 0.28 a | 7.29 ± 2.18 c | 4.26 ± 2.6 d |
Available-N (mg kg−1) | 96 ± 8.34 cd | 102 ± 5.87 b | 105 ± 6.27 b | 130 ± 5.22 a | 58.72 ± 4.2 d |
Available-P (mg kg−1) | 3.82 ± 0.84 d | 8.91 ± 1.12 b | 10.18 ± 0.4 a | 7.26 ± 0.87 bc | 3.24 ± 1.3 d |
Exchangeable K (mg kg−1) | 55.22 ± 3.57 c | 423.3 ± 35.11 a | 456.66 ± 7.4 a | 102.1 ± 5.22 b | 30.56 ± 3.2 d |
Corrected bulk density (Mg m−3) | 0.71 ± 0.51 b | 0.65 ± 0.58 c | 0.63 ± 0.91 c | 0.91 ± 0.85 ab | 1.05 ± 0.10 a |
SOC (Mg ha−1) | 31.33 ± 0.75 c | 41.29 ± 1.22 b | 45.7 ± 1.89 b | 72.11 ± 5.22 a | 12.6 ± 0.32 d |
Land use | Country/Location | Biochar Feedstock | Results | References | |
---|---|---|---|---|---|
Sub-urban red soil | Hangzhou, China | Oak wood, bamboo | -Lability index increased by 4 and 6%, respectively, -The carbon management index (CMI) increased by 50 to 286%. | [24] | |
Agricultural Soil | Pottawattamie County, USA | Corn stover | Increase in soil inorganic carbon by 0.023–0.045 mg C kg−1 and organic carbon by 0.001–0.0069 mg C kg−1. | [26] | |
Moso bamboo forest | Zhejiang, China | Bamboo leaf | 5 and 15 Mg ha−1 increased the ecosystem carbon stock by 1486.31% and 252.98%, respectively. | [46] | |
Agricultural soil | Atlantic, USA | Wood | C stocks nearly twice (14.07 Mg soil C ha−1) the amount of C added with biochar 6 years earlier (7.25 Mg biochar C ha−1) | [47] | |
Fresh Coal Mine spoil | Jharia, India | Yard waste | Stable carbon pool in biochar amended mine spoil was 0.873 g CO2–C kg−1 compared to 0.03 g CO2–C kg−1 in mine spoil | [45] | |
Copper Mine spoil | Touro, Spain | Holm oak wood | 20–207 g C kg−1 for total soil carbon and 3–27 g C kg−1 for inorganic carbon by biochar application rate of 20–100% | [43] | |
Damoda, Eco-restoration, Jharia, India | Calotropis procera | C stock (Mg C ha−1) | CO2 sequestered (Mg ha−1) | Present Study | |
RMS | 30.98 ± 1.25 | 113.69 ± 3.5 | |||
BC30 | 41.34 ± 1.3 | 151.70 ± 5.31 | |||
BC60 | 45.84 ± 1.5 | 168.22 ± 4.25 | |||
RF | 72.11 ± 3.2 | 264.64 ± 5.65 | |||
UMS | 13.18 ± 0.87 | 48.37 ± 1.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, D.; Maiti, S.K. Eco-Restoration of Coal Mine Spoil: Biochar Application and Carbon Sequestration for Achieving UN Sustainable Development Goals 13 and 15. Land 2021, 10, 1112. https://doi.org/10.3390/land10111112
Ghosh D, Maiti SK. Eco-Restoration of Coal Mine Spoil: Biochar Application and Carbon Sequestration for Achieving UN Sustainable Development Goals 13 and 15. Land. 2021; 10(11):1112. https://doi.org/10.3390/land10111112
Chicago/Turabian StyleGhosh, Dipita, and Subodh Kumar Maiti. 2021. "Eco-Restoration of Coal Mine Spoil: Biochar Application and Carbon Sequestration for Achieving UN Sustainable Development Goals 13 and 15" Land 10, no. 11: 1112. https://doi.org/10.3390/land10111112
APA StyleGhosh, D., & Maiti, S. K. (2021). Eco-Restoration of Coal Mine Spoil: Biochar Application and Carbon Sequestration for Achieving UN Sustainable Development Goals 13 and 15. Land, 10(11), 1112. https://doi.org/10.3390/land10111112